Let V be a finite-dimensional simple g-module. Taking \mathfrak{sl}_2 as a model, we will classify V as follows:

Step 1: Show that for any weight vector v, xv is also a weight vector for x a monomial in $U\mathfrak{n}^+$.

Step 2: Show the weights of xv are distinct (enough) so that there exists a $v^+ \in V$ with

\[n^+ v^+ = 0 \quad \text{and} \quad h v^+ = \mu(h)v^+ \text{ for some } \mu \in \mathfrak{h}^*. \]

Step 3: Show yv^+ is a weight vector for all monomials $y \in U\mathfrak{n}^-$.

Step 4: Show $xyv^+ \in U\mathfrak{n}^-v^+$ so that $V = U\mathfrak{h}^-v^+$.

Step 5: Find a good basis for V.

Step 6: Classify V in terms of μ.

Last time:

Fix a base $B = \{\beta_1, \ldots, \beta_r\}$ and $R^+ = R \cap \mathbb{Z}_{\geq 0}B$.
Let V be a finite-dimensional simple g-module.
Last time:

Fix a base $B = \{\beta_1, \ldots, \beta_r\}$ and $R^+ = R \cap \mathbb{Z}_{\geq 0}B$.

Let V be a finite-dimensional simple g-module.

Step 1: For $v \in V_\lambda$, $\alpha_i \in R$, $x_i \in g_{\alpha_i}$, and $h \in \mathfrak{h}$,

$$hx_1 \cdots x_m v = \left(\lambda(h) + \sum_{i=1}^{m} \alpha_i(h)\right) x_1 \cdots x_m v. \quad (*)$$
Last time:

Fix a base $B = \{\beta_1, \ldots, \beta_r\}$ and $R^+ = R \cap \mathbb{Z}_{\geq 0}B$. Let V be a finite-dimensional simple g-module.

Step 1: For $v \in V_\lambda$, $\alpha_i \in R$, $x_i \in g_{\alpha_i}$, and $h \in h$,

$$hx_1 \cdots x_m v = \left(\lambda(h) + \sum_{i=1}^m \alpha_i(h) \right) x_1 \cdots x_m v. \quad (*)$$

Define $\Omega = \{\omega_1, \ldots, \omega_r\}$ by $\langle \beta_i, \omega_j \rangle = c_j \delta_{i,j}$ for some fixed $c_j \in \mathbb{R}_{>0}$. So for every $\alpha \in R^+$,

$$\langle \alpha, \omega_j \rangle = \sum_{i=1}^r z_i \langle \beta_i, \omega_j \rangle = z_j c_j \geq 0,$$

and there is some $\omega \in \Omega$ with $\langle \alpha, \omega \rangle > 0$.

Last time:

Fix a base $B = \{\beta_1, \ldots, \beta_r\}$ and $R^+ = R \cap \mathbb{Z}_{\geq 0}B$. Let V be a finite-dimensional simple g-module.

Step 1: For $v \in V_\lambda$, $\alpha_i \in R$, $x_i \in g_{\alpha_i}$, and $h \in h$,

$$hx_1 \cdots x_m v = \left(\lambda(h) + \sum_{i=1}^{m} \alpha_i(h)\right) x_1 \cdots x_m v. \quad (*)$$

Define $\Omega = \{\omega_1, \ldots, \omega_r\}$ by $\langle \beta_i, \omega_j \rangle = c_j \delta_{i,j}$ for some fixed $c_j \in \mathbb{R}_{>0}$. So for every $\alpha \in R^+$,

$$\langle \alpha, \omega_j \rangle = \sum_{i=1}^{r} z_i \langle \beta_i, \omega_j \rangle = z_j c_j \geq 0,$$

and there is some $\omega \in \Omega$ with $\langle \alpha, \omega \rangle > 0$.

So on the basis $\{h_\omega \mid \omega \in \Omega\}$, it is clear that $\lambda + \sum_{i=1}^{m} \alpha_i$ are distinct for distinct collections x_1, \ldots, x_m.

Lemma (Step 2)

There is a highest weight vector $v^+ \in V_\lambda$ satisfying $n^+ v^+ = 0$ and $hv^+ = \mu(h)v^+$ for some $\mu \in h^\ast$.

Last time:

Fix a base \(B = \{\beta_1, \ldots, \beta_r\} \) and \(R^+ = R \cap \mathbb{Z}_{\geq 0}B \).
Let \(V \) be a finite-dimensional simple \(\mathfrak{g} \)-module.

Step 1: For \(v \in V_\lambda, \alpha_i \in R, x_i \in \mathfrak{g}_{\alpha_i} \), and \(h \in \mathfrak{h} \),

\[
hx_1 \cdots x_m v = \left(\lambda(h) + \sum_{i=1}^{m} \alpha_i(h) \right) x_1 \cdots x_m v. \tag{\ast}
\]

Define \(\Omega = \{\omega_1, \ldots, \omega_r\} \) by \(\langle \beta_i, \omega_j \rangle = c_j \delta_{i,j} \) for some fixed \(c_j \in \mathbb{R}_{>0} \).

So for every \(\alpha \in R^+ \),

\[
\langle \alpha, \omega_j \rangle = \sum_{i=1}^{r} z_i \langle \beta_i, \omega_j \rangle = z_j c_j \geq 0,
\]

and there is some \(\omega \in \Omega \) with \(\langle \alpha, \omega \rangle > 0 \).

So on the basis \(\{h_\omega \mid \omega \in \Omega\} \), it is clear that \(\lambda + \sum_{i=1}^{m} \alpha_i \) are distinct for distinct collections \(x_1, \ldots, x_m \).

Lemma (Step 2)

There is a highest weight vector \(v^+ \in V \) satisfying

\[
\mathfrak{n}^+ v^+ = 0 \quad \text{and} \quad h v^+ = \mu(h)v^+ \quad \text{for some} \ \mu \in \mathfrak{h}^*.
\]
For \(v \in V_\lambda, \alpha_i \in R, x_i \in g_{\alpha_i}, \) and \(h \in \mathfrak{h}, \)

\[
hx_1 \cdots x_m v = \left(\lambda(h) + \sum_{i=1}^{m} \alpha_i(h) \right) x_1 \cdots x_m v. \tag{*}
\]

Lemma (Step 2)

There is a highest weight vector \(v^+ \in V \) satisfying

\[
\mathfrak{n}^+ v^+ = 0 \quad \text{and} \quad hv^+ = \mu(h)v^+ \quad \text{for some} \ \mu \in \mathfrak{h}^*.
\]
For $v \in V_\lambda$, $\alpha_i \in R$, $x_i \in g_{\alpha_i}$, and $h \in \mathfrak{h}$,

$$hx_1 \cdots x_m v = \left(\lambda(h) + \sum_{i=1}^{m} \alpha_i(h) \right) x_1 \cdots x_m v.$$ \hspace{1cm} (*)

Lemma (Step 2)

There is a highest weight vector $v^+ \in V$ satisfying

$$n^+ v^+ = 0 \hspace{1cm} \text{and} \hspace{1cm} hv^+ = \mu(h)v^+ \text{ for some } \mu \in \mathfrak{h}^*.$$

Step 3: Show yv^+ is a weight vector for all monomials y in $U\mathfrak{n}^-$.
For $v \in V_\lambda$, $\alpha_i \in R$, $x_i \in g_{\alpha_i}$, and $h \in \mathfrak{h}$,

$$hx_1 \cdots x_m v = \left(\lambda(h) + \sum_{i=1}^{m} \alpha_i(h) \right) x_1 \cdots x_m v. \quad (*)$$

Lemma (Step 2)

There is a highest weight vector $v^+ \in V$ satisfying

$$n^+ v^+ = 0 \quad \text{and} \quad hv^+ = \mu(h)v^+ \quad \text{for some } \mu \in \mathfrak{h}^*. $$

Step 3: Show yv^+ is a weight vector for all monomials y in Un^-.
Step 4: Show $xyv^+ \in Un^-v^+$ for all $x \in n^+$ and mon’ls $y \in Un^-$.

Recall the Birkoff-Witt theorem: Let $B = \{\beta_1, \ldots, \beta_r\}$ be a base of R with $R^+ = \{\alpha_1, \ldots, \alpha_\ell\}$. Then there are bases $\{y_{m_1} \cdots y_{m_\ell} | y_i \in g_{-\alpha_i}, m_i \in \mathbb{Z}_{\geq 0}\}$ of $U^-\mathfrak{g}$, $\{h_{m_1} \beta_1 \cdots h_{m_r} \beta_r | m_i \in \mathbb{Z}_{\geq 0}\}$ of $U^0\mathfrak{g}$, and $\{x_{m_1} \cdots x_{m_\ell} | x_i \in g_{\alpha_i}, m_i \in \mathbb{Z}_{\geq 0}\}$ of $U^+\mathfrak{g}$.

For \(v \in V_\lambda, \alpha_i \in R, x_i \in g_{\alpha_i}, \) and \(h \in \mathfrak{h}, \)
\[
hx_1 \cdots x_m v = \left(\lambda(h) + \sum_{i=1}^{m} \alpha_i(h) \right) x_1 \cdots x_m v. \quad (*)
\]

Lemma (Step 2)

There is a highest weight vector \(v^+ \in V \) satisfying

\[
n^+ v^+ = 0 \quad \text{and} \quad hv^+ = \mu(h)v^+ \quad \text{for some} \quad \mu \in \mathfrak{h}^*.\]

Step 3: Show \(yv^+ \) is a weight vector for all monomials \(y \) in \(U_{n^-}. \)

Step 4: Show \(xyv^+ \in U_{n^-}v^+ \) for all \(x \in n^+ \) and monomials \(y \in U_{n^-}. \)

Recall the Birkhoff-Witt theorem:

Let \(B = \{\beta_1, \ldots, \beta_r\} \) be a base of \(R \) with \(R^+ = \{\alpha_1, \ldots, \alpha_\ell\}. \) Then there are bases

\[
\begin{align*}
\{ y_1^{m_1} \cdots y_\ell^{m_\ell} \mid y_i \in g_{-\alpha_i}, m_i \in \mathbb{Z}_{\geq 0} \} & \quad \text{of } U^-, \\
\{ h_1^{m_1} \cdots h_r^{m_r} \mid m_i \in \mathbb{Z}_{\geq 0} \} & \quad \text{of } U^0, \text{ and} \\
\{ x_1^{m_1} \cdots x_\ell^{m_\ell} \mid x_i \in g_{\alpha_i}, m_i \in \mathbb{Z}_{\geq 0} \} & \quad \text{of } U^+.
\end{align*}
\]
Lemma
Let V be a simple finite-dimensional \mathfrak{g}-module.

(a) There is a highest weight vector $v^+ \in V$ satisfying

$$h v^+ = \mu(h) v^+ \text{ for some } \mu \in \mathfrak{h}^*,$$
$$n^+ v^+ = 0, \quad \text{and} \quad U n^- v^+ = V.$$

(b) V is spanned by weight vectors

$$\{y_1^{m_1} \cdots y_\ell^{m_\ell} v^+ \mid m_i \in \mathbb{Z}_{\geq 0}\} \quad \text{with} \quad \mathbb{R}^+ = \{\alpha_1, \ldots, \alpha_\ell\}, \quad \text{and} \quad y_i \in \mathfrak{g}_{-\alpha_i},$$

and $h y v^+ = (\mu - \sum_i m_i \alpha_i)(h) y v^+$ for $y = y_1^{m_1} \cdots y_\ell^{m_\ell}$.

(c) The weight spaces of V are

$$V_\lambda \quad \text{with} \quad \lambda = \mu - \sum_{i=1}^r \ell_i \beta_i, \quad \ell_i \in \mathbb{Z}_{\geq 0},$$

where $B = \{\beta_1, \ldots, \beta_r\}$ is a base for the roots of \mathfrak{g}. In particular, $\dim(V_\mu) = 1.$
Structure of highest weight representations

When are highest weight modules simple? When are they isomorphic?

We say an element v_μ of a \mathfrak{g}-module M is a \emph{primitive} element or \emph{highest weight vector} (of weight $\mu \in \mathfrak{h}^*$) if

$$hv_\mu = \mu(h)v_\mu \quad \text{and} \quad n^+v_\mu = 0.$$

We call any module generated by a primitive v_μ a \emph{highest weight module} (of weight μ).
Structure of highest weight representations

When are highest weight modules simple? When are they isomorphic?

We say an element v_μ of a g-module M is a *primitive* element or *highest weight vector* (of weight $\mu \in \mathfrak{h}^*$) if

$$h v_\mu = \mu(h) v_\mu \quad \text{and} \quad n^+ v_\mu = 0.$$

We call any module generated by a primitive v_μ a *highest weight module* (of weight μ).

Lemma

Let M be generated by primitive v_μ.

(M is not a priori simple or finite-dimensional)

(1) Parts (a)–(c) from the previous lemma hold.

(2) M is indecomposable, and therefore simple.

(3) There is a unique (up to scaling) primitive element of V.

(4) Two modules $M^{(\mu)}$ and $M^{(\lambda)}$ generated by primitive elements v_μ and v_λ, respectively, are isomorphic if and only if $\mu = \lambda$.