Math 128: Lecture 5

April 2, 2014
Last time: Let M be a finite-dimensional simple $\mathfrak{sl}_2(\mathbb{C})$-module.

(1) h has at least one weight vector $v \in M$. Use $hx = xh + [h, x]$ to show that $\{x^\ell v^+ \mid \ell \in \mathbb{Z}_{\geq 0}\}$ are also w.v.’s with distinct weights.

(2) Since the weights of h on the $x^\ell v$’s are distinct, the non-zero $x^\ell v$’s are distinct. So since M is f.d., there must be $0 \neq v^+ \in M$ with $xv^+ = 0$ and $hv^+ = \mu v^+$ for some $\mu \in \mathbb{C}$.

The vector v^+ is called a primitive element.

(3) Use $hy = yh + [h, y]$ to show that $\{y^\ell v^+ \mid \ell \in \mathbb{Z}_{\geq 0}\}$ are also weight vectors with distinct weights. So again, since M is finite-dimensional, there must be some $d \in \mathbb{Z}_{\geq 0}$ with $y^d v^+ \neq 0$ and $y^{d+1} v^+ = 0$.

(4) Use $xy = yx + h$ to show $xy^\ell v^+ = \ell(\mu - (\ell - 1))$.

(5) Looking at the $(d+1, d+1)$ entry of h, use $[x, y] = h$ to show $\mu = d$.

Theorem

The simple finite dimensional \mathfrak{sl}_2 modules $L(d)$ are indexed by $d \in \mathbb{Z}_{\geq 0}$ with basis $\{v^+, yv^+, y^2 v^+, \ldots, y^d v^+\}$ and action $xv^+ = 0$, $y^{d+1} v^+ = 0,$

$$h(y^\ell v^+) = (d - 2\ell)(y^\ell v^+),$$

$$x(y^\ell v^+) = \ell(d + 1 - \ell)(y^{\ell-1} v^+), \quad \text{and} \quad y(y^\ell v^+) = y^{\ell+1} v^+.$$
\[h = \begin{pmatrix} \mu & \mu - 2 & \mu - 4 & \cdots & \mu - 2d \\ \end{pmatrix} \]

\[y = \begin{pmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 1 \\ 0 \end{pmatrix} \]

\[x = \begin{pmatrix} 0 & \mu & 0 & 2\mu - 2 & 0 & 3\mu - 6 & \cdots & d(\mu - (d - 1)) & 0 \end{pmatrix} \]
Some facts about finite-dimensional \mathfrak{sl}_2 modules.

The weights of $L(d)$ are

(1) symmetric about 0,

(2) all with the same parity,

(3) are the convex hull of $\{d, -d\}$ in the lattice $2\mathbb{Z} + d$.
Some facts about finite-dimensional \(\mathfrak{sl}_2 \) modules.

The weights of \(L(d) \) are

1. symmetric about 0,
2. all with the same parity,
3. are the convex hull of \(\{d, -d\} \) in the lattice \(2\mathbb{Z} + d \).

So the weights of any finite-dimensional \(\mathfrak{sl}_2 \)-module \(M \) are also symmetric about 0, with the property that

\[
\dim(M_{\pm a}) \leq \dim(M_{\pm b}) \quad \text{for all } 0 < b < a, \text{ with } a, b \in 2\mathbb{Z} \text{ or } 2\mathbb{Z} + 1.
\]
Some facts about finite-dimensional \mathfrak{sl}_2 modules.

The weights of $L(d)$ are

1. symmetric about 0,
2. all with the same parity,
3. are the convex hull of $\{d, -d\}$ in the lattice $2\mathbb{Z} + d$.

So the weights of any finite-dimensional \mathfrak{sl}_2-module M are also symmetric about 0, with the property that

$$\dim(M_{\pm a}) \leq \dim(M_{\pm b}) \quad \text{for all } 0 < b < a, \text{ with } a, b \in 2\mathbb{Z} \text{ or } 2\mathbb{Z} + 1.$$

If $\{m_1, \ldots, m_r\}$ and $\{n_1, \ldots, n_s\}$ are weight bases for \mathfrak{sl}_2-modules M and N respectively, then $\{m_i \otimes n_j \mid i = 1, \ldots, r, j = 1, \ldots, s\}$ is a weight basis of $M \otimes N$, and the weight spaces of $M \otimes N$ are

$$\left(M \otimes N\right)_\gamma = \bigoplus_{\alpha + \beta = \gamma} M_\alpha \otimes M_\beta.$$
Example

For any $d > 0$, $L(d) \otimes L(1) = L(d + 1) \oplus L(d - 1)$.
Example

For any $d > 0$, $L(d) \otimes L(1) = L(d + 1) \oplus L(d - 1)$. So the dimension of $L(a)$ in $L(1)^{\otimes k}$ is given by the number of downward-moving paths from $L(1)$ on level on, to $L(a)$ on level k in the lattice:

$k = 1$:

$k = 2$:

$k = 3$:

$k = 4$:

$k = 5$:

...
Finite-dimensional semisimple complex Lie algebras \(g \)

Finite-dimensional: \(g \) is a finite-dimensional vector space.
Complex: \(g \) is a vector space over \(\mathbb{C} \).
Lie algebra: \(g \) is a vector space with Lie bracket \([,]\).
What is *semisimple*?
Finite-dimensional semisimple complex Lie algebras \mathfrak{g}

- Finite-dimensional: \mathfrak{g} is a finite-dimensional vector space.
- Complex: \mathfrak{g} is a vector space over \mathbb{C}.
- Lie algebra: \mathfrak{g} is a vector space with Lie bracket $[,]$.
- What is *semisimple*?

Definition 1
An *ideal* of \mathfrak{g} is a subspace \mathfrak{a} such that if $x \in \mathfrak{g}$, $a \in \mathfrak{a}$, then $[x, a] \in \mathfrak{a}$.
Finite-dimensional semisimple complex Lie algebras \mathfrak{g}

Finite-dimensional: \mathfrak{g} is a finite-dimensional vector space.
Complex: \mathfrak{g} is a vector space over \mathbb{C}.
Lie algebra: \mathfrak{g} is a vector space with Lie bracket $[,]$.
What is semisimple?

Definition 1
An *ideal* of \mathfrak{g} is a subspace \mathfrak{a} such that if $x \in \mathfrak{g}$, $a \in \mathfrak{a}$, then $[x,a] \in \mathfrak{a}$.
A *simple* Lie algebra is a Lie algebra with no non-trivial proper ideals and $[[\mathfrak{g},\mathfrak{g}]] \neq 0$.

Finite-dimensional semisimple complex Lie algebras \mathfrak{g}

Finite-dimensional: \mathfrak{g} is a finite-dimensional vector space.
Complex: \mathfrak{g} is a vector space over \mathbb{C}.
Lie algebra: \mathfrak{g} is a vector space with Lie bracket $[,]$.

What is *semisimple*?

Definition 1

An *ideal* of \mathfrak{g} is a subspace \mathfrak{a} such that if $x \in \mathfrak{g}$, $a \in \mathfrak{a}$, then $[x, a] \in \mathfrak{a}$. A *simple* Lie algebra is a Lie algebra with no non-trivial proper ideals and $[\mathfrak{g}, \mathfrak{g}] \neq 0$. A Lie algebra \mathfrak{g} is *semisimple* if it is a direct sum of simple Lie algebras,

$$\mathfrak{g} = \mathfrak{g}_1 \oplus \mathfrak{g}_2 \oplus \cdots \oplus \mathfrak{g}_\ell$$

as Lie algebras.
Finite-dimensional semisimple complex Lie algebras \mathfrak{g}

Finite-dimensional: \mathfrak{g} is a finite-dimensional vector space.
Complex: \mathfrak{g} is a vector space over \mathbb{C}.
Lie algebra: \mathfrak{g} is a vector space with Lie bracket $[\cdot,\cdot]$.
What is semisimple?

Definition 1
An *ideal* of \mathfrak{g} is a subspace \mathfrak{a} such that if $x \in \mathfrak{g}$, $a \in \mathfrak{a}$, then $[x,a] \in \mathfrak{a}$. A *simple* Lie algebra is a Lie algebra with no non-trivial proper ideals and $[\mathfrak{g},\mathfrak{g}] \neq 0$. A Lie algebra \mathfrak{g} is *semisimple* if it is a direct sum of simple Lie algebras,

$$\mathfrak{g} = \mathfrak{g}_1 \oplus \mathfrak{g}_2 \oplus \cdots \oplus \mathfrak{g}_\ell$$

as Lie algebras. A Lie algebra \mathfrak{g} is *reductive* if it is a direct sum of simple and abelian Lie algebras.
Definition 1

An ideal of \(\mathfrak{g} \) is a subspace \(\mathfrak{a} \) such that if \(x \in \mathfrak{g}, a \in \mathfrak{a} \), then \([x, a] \in \mathfrak{a} \). A simple Lie algebra is a Lie algebra with no non-trivial proper ideals and \([\mathfrak{g}, \mathfrak{g}] \neq 0 \). A Lie algebra \(\mathfrak{g} \) is semisimple if it is a direct sum of simple Lie algebras,

\[
\mathfrak{g} = \mathfrak{g}_1 \oplus \mathfrak{g}_2 \oplus \cdots \oplus \mathfrak{g}_\ell
\]
as Lie algebras. A Lie algebra \(\mathfrak{g} \) is reductive if it is a direct sum of simple and abelian Lie algebras.

Definition 2

A \(\mathfrak{g} \)-module is simple if it has no non-trivial proper submodules.
Finite-dimensional semisimple complex Lie algebras \mathfrak{g}

Definition 1
An ideal of \mathfrak{g} is a subspace \mathfrak{a} such that if $x \in \mathfrak{g}$, $a \in \mathfrak{a}$, then $[x, a] \in \mathfrak{a}$. A simple Lie algebra is a Lie algebra with no non-trivial proper ideals and $[\mathfrak{g}, \mathfrak{g}] \neq 0$. A Lie algebra \mathfrak{g} is semisimple if it is a direct sum of simple Lie algebras,

$$\mathfrak{g} = \mathfrak{g}_1 \oplus \mathfrak{g}_2 \oplus \cdots \oplus \mathfrak{g}_\ell$$
as Lie algebras. A Lie algebra \mathfrak{g} is reductive if it is a direct sum of simple and abelian Lie algebras.

Definition 2
A \mathfrak{g}-module is simple if it has no non-trivial proper submodules. A \mathfrak{g}-module M is semisimple (or completely reducible) if M is a direct sum of simple \mathfrak{g}-modules:

$$M \cong M_1 \oplus \cdots \oplus M_\ell$$
as \mathfrak{g}-modules.
Finite-dimensional semisimple complex Lie algebras \mathfrak{g}

Definition 1
An *ideal* of \mathfrak{g} is a subspace \mathfrak{a} such that if $x \in \mathfrak{g}$, $a \in \mathfrak{a}$, then $[x, a] \in \mathfrak{a}$. A *simple* Lie algebra is a Lie algebra with no non-trivial proper ideals and $[\mathfrak{g}, \mathfrak{g}] \neq 0$. A Lie algebra \mathfrak{g} is *semisimple* if it is a direct sum of simple Lie algebras,

$$\mathfrak{g} = \mathfrak{g}_1 \oplus \mathfrak{g}_2 \oplus \cdots \oplus \mathfrak{g}_\ell$$

as Lie algebras. A Lie algebra \mathfrak{g} is *reductive* if it is a direct sum of simple and abelian Lie algebras.

Definition 2
A \mathfrak{g}-module is *simple* if it has no non-trivial proper submodules. A \mathfrak{g}-module M is *semisimple* (or completely reducible) if M is a direct sum of simple \mathfrak{g}-modules:

$$M \cong M_1 \oplus \cdots \oplus M_\ell$$

as \mathfrak{g}-modules. A Lie algebra \mathfrak{g} is *semisimple* if it has trivial center and all of the finite dimensional \mathfrak{g}-modules are semisimple.
Recall a *Hopf algebra* is an algebra U with three maps

$$\Delta : U \rightarrow U \otimes U, \quad \varepsilon : U \rightarrow \mathbb{C}, \quad \text{and} \quad S : U \rightarrow U$$

(*coproduct, counit, and antipode*) such that

1. If M and N are U-modules, then $M \otimes N$ is a U-module with action

$$x(m \otimes n) = \sum_x x_1(m) \otimes x_2(n)$$

where $\Delta(x) = \sum_x x_1 \otimes x_2$.

2. The trivial module is given by $\mathbb{C} = v\mathbb{C}$ with action

$$xv_1 = \varepsilon(x)v_1.$$

3. If M is a U-module then $M^* = \text{Hom}(M, \mathbb{C})$ is a U-module with action

$$(x\varphi)(m) = \varphi(S(x)m).$$

4. The maps $\cup : M \otimes M^* \rightarrow \mathbb{C}$ and $\cap : \mathbb{C} \rightarrow M \otimes M^*$ are U-module homomorphisms.
Forms

Let U be a Hopf algebra with module M.

- A *bilinear form* is a map $\langle \cdot, \cdot \rangle : M \otimes M \to \mathbb{C}$.
Forms

Let U be a Hopf algebra with module M.

- A bilinear form is a map $\langle \cdot, \cdot \rangle : M \otimes M \to \mathbb{C}$.
- A bilinear form is symmetric if $\langle m, n \rangle = \langle n, m \rangle$ for all $x, y \in M$.

The Killing form on a Lie algebra g is $\langle x, y \rangle = \text{Tr}(\text{ad}_x \text{ad}_y)$.

If g is simple, then every NIBS form is a constant multiple of the Killing form.
Forms

Let U be a Hopf algebra with module M.

- A bilinear form is a map $\langle \cdot, \cdot \rangle : M \otimes M \to \mathbb{C}$.
- A bilinear form is symmetric if $\langle m, n \rangle = \langle n, m \rangle$ for all $x, y \in M$.
- A symmetric bilinear form is invariant if $\langle xm, n \rangle = \langle m, S(x)n \rangle$ for all $x \in U$.

The Killing form on a Lie algebra g is $\langle x, y \rangle = \text{Tr}(\text{ad}_x \text{ad}_y)$. If g is simple, then every NIBS form is a constant multiple of the Killing form.
Forms

Let U be a Hopf algebra with module M.

- A bilinear form is a map $\langle \cdot, \cdot \rangle : M \otimes M \to \mathbb{C}$.
- A bilinear form is symmetric if $\langle m, n \rangle = \langle n, m \rangle$ for all $x, y \in M$.
- A symmetric bilinear form is invariant if $\langle xm, n \rangle = \langle m, S(x)n \rangle$ for all $x \in U$.
- A form is nondegenerate if $\langle x, U \rangle \neq 0$ for all $x \in U$.
Let U be a Hopf algebra with module M.

- A \textit{bilinear form} is a map $\langle \cdot, \cdot \rangle : M \otimes M \to \mathbb{C}$.
- A bilinear form is \textit{symmetric} if $\langle m, n \rangle = \langle n, m \rangle$ for all $x, y \in M$.
- A symmetric bilinear form is \textit{invariant} if $\langle xm, n \rangle = \langle m, S(x)n \rangle$ for all $x \in U$.
- A \textit{— "— form} is \textit{nondegenerate} if $\langle x, U \rangle \neq 0$ for all $x \in U$.

The \textit{Killing form} on a Lie algebra \mathfrak{g} is

$$\langle x, y \rangle = \text{Tr}(\text{ad}_x \text{ad}_y).$$
Let U be a Hopf algebra with module M.

- A bilinear form is a map $\langle \cdot , \cdot \rangle : M \otimes M \to \mathbb{C}$.
- A bilinear form is symmetric if $\langle m, n \rangle = \langle n, m \rangle$ for all $x, y \in M$.
- A symmetric bilinear form is invariant if $\langle xm, n \rangle = \langle m, S(x)n \rangle$ for all $x \in U$.
- A form is nondegenerate if $\langle x, U \rangle \neq 0$ for all $x \in U$.

The Killing form on a Lie algebra \mathfrak{g} is

$$\langle x, y \rangle = \text{Tr}(\text{ad}_x \text{ad}_y).$$

If \mathfrak{g} is simple, then every NIBS form is a constant multiple of the Killing form.