1. The adjoint action of g_α sends g_β to $g_{\alpha+\beta}$.
2. If $x_\alpha \in g_\alpha$ ($\alpha \neq 0$), then x_α is nilpotent.
3. If $\alpha \neq -\beta$, then $\langle g_\alpha, g_\beta \rangle = 0$.
4. (Symmetry) If $\alpha \in R$, then $-\alpha \in R$.
5. The set \{h_\alpha \mid \alpha \in R\} spans \mathfrak{h}, and so R spans \mathfrak{h}^*.
6. If $x_\alpha \in g_\alpha$ and $y_\alpha \in g_{-\alpha}$ then $[x_\alpha, y_\alpha] = \langle x_\alpha, y_\alpha \rangle h_\alpha$.
 Further, there is some y_α for which $\langle x_\alpha, y_\alpha \rangle \neq 0$, so $[g_\alpha, g_{-\alpha}] = \mathbb{C}h_\alpha$.
7. For all $\alpha \in R$, $\langle h_\alpha, h_\alpha \rangle \neq 0$.
8. Every non-zero $x_\alpha \in g_\alpha$ is part of an \mathfrak{sl}_2-triple,
 $s_\alpha = \langle x_\alpha, y_\alpha, h_\alpha \rangle$, with $y_\alpha \in g_{-\alpha}$ and $h_\alpha = \frac{2h_\alpha}{\langle h_\alpha, h_\alpha \rangle}$.
9. If $\alpha \in R$ and $c\alpha \in R$ for some $c \in \mathbb{C}^\times$, then $c = \pm 1$.
10. For $\alpha \neq 0$, $g_\alpha = 0$ or g_α is one-dimensional. So if \langle , \rangle is the Killing form, then for any $h_1, h_2 \in \mathfrak{h}$,
 $\langle h_1, h_2 \rangle = \sum_{\alpha \in R} \alpha(h_1)\alpha(h_2)$.
6. If \(x_\alpha \in g_\alpha \) and \(y_\alpha \in g_{-\alpha} \) then \([x_\alpha, y_\alpha] = \langle x_\alpha, y_\alpha \rangle h_\alpha\). Further, there is some \(y_\alpha \) for which \(\langle x_\alpha, y_\alpha \rangle \neq 0 \), so \([g_\alpha, g_{-\alpha}] = \mathbb{C}h_\alpha\).

7. For all \(\alpha \in R \), \(\langle h_\alpha, h_\alpha \rangle \neq 0 \).

8. Every non-zero \(x_\alpha \in g_\alpha \) is part of an \(\mathfrak{sl}_2 \)-triple,

\[
\mathfrak{s}_\alpha = \langle x_\alpha, y_\alpha, h_\alpha^\vee \rangle, \quad \text{with} \quad y_\alpha \in g_{-\alpha} \text{ and } h_\alpha^\vee = \frac{2h_\alpha}{\langle h_\alpha, h_\alpha \rangle}.
\]

9. If \(\alpha \in R \) and \(c\alpha \in R \) for some \(c \in \mathbb{C}^\times \), then \(c = \pm 1 \).

10. For \(\alpha \neq 0 \), \(g_\alpha = 0 \) or \(g_\alpha \) is one-dimensional. So if \(\langle , \rangle \) is the Killing form, then for any \(h_1, h_2 \in \mathfrak{h} \),

\[
\langle h_1, h_2 \rangle = \sum_{\alpha \in R} \alpha(h_1)\alpha(h_2).
\]

11. For \(\alpha, \beta \in R \),

(a) \(\beta(h_\alpha^\vee) \in \mathbb{Z} \),

(b) \(\beta - \beta(h_\alpha^\vee)\alpha \in R \), and

(c) if \(\beta \neq \pm \alpha \), and \(a \) and \(b \) are the largest non-negative integers such that

\[
\beta - a\alpha \in R \quad \text{and} \quad \beta + b\alpha \in R,
\]

then \(\beta + i\alpha \in R \) for all \(-a \leq i \leq b\) and \(\beta(h_\alpha^\vee) = a - b \).
9. If $\alpha \in R$ and $c\alpha \in R$ for some $c \in \mathbb{C}^\times$, then $c = \pm 1$.

10. For $\alpha \neq 0$, $g_\alpha = 0$ or g_α is one-dimensional. So if \langle , \rangle is the Killing form, then for any $h_1, h_2 \in \mathfrak{h}$,

$$\langle h_1, h_2 \rangle = \sum_{\alpha \in R} \alpha(h_1)\alpha(h_2).$$

11. For $\alpha, \beta \in R$,
 (a) $\beta(h_{\alpha^\vee}) \in \mathbb{Z}$,
 (b) $\beta - \beta(h_{\alpha^\vee})\alpha \in R$, and
 (c) if $\beta \neq \pm \alpha$, and a and b are the largest non-negative integers such that

 $$\beta - a\alpha \in R \quad \text{and} \quad \beta + b\alpha \in R,$$

 then $\beta + i\alpha \in R$ for all $-a \leq i \leq b$ and $\beta(h_{\alpha^\vee}) = a - b$.

12. (Rationality) Let $B \subseteq R$ be a base for R.
 (a) $R \subseteq \mathbb{Q}B$.
 (b) For any $\alpha, \beta \in R$, $\langle \alpha, \beta \rangle \in \mathbb{Q}$.
 (c) The restriction of \langle , \rangle to $\mathfrak{h}_Q^* = \mathbb{Q}B$ and $\mathfrak{h}_R^* = \mathbb{R} \otimes \mathbb{Q} \mathfrak{h}_Q^*$ is positive definite (so that $\mathfrak{h}_Q^*, \mathfrak{h}_R^*, \mathfrak{h}_Q$, and \mathfrak{h}_R are all Euclidean spaces with inner product \langle , \rangle).
The Weyl group

Let h_α be the hyperplane in the real Euclidean space $h_\mathbb{R}^*$ given by

$$h_\alpha = \{ \lambda \in h_\mathbb{R}^* \mid \langle \lambda, \alpha \rangle = 0 \}.$$

(Notice that $h_\alpha = h_{-\alpha}$.)
The Weyl group

Let h_α be the hyperplane in the real Euclidean space $h^*_\mathbb{R}$ given by

$$h_\alpha = \{ \lambda \in h^*_\mathbb{R} \mid \langle \lambda, \alpha \rangle = 0 \}.$$

(Notice that $h_\alpha = h_{-\alpha}$.)

Then σ_α extends to a map on $h^*_\mathbb{R}$, given by

$$\sigma_\alpha : h^*_\mathbb{R} \rightarrow h^*_\mathbb{R}$$

$$\lambda \mapsto \lambda - 2\frac{\langle \alpha, \lambda \rangle}{\langle \alpha, \alpha \rangle} \alpha,$$

which geometrically reflects weights across the hyperplane h_α.
The Weyl group

Let h_α be the hyperplane in the real Euclidean space $h^*_\mathbb{R}$ given by

$$h_\alpha = \{ \lambda \in h^*_\mathbb{R} \mid \langle \lambda, \alpha \rangle = 0 \}.$$

(Notice that $h_\alpha = h_{-\alpha}$.)

Then σ_α extends to a map on $h^*_\mathbb{R}$, given by

$$\sigma_\alpha : h^*_\mathbb{R} \rightarrow h^*_\mathbb{R}$$

$$\lambda \mapsto \lambda - 2\frac{\langle \alpha, \lambda \rangle}{\langle \alpha, \alpha \rangle} \alpha,$$

which geometrically reflects weights across the hyperplane h_α.

The group W generated by $\{ \sigma_\alpha \mid \alpha \in R^+ \}$ is called the Weyl group associated to \mathfrak{g}.