Math 128: Lecture 17

May 5, 2014
Last time:
Fix a base $B = \{\beta_1, \ldots, \beta_r\}$ and a fund. chamber $C = \{\lambda \in \mathfrak{h}_\mathbb{R}^* \mid \langle \lambda, \beta_i \rangle > 0\}$.
Let $s_i = s_{\beta_i}$ and $\rho = \frac{1}{2} \sum_{\alpha \in R^+} \alpha$.
We saw $s_i \rho = \rho - \beta_i$ and $\rho = \sum_{i=1}^r \omega_i \in P^{++}$.

Theorem

1. W acts transitively on Weyl chambers.

2. Fix a base B. For all $\alpha \in R$ there is some $w \in W$ with $w(\alpha) \in B$.

3. For any base B, W is generated by simple reflections (reflections associated to simple roots).

 We showed for all $\alpha \in R$, we have $s_\alpha = ws_\beta w^{-1}$ with $\beta \in B, w \in \langle s_\gamma \mid \gamma \in B \rangle$

4. W acts simply transitively on bases B of R.
More on W

Fix a base $B = \{\beta_i, \ldots, \beta_r\}$ and a fund. chamber $C = \{\lambda \in h^*_R \mid \langle \lambda, \beta_i \rangle > 0\}$.

Let $s_i = s_{\beta_i}$ and $\rho = \frac{1}{2} \sum_{\alpha \in R^+} \alpha$.

We saw $s_i \rho = \rho - \beta_i$ and $\rho = \sum_{i=1}^{r} \omega_i \in P^{++}$.

Define the length of an element $w \in W$, written $\ell(w)$ as the length of a minimal word in simple reflections generating w.

More on W

Fix a base $B = \{\beta_i, \ldots, \beta_r\}$ and a fund. chamber $C = \{\lambda \in \mathfrak{h}_R^* \mid \langle \lambda, \beta_i \rangle > 0\}$. Let $s_i = s_{\beta_i}$ and $\rho = \frac{1}{2} \sum_{\alpha \in R^+} \alpha$. We saw $s_i \rho = \rho - \beta_i$ and $\rho = \sum_{i=1}^{r} \omega_i \in P^{++}$.

Define the \textit{length} of an element $w \in W$, written $\ell(w)$ as the length of a minimal word in simple reflections generating w.

Other facts:

1. W has a unique longest word w_0 which sends ρ to $-\rho$, so that w_0C is the unique Weyl chamber on the negative side of all hyperplanes.
More on \(W \)

Fix a base \(B = \{\beta_i, \ldots, \beta_r\} \) and a fund. chamber \(C = \{\lambda \in \mathfrak{h}_\mathbb{R}^* \mid \langle \lambda, \beta_i \rangle > 0\} \).

Let \(s_i = s_{\beta_i} \) and \(\rho = \frac{1}{2} \sum_{\alpha \in R^+} \alpha \).

We saw \(s_i \rho = \rho - \beta_i \) and \(\rho = \sum_{i=1}^r \omega_i \in P^{++} \).

Define the length of an element \(w \in W \), written \(\ell(w) \) as the length of a minimal word in simple reflections generating \(w \).

Other facts:

1. \(W \) has a unique longest word \(w_0 \) which sends \(\rho \) to \(-\rho\), so that \(w_0 C \) is the unique Weyl chamber on the negative side of all hyperplanes.

2. The map \(\text{det} : W \rightarrow \{\pm 1\} \) defined by

\[
\begin{align*}
 w \mapsto \begin{cases}
 1 & \text{if } w \text{ is the product of an even number of reflections}, \\
 -1 & \text{if } w \text{ is the product of an odd number of reflections},
 \end{cases}
\end{align*}
\]

is well-defined (and equal to \((-1)^{\ell(w)}\)). This is called the alternating representation or sign representation of \(W \), and is sometimes also written as \(\varepsilon(w) \).
Back to representation theory

Recall some things we know about representations of \mathfrak{g}:

1. For every $\lambda \in \mathfrak{h}^*$, there's a highest weight representation

$$L(\lambda) = U \mathfrak{g} \otimes_{U \mathfrak{b}} v_\lambda^+$$

where

$$x v_\lambda^+ = 0 \quad \text{for all } x \in U^+ = U \mathfrak{n}^+,$$

$$h v_\lambda^+ = \lambda(h) v_\lambda^+ \quad \text{for all } h \in U^0 = U \mathfrak{h}.$$
Back to representation theory

Recall some things we know about representations of \mathfrak{g}:

1. For every $\lambda \in \mathfrak{h}^*$, there’s a highest weight representation

$$L(\lambda) = U\mathfrak{g} \otimes_{U\mathfrak{b}} v_+^\lambda$$

where

$$xv_+^\lambda = 0 \quad \text{for all } x \in U^+ = U\mathfrak{n}^+,$$

$$hv_+^\lambda = \lambda(h)v_+^\lambda \quad \text{for all } h \in U^0 = U\mathfrak{h}.$$

2. With $R^+ = \{\alpha_1, \ldots, \alpha_m\}$ and $y_i \in \mathfrak{g}_{-\alpha_i}$, $L(\lambda)$ is spanned by weight vectors

$$y_1^{\ell_1} \cdots y_m^{\ell_m} v_+^\lambda \quad \text{with weight} \quad \lambda - \sum_{i=1}^m \ell_m \alpha_m.$$
Recall some things we know about representations of \mathfrak{g}:

1. For every $\lambda \in \mathfrak{h}^*$, there’s a highest weight representation

 \[L(\lambda) = U \mathfrak{g} \otimes_{U \mathfrak{b}} v^+_\lambda \quad \text{where} \quad xv^+_\lambda = 0 \quad \text{for all} \quad x \in U^+ = U \mathfrak{n}^+, \]
 \[hv^+_\lambda = \lambda(h)v^+_\lambda \quad \text{for all} \quad h \in U^0 = U \mathfrak{h}. \]

2. With $R^+ = \{\alpha_1, \ldots, \alpha_m\}$ and $y_i \in \mathfrak{g}_{-\alpha_i}$, $L(\lambda)$ is spanned by weight vectors

 \[y^+_{\ell_1} \cdots y^+_{\ell_m} v^+_\lambda \quad \text{with weight} \quad \lambda - \sum_{i=1}^m \ell_m \alpha_m. \]

3. $L(\lambda)$ is finite-dimensional if and only if $\lambda \in P^+ = \sum_{i=1}^r \omega_i$, where

 ω_i is determined by $\langle \omega_i, \beta^\vee_j \rangle = \delta_{ij}$.

Back to representation theory
Back to representation theory

Recall some things we know about representations of \mathfrak{g}:

1. For every $\lambda \in \mathfrak{h}^*$, there’s a highest weight representation

 $$L(\lambda) = U \mathfrak{g} \otimes_{U \mathfrak{b}} v_\lambda^+$$

 where

 $$xv_\lambda^+ = 0 \quad \text{for all } x \in U^+ = U \mathfrak{n}^+,$$

 $$hv_\lambda^+ = \lambda(h)v_\lambda^+ \quad \text{for all } h \in U^0 = U \mathfrak{h}.$$

2. With $R^+ = \{\alpha_1, \ldots, \alpha_m\}$ and $y_i \in \mathfrak{g} - \alpha_i$, $L(\lambda)$ is spanned by weight vectors

 $$y_1^{\ell_1} \cdots y_m^{\ell_m} v_\lambda^+$$

 with weight

 $$\lambda - \sum_{i=1}^m \ell_m \alpha_m.$$

3. $L(\lambda)$ is finite-dimensional if and only if $\lambda \in P^+ = \sum_{i=1}^r \omega_i$, where ω_i is determined by $\langle \omega_i, \beta_j^\vee \rangle = \delta_{ij}$.

4. If $L(\lambda)$ is finite-dimensional, then with $m_\mu = \dim(L(\lambda)_\mu)$, we have

 $$m_\lambda = 1, \quad \text{and } m_\mu = m_{w\mu} \quad \text{for all } w \in W.$$
Back to representation theory

Recall some things we know about representations of \mathfrak{g}:

1. For every $\lambda \in \mathfrak{h}^*$, there’s a highest weight representation

$$L(\lambda) = U_{\mathfrak{g}} \otimes_{U_{\mathfrak{b}}} v^+_{\lambda} \text{ where } \begin{align*} x v^+_{\lambda} &= 0 \quad \text{for all } x \in U^+ = U_{n^+}, \\
 h v^+_{\lambda} &= \lambda(h) v^+_{\lambda} \quad \text{for all } h \in U^0 = U_{\mathfrak{h}}. \end{align*}$$

2. With $R^+ = \{\alpha_1, \ldots, \alpha_m\}$ and $y_i \in \mathfrak{g} - \alpha_i$, $L(\lambda)$ is spanned by weight vectors

$$y_1^{\ell_1} \cdots y_m^{\ell_m} v^+_{\lambda} \text{ with weight } \lambda - \sum_{i=1}^m \ell_m \alpha_m.$$

3. $L(\lambda)$ is finite-dimensional if and only if $\lambda \in P^+ = \sum_{i=1}^r \omega_i$, where ω_i is determined by $\langle \omega_i, \beta_j^\vee \rangle = \delta_{ij}$.

4. If $L(\lambda)$ is finite-dimensional, then with $m_\mu = \dim(L(\lambda)_\mu)$, we have

$$m_\lambda = 1, \quad \text{and } m_\mu = m_{w\mu} \quad \text{for all } w \in W.$$

5. The set $P_\lambda = \{\mu \in \mathfrak{h}^* \mid \dim(L(\lambda)_\mu) > 0\}$ is the set of weights congruent to λ modulo R within the convex hull of $W \lambda$ in $\mathfrak{h}_\mathbb{R}^*$.
Example

Let \(g = A_2 \) have base \(B = \{ \beta_1, \beta_2 \mid \beta_i = \varepsilon_i - \varepsilon_{i+1} \} \), so that \(R^+ = \{ \alpha_1 = \beta_1, \alpha_2 = \beta_2, \alpha_3 = \beta_1 + \beta_2 \} \).

With \(\lambda = \alpha_3 \), the set \(P_\lambda \) is the red points in

\[
\begin{align*}
\mathcal{h}_{\alpha_1} & \quad \mathcal{h}_{\alpha_2} \\
\mathcal{h}_{\alpha_3} & \\
\end{align*}
\]

so that \(P_{\alpha_3} = W_{\alpha_3} \sqcup \{0\} \) with \(W_{\alpha_3} = R \).
Example

Let $g = A_2$ have base $B = \{ \beta_1, \beta_2 \mid \beta_i = \varepsilon_i - \varepsilon_{i+1} \}$, so that $R^+ = \{ \alpha_1 = \beta_1, \alpha_2 = \beta_2, \alpha_3 = \beta_1 + \beta_2 \}$.

With $\lambda = \alpha_3$, the set P_λ is the red points in

![Diagram]

so that $P_{\alpha_3} = W_{\alpha_3} \sqcup \{0\}$ with $W_{\alpha_3} = R$.

What is m_0??
Example

Let \(g = A_2 \) have base \(B = \{ \beta_1, \beta_2 | \beta_i = \epsilon_i - \epsilon_{i+1} \} \), so that \(R^+ = \{ \alpha_1 = \beta_1, \alpha_2 = \beta_2, \alpha_3 = \beta_1 + \beta_2 \} \).

With \(\lambda = \alpha_3 \), the set \(P_\lambda \) is the red points in

\[
\begin{align*}
P_{\alpha_3} &= W_{\alpha_3} \sqcup \{0\} \quad \text{with} \quad W_{\alpha_3} = R.
\end{align*}
\]

What is \(m_0 ?? \)
Example

Let $g = A_2$ have base $B = \{\beta_1, \beta_2 \mid \beta_i = \varepsilon_i - \varepsilon_{i+1}\}$, so that $R^+ = \{\alpha_1 = \beta_1, \alpha_2 = \beta_2, \alpha_3 = \beta_1 + \beta_2\}$.

With $\lambda = \alpha_3$, the set P_λ is the red points in

\[P_{\alpha_3} = W\alpha_3 \sqcup \{0\} \text{ with } W\alpha_3 = R. \]

What is m_0??
Example

Let \(g = A_2 \) have base \(B = \{ \beta_1, \beta_2 \mid \beta_i = \varepsilon_i - \varepsilon_{i+1} \} \), so that \(R^+ = \{ \alpha_1 = \beta_1, \alpha_2 = \beta_2, \alpha_3 = \beta_1 + \beta_2 \} \).

With \(\lambda = \alpha_3 \), the set \(P_\lambda \) is the red points in

\[
\begin{align*}
\mathfrak{h}_{\alpha_1} & \quad \mathfrak{h}_{\alpha_2} \\
\mathfrak{h}_{\alpha_3} & \quad \mathfrak{h}_{\alpha_3}
\end{align*}
\]

so that \(P_{\alpha_3} = W_{\alpha_3} \sqcup \{0\} \) with \(W_{\alpha_3} = R \).

What is \(m_0 \)??
Example

Let \(g = A_2 \) have base \(B = \{ \beta_1, \beta_2 \mid \beta_i = \varepsilon_i - \varepsilon_{i+1} \} \), so that \(R^+ = \{ \alpha_1 = \beta_1, \alpha_2 = \beta_2, \alpha_3 = \beta_1 + \beta_2 \} \). With \(\lambda = \alpha_3 \), the set \(P_\lambda \) is the red points in

\[
\begin{array}{c}
\mathcal{h}_{\alpha_1} \\
\mathcal{h}_{\alpha_2} \\
\mathcal{h}_{\alpha_3}
\end{array}
\]

so that \(P_{\alpha_3} = W_{\alpha_3} \sqcup \{0\} \) with \(W_{\alpha_3} = R \).

What is \(m_0 \)??
Example

Let $g = A_2$ have base $B = \{\beta_1, \beta_2 \mid \beta_i = \varepsilon_i - \varepsilon_{i+1}\}$, so that $R^+ = \{\alpha_1 = \beta_1, \alpha_2 = \beta_2, \alpha_3 = \beta_1 + \beta_2\}$. With $\lambda = \alpha_3$, the set P_λ is the red points in

so that $P_{\alpha_3} = W\alpha_3 \sqcup \{0\}$ with $W\alpha_3 = R$.

What is m_0??
Example

Let \(g = A_2 \) have base \(B = \{ \beta_1, \beta_2 \mid \beta_i = \varepsilon_i - \varepsilon_{i+1} \} \), so that \(R^+ = \{ \alpha_1 = \beta_1, \alpha_2 = \beta_2, \alpha_3 = \beta_1 + \beta_2 \} \).

With \(\lambda = \alpha_3 \), the set \(P_\lambda \) is the red points in

so that \(P_{\alpha_3} = W_{\alpha_3} \sqcup \{0\} \) with \(W_{\alpha_3} = R \).

What is \(m_0 \)??
Example

Let \(g = A_2 \) have base \(B = \{ \beta_1, \beta_2 \mid \beta_i = \varepsilon_i - \varepsilon_{i+1} \} \), so that \(R^+ = \{ \alpha_1 = \beta_1, \alpha_2 = \beta_2, \alpha_3 = \beta_1 + \beta_2 \} \).

With \(\lambda = \alpha_3 \), the set \(P_\lambda \) is the red points in

so that \(P_{\alpha_3} = W_{\alpha_3} \sqcup \{0\} \) with \(W_{\alpha_3} = R \).

What is \(m_0 \)??
Example

Let $g = A_2$ have base $B = \{\beta_1, \beta_2 \mid \beta_i = \varepsilon_i - \varepsilon_{i+1}\}$, so that $R^+ = \{\alpha_1 = \beta_1, \alpha_2 = \beta_2, \alpha_3 = \beta_1 + \beta_2\}$. With $\lambda = \alpha_3$, the set P_λ is the red points in

so that $P_{\alpha_3} = W\alpha_3 \sqcup \{0\}$ with $W\alpha_3 = R$.

What is m_0??
Let $g = A_2$ have base $B = \{\beta_1, \beta_2 \mid \beta_i = \epsilon_i - \epsilon_{i+1}\}$, so that $R^+ = \{\alpha_1 = \beta_1, \alpha_2 = \beta_2, \alpha_3 = \beta_1 + \beta_2\}$.
With $\lambda = \alpha_3$, the set P_λ is the red points in

\[
\begin{array}{c}
h_{\alpha_1} \\
h_{\alpha_2} \\
h_{\alpha_3}
\end{array}
\]

so that $P_{\alpha_3} = W_{\alpha_3} \sqcup \{0\}$ with $W_{\alpha_3} = R$.

What is m_0??
Example

Let $g = A_2$ have base $B = \{\beta_1, \beta_2 \mid \beta_i = \varepsilon_i - \varepsilon_{i+1}\}$, so that $R^+ = \{\alpha_1 = \beta_1, \alpha_2 = \beta_2, \alpha_3 = \beta_1 + \beta_2\}$. With $\lambda = \alpha_3$, the set P_λ is the red points in

so that $P_{\alpha_3} = W\alpha_3 \sqcup \{0\}$ with $W\alpha_3 = R$.

What is m_0??
Casimir element and Freudenthal’s multiplicity formula

If \(\{b_i\} \) is a basis of \(g \), then there is a unique dual basis \(\{b_i^*\} \) of \(g \) determined by \(\langle b_i, b_i^* \rangle = \delta_{ij} \). The Casimir element is

\[
\kappa = \sum_{b_i} b_i b_i^* \in Ug
\]

where the sum is over the basis \(\{b_i\} \) and the dual basis \(\{b_i^*\} \).
Casimir element and Freudenthal’s multiplicity formula

If \{b_i\} is a basis of \mathfrak{g}, then there is a unique dual basis \{b_i^*\} of \mathfrak{g} determined by \langle b_i, b_i^* \rangle = \delta_{ij}. The Casimir element is

$$\kappa = \sum_{b_i} b_i b_i^* \in U\mathfrak{g}$$

where the sum is over the basis \{b_i\} and the dual basis \{b_i^*\}.

Theorem

Let \(\kappa \) be the Casimir element of \(\mathfrak{g} \).

1. \(\kappa \) does not depend on the choice of basis.
2. \(\kappa \in \mathcal{Z}(U\mathfrak{g}), \) the center of \(U(\mathfrak{g}) \).
Casimir element and Freudenthal’s multiplicity formula

If \(\{ b_i \} \) is a basis of \(g \), then there is a unique dual basis \(\{ b_i^* \} \) of \(g \) determined by \(\langle b_i, b_i^* \rangle = \delta_{ij} \). The Casimir element is

\[
\kappa = \sum_{b_i} b_i b_i^* \in Ug
\]

where the sum is over the basis \(\{ b_i \} \) and the dual basis \(\{ b_i^* \} \).

Theorem

Let \(\kappa \) be the Casimir element of \(g \).

1. \(\kappa \) does not depend on the choice of basis.
2. \(\kappa \in Z(Ug) \), the center of \(U(g) \).

Theorem (Freudenthal’s multiplicity formula)

Let \(m_\mu \) be the dimension of \(L(\lambda)_\mu \) in \(L(\lambda) \), with \(\lambda \in P^+ \). Then \(m_\mu \) is determined recursively by

\[
m_\mu = \frac{2}{\langle \lambda, \lambda + 2\rho \rangle - \langle \mu, \mu + 2\rho \rangle} \sum_{\alpha \in R^+} \sum_{i=1}^{\infty} \langle \mu + i\alpha, \alpha \rangle m_{\mu + i\alpha}.
\]