Lecture 8: The matrix of a linear transformation. Applications

Danny W. Crytser

April 7, 2014
Example

Let $T : \mathbb{R}^2 \to \mathbb{R}^3$ be the linear transformation defined by

$$T \left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \right) = \begin{bmatrix} x_1 + x_2 \\ 2x_1 \\ 3x_2 \end{bmatrix}.$$
Example

Let $T : \mathbb{R}^2 \to \mathbb{R}^3$ be the linear transformation defined by

$$T \left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \right) = \begin{bmatrix} x_1 + x_2 \\ 2x_1 \\ 3x_2 \end{bmatrix}.$$

Let's find the matrix A such that $T(x) = Ax$ for all $x \in \mathbb{R}^2$.

$$A = \begin{bmatrix} 1 & 1 \\ 2 & 0 \\ 0 & 3 \end{bmatrix}.$$
Example

Let $T : \mathbb{R}^2 \to \mathbb{R}^3$ be the linear transformation defined by

$$T \left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \right) = \begin{bmatrix} x_1 + x_2 \\ 2x_1 \\ 3x_2 \end{bmatrix}.$$

Let’s find the matrix A such that $T(x) = Ax$ for all $x \in \mathbb{R}^2$. Note that A must have 2 columns (domain \mathbb{R}^2) and 3 rows (domain \mathbb{R}^3).
Let \(T : \mathbb{R}^2 \rightarrow \mathbb{R}^3 \) be the linear transformation defined by

\[
T \left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \right) = \begin{bmatrix} x_1 + x_2 \\ 2x_1 \\ 3x_2 \end{bmatrix}.
\]

Let's find the matrix \(A \) such that \(T(x) = Ax \) for all \(x \in \mathbb{R}^2 \). Note that \(A \) must have 2 columns (domain \(\mathbb{R}^2 \)) and 3 rows (domain \(\mathbb{R}^3 \)). The two basis vectors in the domain are \(e_1, e_2 \).
Example

Let $T : \mathbb{R}^2 \to \mathbb{R}^3$ be the linear transformation defined by

$$T \left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \right) = \begin{bmatrix} x_1 + x_2 \\ 2x_1 \\ 3x_2 \end{bmatrix}.$$

Let's find the matrix A such that $T(x) = Ax$ for all $x \in \mathbb{R}^2$. Note that A must have 2 columns (domain \mathbb{R}^2) and 3 rows (domain \mathbb{R}^3). The two basis vectors in the domain are e_1, e_2. Their images are

$$T(e_1) = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}, \quad T(e_2) = \begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix}.$$
Let $T : \mathbb{R}^2 \to \mathbb{R}^3$ be the linear transformation defined by

$$T \left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \right) = \begin{bmatrix} x_1 + x_2 \\ 2x_1 \\ 3x_2 \end{bmatrix}.$$

Let's find the matrix A such that $T(x) = Ax$ for all $x \in \mathbb{R}^2$. Note that A must have 2 columns (domain \mathbb{R}^2) and 3 rows (domain \mathbb{R}^3). The two basis vectors in the domain are e_1, e_2. Their images are

$$T(e_1) = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}, \quad T(e_2) = \begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix}.$$

So A has those vectors as columns

$$A = \begin{bmatrix} 1 & 1 \\ 2 & 0 \\ 0 & 3 \end{bmatrix}.$$
Example

Let $T : \mathbb{R}^2 \rightarrow \mathbb{R}^3$ be the linear transformation defined by

$$T \left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \right) = \begin{bmatrix} x_1 + x_2 \\ 2x_1 \\ 3x_2 \end{bmatrix}.$$

Let’s find the matrix A such that $T(x) = Ax$ for all $x \in \mathbb{R}^2$. Note that A must have 2 columns (domain \mathbb{R}^2) and 3 rows (domain \mathbb{R}^3). The two basis vectors in the domain are e_1, e_2. Their images are

$$T(e_1) = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}, \quad T(e_2) = \begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix}.$$

So A has those vectors as columns

$$A = \begin{bmatrix} 1 & 1 \\ 2 & 0 \\ 0 & 3 \end{bmatrix}.$$
We can check to see we got the right answer:
We can check to see we got the right answer:

\[A \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix} = \begin{bmatrix} x_1 + x_2 \\ 2x_1 \\ 3x_2 \end{bmatrix} = T(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}). \]

Thus \(T(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}) = Ax \) for all \(x \in \mathbb{R}^2 \).

There's a fancy term for the matrix we've cooked up. Definition: If \(T: \mathbb{R}^n \to \mathbb{R}^m \) is a linear transformation and \(e_1, e_2, \ldots, e_n \) are the standard basis vectors in \(\mathbb{R}^n \), then the matrix \(A = \begin{bmatrix} T(e_1) & T(e_2) & \cdots & T(e_n) \end{bmatrix} \) which satisfies \(T(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}) = Ax \) for all \(x \in \mathbb{R}^n \) is called the standard matrix for \(T \).
We can check to see we got the right answer:

\[
A \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix}
\]
We can check to see we got the right answer:

\[
A \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix} = \begin{bmatrix} x_1 + x_2 \\ 2x_1 \\ 3x_2 \end{bmatrix}
\]
We can check to see we got the right answer:

\[
A \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix} = \begin{bmatrix} x_1 + x_2 \\ 2x_1 \\ 3x_2 \end{bmatrix} = T \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}.
\]
We can check to see we got the right answer:

\[A \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix} = \begin{bmatrix} x_1 + x_2 \\ 2x_1 \\ 3x_2 \end{bmatrix} = T \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}. \]

Thus \(T(x) = Ax \) for all \(x \in \mathbb{R}^2 \).
We can check to see we got the right answer:

\[
A \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix} = \begin{bmatrix} x_1 + x_2 \\ 2x_1 \\ 3x_2 \end{bmatrix} = T \left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \right).
\]

Thus \(T(x) = Ax \) for all \(x \in \mathbb{R}^2 \). There’s a fancy term for the matrix we’ve cooked up.

Definition

If \(T : \mathbb{R}^n \to \mathbb{R}^m \) is a linear transformation and \(e_1, e_2, \ldots, e_n \) are the standard basis vectors in \(\mathbb{R}^n \),
We can check to see we got the right answer:

\[
A \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix} = \begin{bmatrix} x_1 + x_2 \\ 2x_1 \\ 3x_2 \end{bmatrix} = T \left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \right).
\]

Thus \(T(x) = Ax \) for all \(x \in \mathbb{R}^2 \). There’s a fancy term for the matrix we’ve cooked up.

Definition

If \(T : \mathbb{R}^n \to \mathbb{R}^m \) is a linear transformation and \(e_1, e_2, \ldots, e_n \) are the standard basis vectors in \(\mathbb{R}^n \), then the matrix

\[
A = \begin{bmatrix} T(e_1) & T(e_2) & \ldots & T(e_n) \end{bmatrix}
\]

which satisfies \(T(x) = Ax \) for all \(x \in \mathbb{R}^n \) is called the **standard matrix for** \(T \).
Matrices and visualization of linear transformations

There are a few different types of linear transformations $\mathbb{R}^2 \to \mathbb{R}^2$ that we can describe with words ("rotate the plane counterclockwise by $\pi/2$") and then we get the matrix just by tracking the image of the basis vectors $\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.
There are a few different types of linear transformations $\mathbb{R}^2 \rightarrow \mathbb{R}^2$ that we can describe with words (“rotate the plane counterclockwise by $\pi/2$”) and then we get the matrix just by tracking the image of the basis vectors $\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$. The book has a big catalog of such transformations.
Matrices and visualization of linear transformations

There are a few different types of linear transformations $\mathbb{R}^2 \to \mathbb{R}^2$ that we can describe with words ("rotate the plane counterclockwise by $\pi/2$") and then we get the matrix just by tracking the image of the basis vectors $e_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $e_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$. The book has a big catalog of such transformations.

TABLE 1 Reflections

<table>
<thead>
<tr>
<th>Transformation</th>
<th>Image of the Unit Square</th>
<th>Standard Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reflection through the x_1-axis</td>
<td></td>
<td>$\begin{bmatrix} 1 & 0 \ 0 & -1 \end{bmatrix}$</td>
</tr>
</tbody>
</table>
Suppose that T reflects through the line $x_1 = x_2$.
Suppose that T reflects through the line $x_1 = x_2$. What does T look like? What is the matrix of T?
Suppose that T reflects through the line $x_1 = x_2$. What does T look like? What is the matrix of T? The image of e_1 is e_2 and vice versa.
Suppose that T reflects through the line $x_1 = x_2$. What does T look like? What is the matrix of T? The image of e_1 is e_2 and vice versa.
You can stretch/squeeze the plane in one direction while keeping the other direction fixed.
You can stretch/squeeze the plane in one direction while keeping the other direction fixed. For example, let’s say we stretched the plane along the x-axis by a factor of 2, but didn’t distort it in the y-axis. What would the matrix look like?
You can stretch/squeeze the plane in one direction while keeping the other direction fixed. For example, let’s say we stretched the plane along the x-axis by a factor of 2, but didn’t distort it in the y-axis. What would the matrix look like? The image of e_1 is $2e_1$ and e_2 doesn’t change. The graphic on the right represents this situation, where we have $k = 2$.
You can stretch/squeeze the plane in one direction while keeping the other direction fixed. For example, let’s say we stretched the plane along the x-axis by a factor of 2, but didn’t distort it in the y-axis. What would the matrix look like? The image of e_1 is $2e_1$ and e_2 doesn’t change. The graphic on the right represents this situation, where we have $k = 2$.

TABLE 2 Contractions and Expansions

<table>
<thead>
<tr>
<th>Transformation</th>
<th>Image of the Unit Square</th>
<th>Standard Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizontal contraction and expansion</td>
<td></td>
<td>$\begin{bmatrix} k & 0 \ 0 & 1 \end{bmatrix}$</td>
</tr>
</tbody>
</table>
Shear transformations

Shear transformations add some multiple of one basis vector to another basis vector (not to be confused with row operations).
Shear transformations add some multiple of one basis vector to another basis vector (not to be confused with row operations). For example \(\mathbf{e}_1 \mapsto \mathbf{e}_1 + 2\mathbf{e}_2 \) and \(\mathbf{e}_2 \mapsto \mathbf{e}_2 \).
Shear transformations add some multiple of one basis vector to another basis vector (not to be confused with row operations). For example $\mathbf{e}_1 \mapsto \mathbf{e}_1 + 2\mathbf{e}_2$ and $\mathbf{e}_2 \mapsto \mathbf{e}_2$.

TABLE 3 Shears

<table>
<thead>
<tr>
<th>Transformation</th>
<th>Image of the Unit Square</th>
<th>Standard Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizontal shear</td>
<td></td>
<td>$\begin{bmatrix} 1 & k \ 0 & 1 \end{bmatrix}$</td>
</tr>
<tr>
<td>Vertical shear</td>
<td></td>
<td>$\begin{bmatrix} 1 & 0 \ k & 1 \end{bmatrix}$</td>
</tr>
</tbody>
</table>
A function \(T : \mathbb{R}^n \rightarrow \mathbb{R}^m \) is said to be **onto** if the range is the codomain, that is, for each vector \(y \in \mathbb{R}^m \) there is at least one \(x \in \mathbb{R}^n \) with \(T(x) = y \).
Definition

A function $T : \mathbb{R}^n \rightarrow \mathbb{R}^m$ is said to be onto if the range is the codomain, that is, for each vector $y \in \mathbb{R}^m$ there is at least one $x \in \mathbb{R}^n$ with $T(x) = y$.

The preceding definition is supposed to address the potential difference between range and codomain.
Onto

Definition
A function $T : \mathbb{R}^n \to \mathbb{R}^m$ is said to be onto if the range is the codomain, that is, for each vector $y \in \mathbb{R}^m$ there is at least one $x \in \mathbb{R}^n$ with $T(x) = y$.

The preceding definition is supposed to address the potential difference between range and codomain.

Example
Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be given by $T(x_1, x_2) = (x_1, 0)$. Then T is not onto: the range is the x-axis, an object in mathematics noteworthy for not being the entire plane.
Onto

Definition

A function $T : \mathbb{R}^n \rightarrow \mathbb{R}^m$ is said to be **onto** if the range is the codomain, that is, for each vector $y \in \mathbb{R}^m$ there is at least one $x \in \mathbb{R}^n$ with $T(x) = y$.

The preceding definition is supposed to address the potential difference between range and codomain.

Example

Let $T : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ be given by $T(x_1, x_2) = (x_1, 0)$. Then T is not onto: the range is the x-axis, an object in mathematics noteworthy for not being the entire plane. The reflection across the line $x_1 = x_2$ given by $T(x_1, x_2) = (x_2, x_1)$ is onto: every vector in \mathbb{R}^2 is the reflection of some other vector (that other vector is *its reflection*).
A function $T : \mathbb{R}^n \rightarrow \mathbb{R}^m$ is said to be **onto** if the range is the codomain, that is, for each vector $y \in \mathbb{R}^m$ there is at least one $x \in \mathbb{R}^n$ with $T(x) = y$.

The preceding definition is supposed to address the potential difference between range and codomain.

Example

Let $T : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ be given by $T(x_1, x_2) = (x_1, 0)$. Then T is not onto: the range is the x-axis, an object in mathematics noteworthy for not being the entire plane. The reflection across the line $x_1 = x_2$ given by $T(x_1, x_2) = (x_2, x_1)$ is onto: every vector in \mathbb{R}^2 is the reflection of some other vector (that other vector is *its* reflection).
The quality of being onto has to do with existence of solutions: a linear transformation T given by $T(x) = Ax$ is onto if $Ax = b$ is consistent for all $b \in \mathbb{R}^m$.

Reviewing the following theorem allows us to describe onto linear transformations with echelon forms.

We already saw a version of this theorem

Theorem

Let A be an $m \times n$ matrix. Then $Ax = b$ is consistent for all $b \in \mathbb{R}^m$ if and only if every row in the echelon form of A (not augmented) has a nonzero entry.

We can reformulate it in terms of linear transformations.

Theorem

Let $T(x) = Ax$. Then T is onto if and only if every row in the echelon form of A (non-augmented) has a nonzero entry.

This happens if and only if the columns of A span \mathbb{R}^m.

Dan Crytser

Lecture 8: The matrix of a linear transformation. Applications
The quality of being onto has to do with existence of solutions: a linear transformation \(T \) given by \(T(x) = Ax \) is onto if \(Ax = b \) is consistent for all \(b \in \mathbb{R}^m \). Reviewing the following theorem allows us to describe onto linear transformations with echelon forms.
The quality of being onto has to do with existence of solutions: a linear transformation T given by $T(x) = Ax$ is onto if $Ax = b$ is consistent for all $b \in \mathbb{R}^m$. Reviewing the following theorem allows us to describe onto linear transformations with echelon forms. We already saw a version of this theorem:

Theorem

Let A be an $m \times n$ matrix. Then $Ax = b$ is consistent for all $b \in \mathbb{R}^m$ if and only if every row in the echelon form of A (not augmented) has a nonzero entry.
The quality of being onto has to do with existence of solutions: a linear transformation T given by $T(x) = Ax$ is onto if $Ax = b$ is consistent for all $b \in \mathbb{R}^m$. Reviewing the following theorem allows us to describe onto linear transformations with echelon forms. We already saw a version of this theorem

Theorem

Let A be an $m \times n$ matrix. Then $Ax = b$ is consistent for all $b \in \mathbb{R}^m$ if and only if every row in the echelon form of A (not augmented) has a nonzero entry.

We can reformulate it in terms of linear transformations.
The quality of being onto has to do with existence of solutions: a linear transformation T given by $T(x) = Ax$ is onto if $Ax = b$ is consistent for all $b \in \mathbb{R}^m$. Reviewing the following theorem allows us to describe onto linear transformations with echelon forms. We already saw a version of this theorem

Theorem

Let A be an $m \times n$ matrix. Then $Ax = b$ is consistent for all $b \in \mathbb{R}^m$ if and only if every row in the echelon form of A (not augmented) has a nonzero entry.

We can reformulate it in terms of linear transformations.

Theorem

Let $T(x) = Ax$. Then T is onto if and only if every row in the echelon form of A (non-augmented) has a nonzero entry.
The quality of being onto has to do with existence of solutions: a linear transformation T given by $T(x) = Ax$ is onto if $Ax = b$ is consistent for all $b \in \mathbb{R}^m$. Reviewing the following theorem allows us to describe onto linear transformations with echelon forms. We already saw a version of this theorem.

Theorem

Let A be an $m \times n$ matrix. Then $Ax = b$ is consistent for all $b \in \mathbb{R}^m$ if and only if every row in the echelon form of A (not augmented) has a nonzero entry.

We can reformulate it in terms of linear transformations.

Theorem

*Let $T(x) = Ax$. Then T is onto if and only if every row in the echelon form of A (non-augmented) has a nonzero entry. This happens if and only if the columns of A span \mathbb{R}^m.***
A function $T : \mathbb{R}^n \rightarrow \mathbb{R}^m$ is said to be **one-to-one** if $T(x) = T(x')$ implies $x = x'$ for vectors $x, x' \in \mathbb{R}^n$. That is, T is one-to-one if two vectors in the domain have the same image under T only when they are equal.
A function $T : \mathbb{R}^n \to \mathbb{R}^m$ is said to be **one-to-one** if $T(x) = T(x')$ implies $x = x'$ for vectors $x, x' \in \mathbb{R}^n$. That is, T is one-to-one if two vectors in the domain have the same image under T only when they are equal.
One-to-one

Definition

A function \(T : \mathbb{R}^n \to \mathbb{R}^m \) is said to be \textbf{one-to-one} if \(T(x) = T(x') \) implies \(x = x' \) for vectors \(x, x' \in \mathbb{R}^n \). That is, \(T \) is one-to-one if two vectors in the domain have the same image under \(T \) only when they are equal.

Example

The map \(T : \mathbb{R}^3 \to \mathbb{R}^3 \) given by \(T(x_1, x_2, x_3) = (x_1, x_2, 0) \) is not one-to-one:
A function \(T : \mathbb{R}^n \rightarrow \mathbb{R}^m \) is said to be **one-to-one** if \(T(x) = T(x') \) implies \(x = x' \) for vectors \(x, x' \in \mathbb{R}^n \). That is, \(T \) is one-to-one if two vectors in the domain have the same image under \(T \) only when they are equal.

The map \(T : \mathbb{R}^3 \rightarrow \mathbb{R}^3 \) given by \(T(x_1, x_2, x_3) = (x_1, x_2, 0) \) is **not** one-to-one: \(T(0, 0, 1) = T(0, 0, 0) = \mathbf{0} \) and yet the vectors are not equal.
One-to-one

Definition
A function $T : \mathbb{R}^n \to \mathbb{R}^m$ is said to be **one-to-one** if $T(x) = T(x')$ implies $x = x'$ for vectors $x, x' \in \mathbb{R}^n$. That is, T is one-to-one if two vectors in the domain have the same image under T only when they are equal.

Example
The map $T : \mathbb{R}^3 \to \mathbb{R}^3$ given by $T(x_1, x_2, x_3) = (x_1, x_2, 0)$ is **not** one-to-one: $T(0, 0, 1) = T(0, 0, 0) = \mathbf{0}$ and yet the vectors are not equal. The map $T : \mathbb{R}^2 \to \mathbb{R}^3$ given by
The quality of being one-to-one has to do with uniqueness of solutions: the linear transformation T given by $T(x) = Ax$ if whenever $Ax = b$ is consistent it has unique solutions.
The quality of being one-to-one has to do with uniqueness of solutions: the linear transformation T given by $T(x) = Ax$ if whenever $Ax = b$ is consistent it has unique solutions.

Theorem

Let A be a matrix. Then T is one-to-one if and only if every column in the echelon form of A (non-augmented) has a pivot.
The quality of being one-to-one has to do with uniqueness of solutions: the linear transformation T given by $T(x) = Ax$ if whenever $Ax = b$ is consistent it has unique solutions.

Theorem

Let A be a matrix. Then T is one-to-one if and only if every column in the echelon form of A (non-augmented) has a pivot. This happens if and only if the columns of A are linearly independent.
We can summarize all of this in one biggish theorem:

Theorem
Let A be an $m \times n$ matrix. The linear transformation $T : \mathbb{R}^n \rightarrow \mathbb{R}^m$ given by $T(x) = Ax$ is
1) onto if and only if every row of the echelon form of A has a pivot
2) one-to-one if and only if every column of the echelon form of A has a pivot

You can see that the only way that T can be both onto and one-to-one is if $m = n$.

Dan Crytser
Lecture 8: The matrix of a linear transformation. Applications
Onto/one-to-one: echelon form

We can summarize all of this in one biggish theorem:

Theorem

Let A be an $m \times n$ matrix. The linear transformation $T : \mathbb{R}^n \to \mathbb{R}^m$ given by $T(x) = Ax$ is

- onto if and only if every row of the echelon form of A has a pivot.
- one-to-one if and only if every column of the echelon form of A has a pivot.

You can see that the only way that T can be both onto and one-to-one is if $m = n$.

Dan Crytser

Lecture 8: The matrix of a linear transformation. Applications
We can summarize all of this in one biggish theorem:

Theorem

Let A be an $m \times n$ matrix. The linear transformation $T : \mathbb{R}^n \rightarrow \mathbb{R}^m$ given by $T(x) = Ax$ is

1. onto if and only if every row of the echelon form of A has a pivot

You can see that the only way that T can be both onto and one-to-one is if $m = n$.
We can summarize all of this in one biggish theorem:

Theorem

Let A be an $m \times n$ matrix. The linear transformation $T : \mathbb{R}^n \rightarrow \mathbb{R}^m$ given by $T(x) = Ax$ is

1. **onto** if and only if every row of the echelon form of A has a pivot if and only if the columns of A span \mathbb{R}^m

2. **one-to-one** if and only if every column of the echelon form of A has a pivot

You can see that the only way that T can be both onto and one-to-one is if $m = n$.

Dan Crytser
Lecture 8: The matrix of a linear transformation. Applications
We can summarize all of this in one biggish theorem:

Theorem

Let A be an $m \times n$ matrix. The linear transformation $T: \mathbb{R}^n \rightarrow \mathbb{R}^m$ given by $T(x) = Ax$ is

1. **onto** if and only if every row of the echelon form of A has a pivot and only if the columns of A span \mathbb{R}^m

2. **one-to-one** if and only if every column of the echelon form of A has a pivot and only if the columns of A are linearly independent
We can summarize all of this in one biggish theorem:

Theorem

Let A be an $m \times n$ matrix. The linear transformation $T : \mathbb{R}^n \rightarrow \mathbb{R}^m$ given by $T(x) = Ax$ is

1. **onto** if and only if every row of the echelon form of A has a pivot and only if the columns of A span \mathbb{R}^m

2. **one-to-one** if and only if every column of the echelon form of A has a pivot and only if the columns of A are linearly independent.

You can see that the only way that T can be both onto and one-to-one is if $m = n$.

Dan Crytser

Lecture 8: The matrix of a linear transformation. Applications
We can summarize all of this in one biggish theorem:

Theorem

Let A be an $m \times n$ matrix. The linear transformation $T : \mathbb{R}^n \to \mathbb{R}^m$ given by $T(x) = Ax$ is

1. onto if and only if every row of the echelon form of A has a pivot and only if the columns of A span \mathbb{R}^m
2. one-to-one if and only if every column of the echelon form of A has a pivot and only if the columns of A are linearly independent

You can see that the only way that T can be both onto and one-to-one is if $m = n$.
Example

Let \(A = \begin{bmatrix} 1 & 7 \\ 2 & 3 \\ 4 & 2 \end{bmatrix} \) and define \(T : \mathbb{R}^2 \rightarrow \mathbb{R}^3 \) by \(T(x) = Ax \).
Example

Let \(A = \begin{bmatrix} 1 & 7 \\ 2 & 3 \\ 4 & 2 \end{bmatrix} \) and define \(T : \mathbb{R}^2 \to \mathbb{R}^3 \) by \(T(x) = Ax \). Is \(T \) onto? Is \(T \) one-to-one?
APPLICATIONS
A closed loop in a network has three things affiliated to it:
A closed loop in a network has three things affiliated to it: some **voltage sources**,
Voltage loops

1. A closed loop in a network has three things affiliated to it: some **voltage sources**, some **resistors**, and an oriented (clockwise or counter-clockwise) **current**.

2. Each of these has a weight measuring how much voltage, resistance, or current there is (one current for the whole loop).

3. A voltage source is positive for a loop if the current flows from the positive (long) terminal to the negative (short) terminal.
A closed loop in a network has three things affiliated to it: some **voltage sources**, some **resistors**, and an oriented (clockwise or counter-clockwise) **current**.

Each of these has a weight measuring how much voltage, resistance, or current there is (one current for the whole loop).

A voltage source is positive for a loop if the the current flows from the positive (long) terminal to the negative (short) terminal.
OHM’S LAW: If the current of I amps passes across a resistor of R ohms, then the voltage drops by $V = RI$ volts.
Ohm’s law

OHM’S LAW: If the current of I amps passes across a resistor of R ohms, then the voltage drops by $V = RI$ volts.

![Diagram](image)

FIGURE 1
OHM’S LAW: If the current of I amps passes across a resistor of R ohms, then the voltage drops by $V = RI$ volts.

Passing from A to B the sum of the voltage drops is $3I_1 - 3I_2$.

![Diagram](image-url)
Ohm’s law

OHM’S LAW: If the current of \(I \) amps passes across a resistor of \(R \) ohms, then the voltage drops by \(V = RI \) volts.

![Diagram of a circuit](image)

FIGURE 1

Passing from \(A \) to \(B \) the sum of the voltage drops is \(3I_1 - 3I_2 \). (Notice that the voltage source in the first loop is positive.)
Kirchhoff’s law governs how much current and resistance (so, how much voltage dropped) can be in an electrical network with given voltage sources.
Kirchhoff’s law governs how much current and resistance (so, how much voltage dropped) can be in an electrical network with given voltage sources. It’s basically a balancing between the voltage lost through voltage drops and the voltage put into loops from voltage sources.

KIRCHHOFF’S LAW: If you add up the voltage drops in a loop that equals the sum of the voltage sources in the loop.
Kirchhoff’s law governs how much current and resistance (so, how much voltage dropped) can be in an electrical network with given voltage sources. It’s basically a balancing between the voltage lost through voltage drops and the voltage put into loops from voltage sources.

KIRCHHOFF’S LAW: If you add up the voltage drops in a loop that equals the sum of the voltage sources in the loop.

Remember: when adding voltage sources you have to check to see if they’re positive (current runs positive terminal to negative terminal) or negative (vice versa).
Kirchhoff: example

Let’s look at this.

FIGURE 1

Let’s look at this.
Kirchhoff: example

Let’s look at this. First loop: Voltage source = 30.
Let’s look at this. First loop: Voltage source = 30. Voltage drop in first loop is \(4_1 + (3I_1 - 3I_2) + 4I_1 = 11I_1 - 3I_2\).
Let’s look at this. First loop: Voltage source = 30. Voltage drop in first loop is \(4I_1 + (3I_1 - 3I_2) + 4I_1 = 11I_1 - 3I_2\). Must equal voltage sources in first loop = 30.
Kirchhoff: example

Let’s look at this. First loop: Voltage source = 30. Voltage drop in first loop is $4I_1 + (3I_1 - 3I_2) + 4I_1 = 11I_1 - 3I_2$. Must equal voltage sources in first loop = 30. So the equation for the first loop is $11I_1 - 3I_2 = 30$.

FIGURE 1
Kirchhoff: example

\[11I_1 - 3I_2 = 30 \] \hspace{1cm} (1)
\[-3I_1 + 6I_2 - I_3 = 5 \] \hspace{1cm} (2)
\[-I_2 + 3I_3 = -25 \] \hspace{1cm} (3)

FIGURE 1

Dan Crytser
Lecture 8: The matrix of a linear transformation. Applications
Kirchhoff: example

\[11I_1 - 3I_2 = 30 \quad (4) \]
\[-3I_1 + 6I_2 - I_3 = 5 \quad (5) \]
\[-I_2 + 3I_3 = -25 \quad (6) \]

Has a unique solution: \(I_1 = 3 \) amps, \(I_2 = 1 \) amps, \(I_3 = -8 \) amps.
Kirchhoff: example

\[11l_1 - 3l_2 = 30 \quad (4)\]
\[-3l_1 + 6l_2 - l_3 = 5 \quad (5)\]
\[-l_2 + 3l_3 = -25 \quad (6)\]

Has a unique solution: \(l_1 = 3\) amps, \(l_2 = 1\) amps, \(l_3 = -8\) amps. The negative \(l_3\) answer says that the current flows clockwise in loop 3.
In many situations you will be measuring some system and all the information about the system at time k will be contained in some vector \mathbf{x}_k.

Definition

Suppose your data take the form of vectors $\mathbf{x}_k \in \mathbb{R}^n$, where $k = 0, 1, 2, ...$ If there is an $n \times n$ matrix \mathbf{A} such that $\mathbf{x}_1 = \mathbf{A}\mathbf{x}_0$, $\mathbf{x}_2 = \mathbf{A}\mathbf{x}_1$ and generally $\mathbf{x}_{k+1} = \mathbf{A}\mathbf{x}_k$ (*), we say that equation (*) is a linear difference equation (some people call it a recursion relation, because it gives new measurement in terms of the old measurement).
In many situations you will be measuring some system and all the information about the system at time k will be contained in some vector \mathbf{x}_k. (Could be age, salary, population, microbe count, whatever).

Definition

Suppose your data take the form of vectors $\mathbf{x}_k \in \mathbb{R}^n$, where $k = 0, 1, 2, \ldots s$. If there is an $n \times n$ matrix A such that $\mathbf{x}_1 = A\mathbf{x}_0$, $\mathbf{x}_2 = A\mathbf{x}_1$ and generally $\mathbf{x}_{k+1} = A\mathbf{x}_k$ (*), we say that equation (*) is a linear difference equation (some people call it a recursion relation, because it gives new measurement in terms of the old measurement).
You can study population dynamics using difference equations.
You can study population dynamics using difference equations. Let’s say that in the nation of Zembla there is one city and one suburb. The population distribution in Zembla in year 0 can be recorded in a vector in \mathbb{R}^2:

$$x_0 = [r_0, s_0]$$

where r_0 is the population in the city in year 0 and s_0 is the population in the suburb in year 0.
You can study population dynamics using difference equations. Let’s say that in the nation of Zembla there is one city and one suburb. The population distribution in Zembla in year 0 can be recorded in a vector in \mathbb{R}^2:

$$x_0 = \begin{bmatrix} r_0 \\ s_0 \end{bmatrix}$$
You can study population dynamics using difference equations. Let’s say that in the nation of Zembla there is one city and one suburb. The population distribution in Zembla in year 0 can be recorded in a vector in \mathbb{R}^2:

$$\mathbf{x}_0 = \begin{bmatrix} r_0 \\ s_0 \end{bmatrix}$$

where r_0 is the population in the city in year 0 and s_0 is the population in the suburb in year 0.
Difference equations and population

You can study population dynamics using difference equations. Let's say that in the nation of Zembla there is one city and one suburb. The population distribution in Zembla in year 0 can be recorded in a vector in \mathbb{R}^2:

$$x_0 = \begin{bmatrix} r_0 \\ s_0 \end{bmatrix}$$

where r_0 is the population in the city in year 0 and s_0 is the population in the suburb in year 0. The vectors $x_1 = \begin{bmatrix} r_1 \\ s_1 \end{bmatrix}$, $x_2 = \begin{bmatrix} r_2 \\ s_2 \end{bmatrix}$ record the population distribution in year 1, year 2, etc.
Let's say that in any one year 95 percent of city people remain in the city and 5 percent of city people go to the suburb.

\[r_{1} = 0.95r_{0} + 0.03s_{0}, \]
\[s_{1} = 0.5r_{0} + 0.97s_{0}. \]
Let’s say that in any one year 95 percent of city people remain in the city and 5 percent of city people go to the suburb. Let’s say in the same time frame, 97 percent of suburb people remain in the suburb and 3 percent go to the city.
Let’s say that in any one year 95 percent of city people remain in the city and 5 percent of city people go to the suburb. Let’s say in the same time frame, 97 percent of suburb people remain in the suburb and 3 percent go to the city. Thus, after year 0 we can see what the population looks like in year 1:

\[r_1 = 0.95r_0 + 0.03s_0 \]

and

\[s_1 = 0.5r_0 + 0.97s_0 \]
Let's say that in any one year 95 percent of city people remain in the city and 5 percent of city people go to the suburb. Let's say in the same time frame, 97 percent of suburb people remain in the suburb and 3 percent go to the city. Thus, after year 0 we can see what the population looks like in year 1:

\[r_1 = .95r_0 + .03s_0 \]

and

\[s_1 = .5r_0 + .97s_0 \]

Thus

\[
\begin{bmatrix}
 r_1 \\
 s_1
\end{bmatrix}
\]
Let’s say that in any one year 95 percent of city people remain in the city and 5 percent of city people go to the suburb. Let’s say in the same time frame, 97 percent of suburb people remain in the suburb and 3 percent go to the city. Thus, after year 0 we can see what the population looks like in year 1:

\[r_1 = .95r_0 + .03s_0 \]

and

\[s_1 = .5r_0 + .97s_0 \]

Thus

\[
\begin{bmatrix}
 r_1 \\
 s_1
\end{bmatrix} = r_0 \begin{bmatrix}
 .95 \\
 .05
\end{bmatrix} + \begin{bmatrix}
 .03 \\
 .97
\end{bmatrix}
\]
Let's say that in any one year 95 percent of city people remain in the city and 5 percent of city people go to the suburb. Let’s say in the same time frame, 97 percent of suburb people remain in the suburb and 3 percent go to the city. Thus, after year 0 we can see what the population looks like in year 1:

\[r_1 = .95r_0 + .03s_0 \]

and

\[s_1 = .5r_0 + .97s_0 \]

Thus

\[
\begin{bmatrix}
 r_1 \\
 s_1
\end{bmatrix} = r_0 \begin{bmatrix}
 .95 \\
 .05
\end{bmatrix} + \begin{bmatrix}
 .03 \\
 .97
\end{bmatrix} = \begin{bmatrix}
 .95 & .03 \\
 .05 & .97
\end{bmatrix}.
\]
Now we can write down

\[
x_1 = \begin{bmatrix} .95 & .03 \\ .05 & .97 \end{bmatrix} x_0
\]
Now we can write down

\[x_1 = \begin{bmatrix} .95 & .03 \\ .05 & .97 \end{bmatrix} x_0 \]

and

\[x_2 = \begin{bmatrix} .95 & .03 \\ .05 & .97 \end{bmatrix} x_1 \]
Now we can write down

\[x_1 = \begin{bmatrix} .95 & .03 \\ .05 & .97 \end{bmatrix} x_0 \]

and

\[x_2 = \begin{bmatrix} .95 & .03 \\ .05 & .97 \end{bmatrix} x_1 \]

and, in general,

\[x_k = \begin{bmatrix} .95 & .03 \\ .05 & .97 \end{bmatrix} x_{k-1}. \]
The Transition Matrix

Now we can write down

\[
\mathbf{x}_1 = \begin{bmatrix} .95 & .03 \\ .05 & .97 \end{bmatrix} \mathbf{x}_0
\]

and

\[
\mathbf{x}_2 = \begin{bmatrix} .95 & .03 \\ .05 & .97 \end{bmatrix} \mathbf{x}_1
\]

and, in general,

\[
\mathbf{x}_k = \begin{bmatrix} .95 & .03 \\ .05 & .97 \end{bmatrix} \mathbf{x}_{k-1}.
\]

If \(A \) is the matrix above, then we can write \(\mathbf{x}_k = A\mathbf{x}_{k-1} \).
Now we can write down

\[x_1 = \begin{bmatrix} .95 & .03 \\ .05 & .97 \end{bmatrix} x_0 \]

and

\[x_2 = \begin{bmatrix} .95 & .03 \\ .05 & .97 \end{bmatrix} x_1 \]

and, in general,

\[x_k = \begin{bmatrix} .95 & .03 \\ .05 & .97 \end{bmatrix} x_{k-1} \]

If A is the matrix above, then we can write \(x_k = A x_{k-1} \). You can use this to predict the future.