Recall from last time: \(\mathfrak{sl}_2 = \mathfrak{sl}_2(\mathbb{C}) \) is generated by \(x, y, h \) with relations

\[
[h, x] = 2x, \quad [h, y] = -2y, \quad \text{and} \quad [x, y] = h.
\]

The universal enveloping algebra \(U\mathfrak{g} \) associated to a Lie algebra \(\mathfrak{g} \) has vector space spanned by the free group on a basis of \(\mathfrak{g} \) with relations \(ab - ba = [a, b] \) for \(a, b \in \mathfrak{g} \).

What does \(U\mathfrak{sl}_2 \) look like?
A representation of an algebra \(A \) is a vector space \(M \) (called the module) with an algebra-homomorphism \(\rho : A \to \text{End}(V) \).
A representation of an algebra A is a vector space M (called the module) with an algebra-homomorphism $\rho : A \to \text{End}(V)$. Put another way, it’s a module M with an A-action,

$$A \otimes M \to M,$$

where

$$ (a, m) \mapsto am = \rho(a)m$$

which is bilinear: for $c_1, c_2 \in \mathbb{C}, \ a_1, a_2 \in A, \ m_1, m_2 \in M$,

$$ (c_1 a_1 + c_2 a_2)m = c_1 a_1 m + c_2 a_2 m, \text{ and}$$

$$ a(c_1 m_1 + c_2 m_2) = c_1 am_1 + c_2 am_2$$

and preserves the multiplication: $a_1(a_2 m) = (a_1 a_2)m$.

A *representation* of an algebra A is a vector space M (called the *module*) with an algebra-homomorphism $\rho : A \to \operatorname{End}(V)$. Put another way, it’s a module M with an A-action,

$$A \otimes M \to M,$$

where

$$(a, m) \mapsto am = \rho(a)m$$

which is bilinear: for $c_1, c_2 \in \mathbb{C}, a_1, a_2 \in A, m_1, m_2 \in M$,

$$(c_1a_1 + c_2a_2)m = c_1a_1m + c_2a_2m, \text{ and}$$

$$a(c_1m_1 + c_2m_2) = c_1am_1 + c_2am_2$$

and preserves the multiplication: $a_1(a_2m) = (a_1a_2)m$.

Last time:

“A *representation* of a Lie algebra is a vector space V together with a Lie algebra homomorphism $\rho : \mathfrak{g} \to \operatorname{End}(V)$ satisfying

$$\rho([x, y]) = \rho(x)\rho(y) - \rho(y)\rho(x).$$

So by definition, a representation of a Lie algebra is a representation of its enveloping algebra.
A Hopf algebra is an algebra U with three maps

$$\Delta : U \rightarrow U \otimes U, \quad \varepsilon : U \rightarrow \mathbb{C}, \quad \text{and} \quad S : U \rightarrow U$$

such that

(1) If M and N are U-modules, then $M \otimes N$ with action

$$x(m \otimes n) = \sum_{x} x(1)m \otimes x(2)n$$

where $\Delta(x) = \sum_{x} x(1) \otimes x(2)$, is a U-module. [Note: this is called Sweedler notation]

(2) The vector space $\mathbb{C} = v\mathbb{C}$, with actions $xv_1 = \varepsilon(x)v_1$ is a U-module.

(3) If M is a U-module then $M^* = \text{Hom}(M, \mathbb{C})$ with action

$$(x\varphi)(m) = \varphi(S(x)m)$$

is a U-module.

(4) The maps \cup and \cap are U-module homomorphisms.
Specific representations of g we have so far:

1. Trivial representation: Cv with $xv = 0$ for all $x \in g$.
2. Adjoint representation: $g \rightarrow \text{End}(g)$ by $x \mapsto \text{ad}_x = [\cdot, x]$.

We can get more by taking tensor products of old representations.
Specific representations of \mathfrak{g} we have so far:

(1) Trivial representation: Cv with $xv = 0$ for all $x \in \mathfrak{g}$.

(2) Adjoint representation: $\mathfrak{g} \rightarrow \text{End}(\mathfrak{g})$ by $x \mapsto \text{ad}_x = [\cdot, x]$.

(3) Standard representations of classical simple complex Lie algebras.

We can get more by taking tensor products of old representations.

Representations of \mathfrak{sl}_2.

$\mathfrak{sl}_2 = \mathfrak{sl}_2(\mathbb{C})$ is generated by x, y, h with relations

$$[h, x] = 2x, \quad [h, y] = -2y, \quad \text{and} \quad [x, y] = h.$$

If ρ is a rep of \mathfrak{sl}_2, then $\rho(h)$ has at least one eigenvector v with eigenvalue $\lambda \in \mathbb{C}$, i.e.

$$hv = \lambda v.$$
Specific representations of \mathfrak{g} we have so far:

1. Trivial representation: Cv with $xv = 0$ for all $x \in \mathfrak{g}$.
2. Adjoint representation: $\mathfrak{g} \to \text{End}(\mathfrak{g})$ by $x \mapsto \text{ad}_x = [\cdot, x]$.

We can get more by taking tensor products of old representations.

Representations of \mathfrak{sl}_2.

$\mathfrak{sl}_2 = \mathfrak{sl}_2(\mathbb{C})$ is generated by x, y, h with relations

$$[h, x] = 2x, \quad [h, y] = -2y, \quad \text{and} \quad [x, y] = h.$$

If ρ is a rep of \mathfrak{sl}_2, then $\rho(h)$ has at least one eigenvector v with eigenvalue weight $\lambda \in \mathbb{C}$, i.e.

$$hv = \lambda v.$$