Math 128: Lecture 2

March 26, 2014
A (complex) Lie algebra is a vector space \mathfrak{g} over \mathbb{C} with a bracket
$[\cdot, \cdot] : \mathfrak{g} \otimes \mathfrak{g} \rightarrow \mathfrak{g}$ satisfying

(a) (skew symmetry) $[x, y] = -[y, x]$, and

(b) (Jacobi identity) $[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0,$

for all $x, y, z \in \mathfrak{g}$.
A (complex) *Lie algebra* is a vector space \mathfrak{g} over \mathbb{C} with a bracket $[\cdot,\cdot] : \mathfrak{g} \otimes \mathfrak{g} \to \mathfrak{g}$ satisfying

(a) *(skew symmetry)* $[x, y] = -[y, x]$, and

(b) *(Jacobi identity)* $[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0$,

for all $x, y, z \in \mathfrak{g}$.

Favorite examples:

$$\mathfrak{gl}_n(\mathbb{C}) = \text{End}(\mathbb{C}^n)$$
A (complex) Lie algebra is a vector space \mathfrak{g} over \mathbb{C} with a bracket $[\cdot, \cdot] : \mathfrak{g} \otimes \mathfrak{g} \to \mathfrak{g}$ satisfying

(a) (skew symmetry) $[x, y] = -[y, x]$, and

(b) (Jacobi identity) $[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0$,

for all $x, y, z \in \mathfrak{g}$.

Favorite examples:

- $\mathfrak{gl}_n(\mathbb{C}) = \text{End}(\mathbb{C}^n)$
- $\mathfrak{sl}_n(\mathbb{C}) = \{ x \in \mathfrak{gl}_n(\mathbb{C}) \mid \text{tr}(x) = 0 \}$
A (complex) *Lie algebra* is a vector space \mathfrak{g} over \mathbb{C} with a bracket $[\cdot,\cdot] : \mathfrak{g} \otimes \mathfrak{g} \to \mathfrak{g}$ satisfying

(a) *(skew symmetry)* $[x, y] = -[y, x]$, and

(b) *(Jacobi identity)* $[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0$,

for all $x, y, z \in \mathfrak{g}$.

Favorite examples:

$\mathfrak{gl}_n(\mathbb{C}) = \text{End}(\mathbb{C}^n)$

$\mathfrak{sl}_n(\mathbb{C}) = \{x \in \mathfrak{gl}_n(\mathbb{C}) \mid \text{tr}(x) = 0\}$

$\mathfrak{so}_n(\mathbb{C}) = \{x \in \mathfrak{sl}_n \mid \langle xu, v \rangle + \langle u, xv \rangle = 0 \text{ for all } u, v \in \mathbb{C}^n\}$, where $\langle \cdot, \cdot \rangle$ is a symmetric form on \mathbb{C}^n.
A (complex) **Lie algebra** is a vector space \(g \) over \(\mathbb{C} \) with a bracket \([,]: g \otimes g \to g\) satisfying

(a) (**skew symmetry**) \([x, y] = -[y, x]\), and

(b) (**Jacobi identity**) \([x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0\), for all \(x, y, z \in g \).

Favorite examples:

\[
\begin{align*}
\mathfrak{gl}_n(\mathbb{C}) &= \text{End}(\mathbb{C}^n) \\
\mathfrak{sl}_n(\mathbb{C}) &= \{ x \in \mathfrak{gl}_n(\mathbb{C}) \mid \text{tr}(x) = 0 \} \\
\mathfrak{so}_n(\mathbb{C}) &= \{ x \in \mathfrak{sl}_n \mid \langle xu, v \rangle + \langle u, xv \rangle = 0 \text{ for all } u, v \in \mathbb{C}^n \}, \\
\text{where } \langle , \rangle \text{ is a symmetric form on } \mathbb{C}^n. \\
\mathfrak{sp}_n(\mathbb{C}) &= \{ x \in \mathfrak{sl}_n \mid \langle xu, v \rangle + \langle u, xv \rangle = 0 \text{ for all } u, v \in \mathbb{C}^n \}, \\
\text{where } \langle , \rangle \text{ is a skew-symmetric form on } \mathbb{C}^n.
\end{align*}
\]
Classical Lie algebras

An algebra is *simple* if

(1) g has no nontrivial proper ideals
 (the only subspaces $a \subseteq g$ satisfying $[a, g] \subseteq a$ are g and 0),
 and

(2) g is not abelian ($[g, g] \neq 0$).

Four infinite families of simple Lie algebras, called the classical Lie algebras:

Type A_r: $\mathfrak{sl}_{r+1}(\mathbb{C})$, $r \geq 1$

Type B_r: $\mathfrak{so}_{2r+1}(\mathbb{C})$, $r \geq 2$

Type C_r: $\mathfrak{sp}_{2r}(\mathbb{C})$, $r \geq 3$

Type D_r: $\mathfrak{so}_{2r}(\mathbb{C})$, $r \geq 4$

The exceptional Lie algebras, E_6, E_7, E_8, F_4, and G_2, complete the list of simple complex Lie algebras.
Classical Lie algebras

An algebra is simple if

(1) \mathfrak{g} has no nontrivial proper ideals
 (the only subspaces $\mathfrak{a} \subseteq \mathfrak{g}$ satisfying $[\mathfrak{a}, \mathfrak{g}] \subseteq \mathfrak{a}$ are \mathfrak{g} and 0),
 and

(2) \mathfrak{g} is not abelian ($[\mathfrak{g}, \mathfrak{g}] \neq 0$).

Four infinite families of simple Lie algebras, called the classical Lie algebras:

Type A_r: $\mathfrak{sl}_{r+1}(\mathbb{C})$, $r \geq 1$
Type B_r: $\mathfrak{so}_{2r+1}(\mathbb{C})$, $r \geq 2$
Type C_r: $\mathfrak{sp}_{2r}(\mathbb{C})$, $r \geq 3$
Type D_r: $\mathfrak{so}_{2r}(\mathbb{C})$, $r \geq 4$
Classical Lie algebras

An algebra is *simple* if

(1) \(g \) has no nontrivial proper ideals (the only subspaces \(a \subseteq g \) satisfying \([a, g] \subseteq a \) are \(g \) and 0), and

(2) \(g \) is not abelian (\([g, g] \neq 0 \)).

Four infinite families of simple Lie algebras, called the *classical Lie algebras*:

- **Type** \(A_r \): \(\mathfrak{sl}_{r+1}(\mathbb{C}) \), \(r \geq 1 \)
- **Type** \(B_r \): \(\mathfrak{so}_{2r+1}(\mathbb{C}) \), \(r \geq 2 \)
- **Type** \(C_r \): \(\mathfrak{sp}_{2r}(\mathbb{C}) \), \(r \geq 3 \)
- **Type** \(D_r \): \(\mathfrak{so}_{2r}(\mathbb{C}) \), \(r \geq 4 \)

The *exceptional Lie algebras*,

\[
E_6, E_7, E_8, F_4, \text{ and } G_2,
\]

complete the list of simple complex Lie algebras.
Standard and adjoint representations

A representation of a Lie algebra is a vector space V together with a Lie algebra homomorphism $\rho : \mathfrak{g} \to \text{End}(V)$ satisfying

$$\rho([x, y]) = \rho(x)\rho(y) - \rho(y)\rho(x).$$
A representation of a Lie algebra is a vector space V together with a Lie algebra homomorphism $\rho : \mathfrak{g} \rightarrow \text{End}(V)$ satisfying $\rho([x,y]) = \rho(x)\rho(y) - \rho(y)\rho(x)$.

We saw the standard representations of \mathfrak{sl}_n, \mathfrak{so}_n, and \mathfrak{sp}_n.
A *representation* of a Lie algebra is a vector space V together with a Lie algebra homomorphism $\rho : \mathfrak{g} \to \text{End}(V)$ satisfying $\rho([x, y]) = \rho(x)\rho(y) - \rho(y)\rho(x)$.

We saw the *standard* representations of \mathfrak{sl}_n, \mathfrak{so}_n, and \mathfrak{sp}_n.

The *adjoint* representation of a Lie algebra \mathfrak{g} is

$$\text{ad} : \mathfrak{g} \to \text{End}(\mathfrak{g})$$

$$x \mapsto \text{ad}_x = [\cdot, x], \quad \text{i.e. } \text{ad}_x(y) = [y, x].$$
Let A be an algebra over \mathbb{C}.
Then let $L(A)$ be the Lie algebra with
Vector space: A
Bracket: $[x, y] = xy - yx$.
Algebras ↔ Lie algebras

Let A be an algebra over \mathbb{C}. Then let $L(A)$ be the Lie algebra with
Vector space: A
Bracket: $[x, y] = xy - yx$.

Let \mathfrak{g} be a complex Lie algebra. Then let $U\mathfrak{g}$ be the algebra with
Vector space: \mathbb{C}-span(free group on \mathfrak{g}-basis)
Multiplication: satisfies relation $xy - yx = [x, y]$
Algebras \leftrightarrow Lie algebras

Let A be an algebra over \mathbb{C}.
Then let $L(A)$ be the Lie algebra with
Vector space: A
Bracket: $[x, y] = xy - yx$.

Let \mathfrak{g} be a complex Lie algebra.
Then let $U\mathfrak{g}$ be the algebra with
Vector space: \mathbb{C}-span(free group on \mathfrak{g}-basis)
Multiplication: satisfies relation $xy - yx = [x, y]$

$U\mathfrak{g}$ is called the universal enveloping algebra of \mathfrak{g}.