Existence of bases

A weight $\gamma \in h^*_\mathbb{R}$ is regular if $\gamma \notin \bigcup_{\alpha \in R} h_\alpha$.

Let $R_+(\gamma) = \{ \alpha \in R | \langle \alpha, \gamma \rangle > 0 \}$.

A root $\alpha \in R_+(\gamma)$ is decomposable if $\alpha = \alpha_1 + \alpha_2$ for some $\alpha_1, \alpha_2 \in R_+(\gamma)$, and that it is indecomposable otherwise.

Let $B(\gamma) \subseteq R_+(\gamma)$ be the set of indecomposable roots in $R_+(\gamma)$.

γ
Existence of bases

A weight $\gamma \in \mathfrak{h}_R^*$ is *regular* if $\gamma \notin \bigcup_{\alpha \in R} \mathfrak{h}_\alpha$.

Let $\mathbb{R}_+ (\gamma) = \{ \alpha \in \mathfrak{r} | \langle \alpha, \gamma \rangle > 0 \}$. A root $\alpha \in \mathbb{R}_+ (\gamma)$ is *decomposable* if $\alpha = \alpha_1 + \alpha_2$ for some $\alpha_1, \alpha_2 \in \mathbb{R}_+ (\gamma)$, and that it is *indecomposable* otherwise.

Let $B(\gamma) \subseteq \mathbb{R}_+ (\gamma)$ be the set of indecomposable roots in $\mathbb{R}_+ (\gamma)$.
Existence of bases

A weight $\gamma \in h_\mathbb{R}^*$ is *regular* if $\gamma \notin \bigcup_{\alpha \in R} h_\alpha$.

Let $R^+(\gamma) = \{ \alpha \in R \mid \langle \alpha, \gamma \rangle > 0 \}$.

Existence of bases

A weight $\gamma \in \mathfrak{h}^*_\mathbb{R}$ is *regular* if $\gamma \notin \bigcup_{\alpha \in \mathfrak{h}} \mathfrak{h}_\alpha$.

Let $R^+(\gamma) = \{ \alpha \in R \mid \langle \alpha, \gamma \rangle > 0 \}$.

A root $\alpha \in R^+(\gamma)$ is *decomposable* if $\alpha = \alpha_1 + \alpha_2$ for some $\alpha_1, \alpha_2 \in R^+(\gamma)$, and that it is *indecomposable* otherwise.
Existence of bases

A weight \(\gamma \in \mathfrak{h}_R^* \) is regular if \(\gamma \notin \bigcup_{\alpha \in \mathfrak{h}} \mathfrak{h}_\alpha \).

Let \(R^+(\gamma) = \{ \alpha \in \mathfrak{h} | \langle \alpha, \gamma \rangle > 0 \} \).

A root \(\alpha \in R^+(\gamma) \) is decomposable if \(\alpha = \alpha_1 + \alpha_2 \) for some \(\alpha_1, \alpha_2 \in R^+(\gamma) \), and that it is indecomposable otherwise.

Let \(B(\gamma) \subseteq R^+(\gamma) \) be the set of indecomposable roots in \(R^+(\gamma) \).
Fix a fundamental chamber C, and therefore a base B and positive set of roots R^+. With $B = \{\beta_1, \ldots, \beta_r\}$, let $s_i = s_{\beta_i}$. Let W be the group generated by $\{s_\alpha \mid \alpha \in R\}$.
Fix a fundamental chamber C, and therefore a base B and positive set of roots R^+. With $B = \{\beta_1, \ldots, \beta_r\}$, let $s_i = s_{\beta_i}$. Let W be the group generated by $\{s_{\alpha} \mid \alpha \in R\}$.

Lemma

1. *The Weyl group W is finite.*

2. *The form \langle , \rangle on \mathfrak{h}_R^* is W-invariant, i.e.*

 $$\langle w(\alpha), \beta \rangle = \langle \alpha, w^{-1}(\beta) \rangle, \quad \text{for all } \alpha, \beta \in R, w \in W.$$

3. *For all $\alpha \in R$, $w \in W$, we have $ws_{\alpha}w^{-1} = s_{w(\alpha)}$. Also, $w(\alpha^\vee) = w(\alpha)^\vee$.*

4. *The reflection associated to a simple root β setwise fixes $R^+ - \{\beta\}$ and $R^- - \{-\beta\}$.*

5. *If $w = s_{i_1} s_{i_2} \cdots s_{i_{\ell - 1}}$ sends β_{i_ℓ} to a negative root, then $\omega s_{i_\ell} = s_{i_1} \cdots s_{i_{m - 1}} s_{i_{m + 1}} \cdots s_{i_{\ell - 1}}$ for some $1 \leq m < \ell$.*

6. *If $w = s_{i_1} s_{i_2} \cdots s_{i_\ell}$ with ℓ minimal, then $w(\beta_{i_\ell}) < 0$.***