Traces on graph algebras

Danny W. Crytser

Dartmouth College

May 9, 2014
Definition

A C^*-algebra is a complex $*$-algebra A with norm $\| \cdot \|$ such that

1. $\|ab\| \leq \|a\| \|b\|$ for any $a, b \in A$
2. A is complete with respect to the norm $\| \cdot \|$.
3. $\|a^* a\| = \|a\|^2$ for any $a \in A$.

Example: The complex numbers \mathbb{C} form a C^*-algebra, with $z^* = z$.

Example: The matrices $M_n(\mathbb{C})$ (with $*$ given by conjugate transpose).

Example: Bounded operators $B(H)$ ($*$ is adjoint).

Example: If X is a locally compact Hausdorff space, then $C_0(X) := \{f : X \to \mathbb{C} | f$ is continuous and vanishes at $\infty\}$ is a C^*-algebra under the $\|\cdot\|_\infty$-norm and pointwise operations.
Definition

A *C*-algebra is a complex *-algebra A with norm $\| \cdot \|$ such that

1. $\|ab\| \leq \|a\| \|b\|$ for any $a, b \in A$
2. A is complete with respect to the norm $\| \cdot \|$
3. $\|a^*a\| = \|a\|^2$ for any $a \in A$.

Example: The complex numbers \mathbb{C} form a C*-algebra, with $z^* = \overline{z}$.
Definition

A *C^*-algebra* is a complex \ast-algebra A with norm $|| \cdot ||$ such that:

1. $||ab|| \leq ||a|| ||b||$ for any $a, b \in A$
2. A is complete with respect to the norm $|| \cdot ||$
3. $||a^*a|| = ||a||^2$ for any $a \in A$.

Example: The complex numbers \mathbb{C} form a C^*-algebra, with $z^* = \overline{z}$. The matrices $M_n(\mathbb{C})$ (with \ast given by conjugate transpose).
Definition

A \textit{C*-algebra} is a complex \(*\)-algebra \(A\) with norm \(\| \cdot \|\) such that

1. \(\|ab\| \leq \|a\| \|b\|\) for any \(a, b \in A\)
2. \(A\) is complete with respect to the norm \(\| \cdot \|\)
3. \(\|a^*a\| = \|a\|^2\) for any \(a \in A\).

Example: The complex numbers \(\mathbb{C}\) form a \(C^*\)-algebra, with \(z^* = \overline{z}\). The matrices \(M_n(\mathbb{C})\) (with \(*\) given by conjugate transpose). Bounded operators \(B(H)\) (\(*\) is adjoint).
Definition

A *C*-algebra is a complex *-algebra A with norm $\| \cdot \|$ such that

1. $\|ab\| \leq \|a\|\|b\|$ for any $a, b \in A$
2. A is complete with respect to the norm $\| \cdot \|$
3. $\|a^*a\| = \|a\|^2$ for any $a \in A$.

Example: The complex numbers \mathbb{C} form a *C*-algebra, with $z^* = \overline{z}$. The matrices $M_n(\mathbb{C})$ (with $*$ given by conjugate transpose). Bounded operators $B(H)$ ($*$ is adjoint).

Example: If X is a locally compact Hausdorff space, then $C_0(X) := \{ f : X \to \mathbb{C} | f$ is continuous and vanishes at $\infty \}$ is a *C*-algebra under the $\| \cdot \|_{\infty}$-norm and pointwise operations.
C*-algebras generated by partial isometries

Definition

A *partial isometry* is an element s in a C^*-algebra such that ss^* is a projection.
\textbf{Definition}

A \textit{partial isometry} is an element s in a C^*-algebra such that ss^* is a projection.

C^*-algebras generated by partial isometries have a long history.

\textbf{Theorem (Coburn, '67)}

\textit{If A is generated by an element t satisfying $t^*t = 1$ and $tt^* \preceq 1$, then $A \cong \mathcal{T}$, the Toeplitz algebra.}
C*-algebras generated by partial isometries

Definition

A *partial isometry* is an element s in a C^*-algebra such that ss^* is a projection.

C^*-algebras generated by partial isometries have a long history.

Theorem (Coburn, ’67)

*If A is generated by an element t satisfying $t^*t = 1$ and $tt^* \preceq 1$, then $A \cong \mathcal{T}$, the Toeplitz algebra.*

Theorem (Cuntz, ’77)

If A is generated by elements s, t satisfying

$$s^*s = t^*t = ss^* + tt^* = 1$$

then $A \cong \mathcal{O}_2$, the Cuntz algebra.
Directed graphs

Definition

A *directed graph* is a quadruple $E = (E^0, E^1, r, s)$, where E^0 and E^1 are (countable) sets and $r, s : E^1 \rightarrow E^0$ are functions called the *range* and *source* map, respectively.
Directed graphs

Definition

A directed graph is a quadruple \(E = (E^0, E^1, r, s) \), where \(E^0 \) and \(E^1 \) are (countable) sets and \(r, s : E^1 \to E^0 \) are functions called the range and source map, respectively.

(All the graphs in this talk will be directed, so we might start just referring to them as graphs.)
Definition

A directed graph is a quadruple $E = (E^0, E^1, r, s)$, where E^0 and E^1 are (countable) sets and $r, s : E^1 \rightarrow E^0$ are functions called the range and source map, respectively.

(All the graphs in this talk will be directed, so we might start just referring to them as graphs.) You can visualize a directed graph by drawing a point in the plane for each $v \in E^0$ and drawing for each edge $e \in E^1$ an arrow from $s(e)$ to $r(e)$.

\[\begin{array}{c}
\vdots \\
\bullet & \blackleft & \blackleft & \bullet \\
\downarrow & \blackleft & \blackleft & \downarrow \\
\bullet & \blackleft & \blackleft & \bullet \\
\downarrow & \blackleft & \blackleft & \downarrow \\
\bullet & \blackleft & \blackleft & \bullet \\
\downarrow & \blackleft & \blackleft & \downarrow \\
\end{array} \]
Operator algebraists like graphs because they give us a standard way to study a wide class of C^*-algebras generated by partial isometries. The basic idea is that you keep track of the relations between the generators using the edge matrix of a directed graph.
Graph \(C^* \)-algebras

Definition

Given a directed graph \(E = (E^0, E^1, r, s) \) the *graph algebra* \(C^*(E) \) is the universal \(C^* \)-algebra generated by a family \(\{ s_e, p_v : e \in E^1, v \in E^0 \} \), where the \(p_v \) are mutually orthogonal projections and the \(s_e \) are partial isometries with mutually orthogonal range projections satisfying

1. \(s_e^* s_e = p_{s(e)} \)

2. \(s_e s_e^* \leq p_{r(e)} \)

3. \(p_v = \sum_{r(e)=v} s_e s_e^* \) if \(0 < |r^{-1}(v)| < \infty \).
Graph algebras

If E is the graph

\[\begin{array}{c}
 \text{V} \\
 \bullet \\
 \text{e} \\
 \bullet \\
 \text{W}
\end{array} \]

then you can show that $\mathbb{C}^*\left(\mathbb{M}_2(\mathbb{C})\right)$.

Dan Crytser

Traces on graph algebras
If E is the graph

\[
\begin{array}{c}
\bullet \\
e \\
\bullet
\end{array}
\]

then you can show that $C^*(E) \cong M_2(\mathbb{C})$.
If E is the graph
If E is the graph

then $C^*(E) \cong C(\mathbb{T})$.
If E is the graph

\[
\begin{array}{c}
\text{e} \\
\downarrow v \\
\text{f}
\end{array}
\]
If E is the graph

then $C^*(E) \cong \mathcal{O}_2$, the Cuntz algebra.
If E is the graph

\[\begin{array}{c}
\text{e} \\
\text{v} \\
\text{f} \\
\hline \\
\text{w}
\end{array} \]
If E is the graph

\[e \quad v \quad w \]

Then $C^*(E) \cong \mathcal{T}$, the Toeplitz algebra.
Properties of the directed graph E control the algebra $C^*(E)$.
Properties of the directed graph E control the algebra $C^*(E)$.

1. The algebra $C^*(E)$ is a limit of finite-dimensional algebras (AF) if and only if E contains no directed cycles.
Graph algebras

Properties of the directed graph E control the algebra $C^*(E)$.

1. The algebra $C^*(E)$ is a limit of finite-dimensional algebras (AF) if and only if E contains no directed cycles.

2. The algebra is *purely infinite* if and only if every vertex connects to a cycle and no vertex emits only one simple cycle.
Graph algebras

Properties of the directed graph E control the algebra $C^*(E)$.

1. The algebra $C^*(E)$ is a limit of finite-dimensional algebras (AF) if and only if E contains no directed cycles.
2. The algebra is *purely infinite* if and only if every vertex connects to a cycle and no vertex emits only one simple cycle.
3. The algebra is simple if and only if E is cofinal, every cycle of E has an entrance, and we can reach every vertex of E from every infinite receiver.
Properties of the directed graph E control the algebra $C^*(E)$.

1. The algebra $C^*(E)$ is a limit of finite-dimensional algebras (AF) if and only if E contains no directed cycles.
2. The algebra is *purely infinite* if and only if every vertex connects to a cycle and no vertex emits only one simple cycle.
3. The algebra is simple if and only if E is cofinal, every cycle of E has an entrance, and we can reach every vertex of E from every infinite receiver.

We aim to characterize two C^*-algebraic properties for graph algebras.
Properties of the directed graph E control the algebra $C^*(E)$.

1. The algebra $C^*(E)$ is a limit of finite-dimensional algebras (AF) if and only if E contains no directed cycles.
2. The algebra is *purely infinite* if and only if every vertex connects to a cycle and no vertex emits only one simple cycle.
3. The algebra is simple if and only if E is cofinal, every cycle of E has an entrance, and we can reach every vertex of E from every infinite receiver.

We aim to characterize two C^*-algebraic properties for graph algebras. First, we determine which graphs yield *continuous-trace* graph algebras.
Graph algebras

Properties of the directed graph E control the algebra $C^*(E)$.

1. The algebra $C^*(E)$ is a limit of finite-dimensional algebras (AF) if and only if E contains no directed cycles.
2. The algebra is *purely infinite* if and only if every vertex connects to a cycle and no vertex emits only one simple cycle.
3. The algebra is simple if and only if E is cofinal, every cycle of E has an entrance, and we can reach every vertex of E from every infinite receiver.

We aim to characterize two C^*-algebraic properties for graph algebras. First, we determine which graphs yield *continuous-trace* graph algebras. Then we examine existing theorems determining which graphs yield *stable* graph algebras.
Part I: Continuous-trace graph algebras
Hausdorff spectrum

The set of unitary equivalence classes of irreducible representations of a C^*-algebra A forms a topological space called the spectrum of A, denoted by \hat{A}. This can be a poorly-behaved topological space.

Example

The spectrum of $B(H)$ is uncountable and non-Hausdorff.

Many people have studied various topological aspects of the spectrum. Goehle determined when a suitably nice graph E yields a graph algebra with Hausdorff spectrum.
If A has Hausdorff spectrum then for any point $t = [\pi]$ in the spectrum and any element $a \in A$, you can consider
$a(t) = a + \ker \pi \in A/ \ker \pi$. Since \hat{A} is Hausdorff, this has a well-defined rank.
If A has Hausdorff spectrum then for any point $t = [\pi]$ in the spectrum and any element $a \in A$, you can consider $a(t) = a + \ker \pi \in A/\ker \pi$. Since \hat{A} is Hausdorff, this has a well-defined rank.

Definition

Let A be a C^*-algebra with Hausdorff spectrum. Then A has *continuous trace* if for every point $t \in \hat{A}$, there is a neighborhood U of t and an element $a \in A$ such that $a(s)$ is a rank-one projection for all $s \in U$. The upshot of this is that continuous-trace C^*-algebras act like “locally trivial non-commutative fiber bundles.” These algebras are well-studied and have nice representation theory.
If A has Hausdorff spectrum then for any point $t = [\pi]$ in the spectrum and any element $a \in A$, you can consider $a(t) = a + \ker \pi \in A/\ker \pi$. Since \hat{A} is Hausdorff, this has a well-defined rank.

Definition

Let A be a C*-algebra with Hausdorff spectrum. Then A has **continuous trace** if for every point $t \in \hat{A}$, there is a neighborhood U of t and an element $a \in A$ such that $a(s)$ is a rank-one projection for all $s \in U$.

The upshot of this is that continuous-trace C*-algebras act like “locally trivial non-commutative fiber bundles.” These algebras are well-studied and have nice representation theory.
Example: Let X be a locally compact Hausdorff space and let $A = C_0(X, \mathcal{K})$ denote the set of all continuous functions from X to \mathcal{K} which vanish at infinity. Then A has continuous trace.
Continuous-trace C^*-algebras

Example: Let X be a locally compact Hausdorff space and let $A = C_0(X, \mathcal{K})$ denote the set of all continuous functions from X to \mathcal{K} which vanish at infinity. Then A has continuous trace.

Example: Let

$$A = \{ f : [0, 1] \to M_2(\mathbb{C}) : f \text{ is continuous, } f(0) = \begin{pmatrix} s & 0 \\ 0 & 0 \end{pmatrix} \}. $$

Then A has continuous trace.
Example: Let X be a locally compact Hausdorff space and let $A = C_0(X, K)$ denote the set of all continuous functions from X to K which vanish at infinity. Then A has continuous trace.

Example: Let

$$A = \{ f : [0, 1] \to M_2(\mathbb{C}) : f \text{ is continuous, } f(0) = \begin{pmatrix} s & 0 \\ 0 & 0 \end{pmatrix} \}. $$

Then A has continuous trace. We characterize those graphs which yield continuous-trace graph algebras.
In order to determine when a graph E yields a continuous-trace graph algebra, we use groupoids. A groupoid G is a set along with

1. a subset $G^{(2)} \subset G \times G$ of composable pairs;
2. an associative operation $G^{(2)} \rightarrow G$ written $(\alpha, \beta) \rightarrow \alpha \beta$ called composition;
3. a map $G \rightarrow G$ written $\gamma \rightarrow \gamma^{-1}$ called inversion which allows cancellation on the left and right.
In order to determine when a graph E yields a continuous-trace graph algebra, we use groupoids. A groupoid G is a set along with

1. a subset $G^{(2)} \subset G \times G$ of *composable pairs*;
2. an associative operation $G^{(2)} \to G$ written $(\alpha, \beta) \to \alpha \beta$ called *composition*;
3. a map $G \to G$ written $\gamma \to \gamma^{-1}$ called *inversion* which allows cancellation on the left and right.

There is no longer any identity element in a groupoid but there are “partial identities” called units. A *unit* of G is an element u such that $u = u^2 = u^{-1}$. In general there are many units; they form the *unit space* of G, denoted by $G^{(0)}$.
Let \(r : G \to G^{(0)} \) be given by \(r(\gamma) = \gamma \gamma^{-1} \) and \(s : G \to G^{(0)} \) be given by \(s(g) = \gamma^{-1} \gamma \). Then \(r \) and \(s \) are referred to as the range and source maps of \(G \).
Groupoids

Let $r : G \to G^{(0)}$ be given by $r(\gamma) = \gamma \gamma^{-1}$ and $s : G \to G^{(0)}$ be given by $s(g) = \gamma^{-1} \gamma$. Then r and s are referred to as the range and source maps of G. These maps give a nice description of the composable pairs: $(\gamma, \gamma') \in G^{(2)}$ if and only if $s(\gamma) = r(\gamma')$. We can visualize an element in G as an arrow from its source to its range.
Let $r : G \to G^{(0)}$ be given by $r(\gamma) = \gamma \gamma^{-1}$ and $s : G \to G^{(0)}$ be given by $s(g) = \gamma^{-1} \gamma$. Then r and s are referred to as the range and source maps of G. These maps give a nice description of the composable pairs: $(\gamma, \gamma') \in G^{(2)}$ if and only if $s(\gamma) = r(\gamma')$. We can visualize an element in G as an arrow from its source to its range.
A topological groupoid is a groupoid with a topology that makes the operations continuous.
A topological groupoid is a groupoid with a topology that makes the operations continuous. Examples: Any topological group (such as \(\mathbb{R}, \mathbb{T}, \mathbb{C}, \mathbb{Z} \)) is an example of a topological groupoid. Any discrete groupoid is a topological groupoid.

Definition

A topological groupoid is étale if the range and source maps are local homeomorphisms.

If \(G \) is étale then \(r^{-1}(u) \) and \(s^{-1}(u) \) are discrete for any \(u \in G^{(0)} \).
Groupoids are interesting for many reasons, but we mostly use them to construct C^*-algebras. If G is a second countable locally compact Hausdorff étale groupoid, then we can define operations on $C_c(G)$ by

$$f \ast g(\gamma) = \sum_{\alpha \beta = \gamma} f(\alpha)g(\beta)$$

and

$$f^*(\gamma) = f(\gamma^{-1})$$
Groupoids are interesting for many reasons, but we mostly use them to construct C^*-algebras. If G is a second countable locally compact Hausdorff étale groupoid, then we can define operations on $C_c(G)$ by

$$f \ast g(\gamma) = \sum_{\alpha \beta = \gamma} f(\alpha)g(\beta)$$

and

$$f^*(\gamma) = f(\gamma^{-1})$$

These operations make $C_c(G)$ into a \ast-algebra. You can give $C_c(G)$ a norm by taking a supremum over certain representations into C^*-algebras. Completing yields the groupoid C^*-algebra $C^*(G)$.
If E is a directed graph then there is an affiliated *path groupoid* G_E. The elements of G_E are built out of *infinite paths*: sequences of edges $e_1e_2\ldots$ with $s(e_i) = r(e_{i+1})$. The collection of such paths is denoted E^∞. There is for any integer $k \geq 0$ a *shift map* on E^∞:

$$\sigma^k(e_1e_2\ldots) = e_{k+1}e_{k+2}\ldots.$$

Definition

The path groupoid $G_E \subset E^\infty \times \mathbb{Z} \times E^\infty$ consists of all triples (x, n, y) such that there exist p, q with $\sigma^p x = \sigma^q y$ and $p - q = n$.

The unit space of G_E is identified with E^∞.
Let E be the graph

If $x = \mu_1\mu_2\mu_3\mu_4\mu_5\gamma_1\gamma_2\gamma_3 \ldots$ and $y = \xi_1\xi_2\gamma_3 \ldots$, then the triple $(x, 5, y)$ belongs to G_E because $\sigma^7 x = \sigma^2 y$.

Dan Crytser

Traces on graph algebras
The path groupoid carries a natural topology with basis consisting of all sets of the form

\[Z(\alpha, \beta) = \{(az, |\alpha| - |\beta|, \beta z) : \alpha, \beta \in E^*, r(z) = s(\alpha) = s(\beta)\}, \]

where \(E^* \) denotes the finite path space. This topology makes \(G_E \) into a locally compact Hausdorff second countable étale groupoid, so we can construct its groupoid \(C^* \)-algebra.

Theorem (KPRR, ’98)

If \(E \) is a row-finite graph with no sources, then there is an isomorphism \(C^(E) \rightarrow C^*(G_E) \) which carries the edge partial isometry \(s_e \) onto the characteristic function \(\chi_{Z(e,s(e))} \in C_c(G_E) \subset C^*(G_E) \).*
The path groupoid carries a natural topology with basis consisting of all sets of the form

\[Z(\alpha, \beta) = \{(\alpha z, |\alpha| - |\beta|, \beta z) : \alpha, \beta \in E^*, r(z) = s(\alpha) = s(\beta)\}, \]

where \(E^* \) denotes the finite path space. This topology makes \(G_E \) into a locally compact Hausdorff second countable étale groupoid, so we can construct its groupoid \(C^* \)-algebra.

Theorem (KPRR, ’98)

If \(E \) is a row-finite graph with no sources, then there is an isomorphism \(C^*(E) \rightarrow C^*(G_E) \) which carries the edge partial isometry \(s_e \) onto the characteristic function \(\chi_{Z(e,s(e))} \in C_c(G_E) \subset C^*(G_E) \).

Now we can study \(C^*(E) \) by studying \(G_E \): we look for conditions on a groupoid that yield a continuous-trace algebra, and then determine how \(E \) has to behave for \(G_E \) to satisfy those conditions.
Definition

Let G be a groupoid. If $u \in G^{(0)}$, the *stabilizer subgroup of u* is the set $G(u) = \{g \in G : r(g) = u = s(g)\}$. A groupoid is *principal* if $G(u) = \{u\}$ for each $u \in G^{(0)}$.

If G is a groupoid then there is a principal groupoid $R = \{(u, v) \in G^{(0)} \times G^{(0)} : (u, v) = (r(g), s(g)) \text{ for some } g \in G\}$ and a groupoid homomorphism $\pi : G \to R$ given by $\pi(g) = (r(g), s(g))$. We call this the *orbit groupoid* of G. If G is a nice topological groupoid then R is a topological groupoid carrying the quotient topology.
Any groupoid acts on its unit space via the formula

\[g \cdot s(g) = r(g). \]

We say that a topological groupoid acts *properly* on its unit space if the map

\[\Phi : G \to G^{(0)} \times G^{(0)} \]

given by \(g \to (r(g), s(g)) \) is proper.
A topological groupoid G has *continuously varying stabilizers* if the map $u \to G(u)$ which assigns to each unit its stabilizer subgroup is continuous. (Here the set of stabilizer subgroups is topologized with the *Fell topology.*)
Now we can say when a groupoid yields a C^*-algebra with continuous trace.

Theorem (MRW, ’96)

Suppose that G is a second countable locally compact Hausdorff groupoid with unit space $G^{(0)}$, abelian stabilizers, and Haar system. Then $C^*(G)$ has continuous trace if and only if

1. the stabilizer map $u \mapsto G(u)$ is continuous, and
2. the orbit groupoid R acts properly on its unit space $R^{(0)} = G^{(0)}$.

As $C^*(G_E) \cong C^*(E)$ (when E is nice), determining which graphs yield continuous-trace graph algebras is reduced to the question of determining which graphs yield path groupoids satisfying the above conditions.
Continuous-trace groupoid algebras

Now we can say when a groupoid yields a C^*-algebra with continuous trace.

Theorem (MRW, ’96)

Suppose that G is a second countable locally compact Hausdorff groupoid with unit space $G^{(0)}$, abelian stabilizers, and Haar system. Then $C^*(G)$ has continuous trace if and only if

1. the stabilizer map $u \mapsto G(u)$ is continuous, and
2. the orbit groupoid R acts properly on its unit space $R^{(0)} = G^{(0)}$.

As $C^*(G_E) \cong C^*(E)$ (when E is nice), determining which graphs yield continuous-trace graph algebras is reduced to the question of determining which graphs yield path groupoids satisfying the above conditions.
Continuous-trace graph algebras

Definition

An *entrance to a cycle* $\lambda = e_1 \ldots e_n$ is an edge f with $r(f) = r(e_k)$ for some k such that $f \neq e_k$.
Definition

An *entrance to a cycle* $\lambda = e_1 \ldots e_n$ is an edge f with $r(f) = r(e_k)$ for some k such that $f \neq e_k$

Here’s a simple example of an entrance to a cycle.
 Proposition (Goehle, ’13)

Let E be a row-finite graph with no sources. Then G_E has continuously varying stabilizers if and only if no cycle of E has an entrance.

Thus the only thing that remains is to find conditions on E that ensure the orbit groupoid R_E acts properly on E^∞.
Continuous-trace graph algebras

Let v, w be vertices. An *ancestry pair* is a pair of edges $(\lambda, \mu) \in E^* \times E^*$ such that

1. $r(\lambda) = v, r(\mu) = w$
2. $s(\mu) = s(\lambda)$,
3. neither path contains a cycle.

An ancestry pair is *minimal* if there is no factorization $(\lambda, \mu) = (\lambda', \nu, \mu')$ for another ancestry pair (λ', μ').

Definition

A graph has *finite ancestry* if given any two vertices v and w there are only finitely many minimal ancestry pairs for v and w.
Here \((\gamma_1 \gamma_2 \gamma_3, \xi \gamma_3)\) is an ancestry pair which is not minimal. The ancestry pair \((\gamma_2, \xi_2)\) is minimal.
Theorem (C., ’13)

Let E be a row-finite graph with no sources. Then $C^*(E)$ has continuous trace if and only if

1. no cycle of E has an entrance, and
2. E has finite ancestry.

The restriction on E allows us to use groupoid methods. Using a Drinen-Tomforde desingularization we can extend this to arbitrary graphs.
Theorem (C., ’13)

Let E be a graph. Then $C^*(E)$ has continuous trace if and only if

1. no cycle of E has an entrance, and
2. E has finite ancestry.
Let E be the graph

It can be shown that $C^*(E)$ has Hausdorff spectrum. While E has no cycles, and hence no entrance to a cycle, it does not have finite ancestry. Thus $C^*(E)$ does not have continuous trace.
Part II: Stable graph algebras
Tensor products are common in C^*-algebras. Often you form from a C^*-algebra A its stabilization $A \otimes K$, where K is the C^*-algebra of compact operators on an infinite dimensional Hilbert space.
Tensor products are common in C^*-algebras. Often you form from a C^*-algebra A its stabilization $A \otimes \mathcal{K}$, where \mathcal{K} is the C^*-algebra of compact operators on an infinite dimensional Hilbert space.

Definition

A C^*-algebra A is **stable** if it is isomorphic to $A \otimes \mathcal{K}$.
The algebra \mathcal{K} is stable because $\mathcal{K} \otimes \mathcal{K} \cong \mathcal{K}$.
Example

The algebra \mathcal{K} is stable because $\mathcal{K} \otimes \mathcal{K} \cong \mathcal{K}$.

Example

Any stable C^*-algebra is non-commutative and non-unital, so we get a wealth of non-stable C^*-algebras: $C_0(X), B(H), \mathcal{T}, O_2$, and others.
There are two properties of stable C^*-algebras that we will use over and over.
There are two properties of stable C^*-algebras that we will use over and over. A *tracial state* on a C^*-algebra is a positive linear functional ϕ of norm 1 such that $\phi(xy) = \phi(yx)$ for all $x, y \in A$.
There are two properties of stable C^*-algebras that we will use over and over. A *tracial state* on a C^*-algebra is a positive linear functional ϕ of norm 1 such that $\phi(xy) = \phi(yx)$ for all $x, y \in A$.

Lemma

Let A be a stable C^-algebra. Then A has no tracial states.*
Stability

There are two properties of stable C^*-algebras that we will use over and over. A *tracial state* on a C^*-algebra is a positive linear functional ϕ of norm 1 such that $\phi(xy) = \phi(yx)$ for all $x, y \in A$.

Lemma

Let A be a stable C^-algebra. Then A has no tracial states.*

If I is a two-sided closed ideal in a C^*-algebra then there is a quotient C^*-algebra A/I and a canonical homomorphism $q : A \to A/I$.

Lemma

Let A be a stable C^-algebra. Then A has no nonzero unital quotients.*
Question
What conditions must a graph E satisfy in order for $C^*(E)$ to be stable?
Stability

Discussing stability of graph algebras requires some new graph theory terminology.

Definition

A graph trace on a directed graph E is a function $g : E^0 \to [0, \infty)$ satisfying

1. $g(v) \geq \sum_{r(e)=v} g(s(e))$ for all v
2. $g(v) = \sum_{r(e)=v} g(s(e))$ if $0 < |r^{-1}(v)| < \infty$

A graph trace is bounded if its norm $\sum_{v \in E^0} g(v)$ is finite. The (possibly empty) set of graph traces on E with norm 1 is denoted by $T(E)$.

Dan Crytser
Traces on graph algebras
Graph traces lift to tracial states.

Theorem (Tomforde ’03)

If \(g \in T(E) \) then there is a tracial state \(\tau_g \) on \(C^*(E) \) such that \(\tau_g(p_v) = g(v) \).
Graph traces lift to tracial states.

Theorem (Tomforde ’03)

If $g \in T(E)$ then there is a tracial state τ_g on $C^*(E)$ such that $\tau_g(p_v) = g(v)$.

Stable C^*-algebras possess no tracial states. This shows that a graph with bounded graph traces cannot yield a stable C^*-algebra.
Left finite vertices

Definition

If \(v, w \in E^0 \), then we say that \(w \leq v \) if there is a directed path from \(v \) to \(w \). We say that \(v \) is \textit{left finite} if

\[
L(v) = \{ w \in E^0 : w \leq v \}
\]

is finite.

The following lemma tells us why we care about left finite vertices. Recall that a \textit{singular vertex} receives either zero edges or infinitely many edges.
Left finite vertices

Definition

If $v, w \in E^0$, then we say that $w \leq v$ if there is a directed path from v to w. We say that v is *left finite* if

$$L(v) = \{ w \in E^0 : w \leq v \}$$

is finite.

The following lemma tells us why we care about left finite vertices. Recall that a *singular vertex* receives either zero edges or infinitely many edges.

Lemma

If E has a left-finite vertex which lies on a cycle or is singular, then $C^(E)$ has a nonzero unital quotient.*
Definition

Let p, q be projections. We say that p is subequivalent to q if there exists an element x such that $x^*x = p$ and $xx^* \leq q$.

Usually we will be comparing different projections of the form $p = \sum_{v \in V} p_v$ for some finite subset $V \subset E^0$.

Projection comparison

Graph algebras
Continuous-trace graph algebras
Stable graph algebras

Stability
Stability of graph algebras

Dan Crytser
Traces on graph algebras
The following abridged theorem generalizes previous work of Hjelmborg [3].

Theorem (Tomforde ’04)

Let E be a directed graph. Then the following are equivalent:

1. $C^*(E)$ is stable.
2. $C^*(E)$ has no tracial states and no nonzero unital quotients.
3. E has no left finite cycles and no nonzero bounded graph traces.
4. For any $v \in E^0$ and any subset $F \subset E^0$, there exists $W \subset E^0 \setminus F$ such that $p_v \preceq \sum_{w \in W} p_w$.
Proof

One part of the theorem needs reproving: the implication from (4) to (5).

4. E has no left finite cycles, no left finite singular vertices, and no nonzero bounded graph traces.

5. For any $v \in E^0$ and any subset $F \subset E^0$, there exists $W \subset E^0 \setminus F$ such that $p_v \lesssim \sum_{w \in W} p_w$.

The implication (4) implies (5) is the hardest to prove. The proof in the literature has a gap in it. I found a proof of this implication that seems novel and is "low-tech."
Proof

One part of the theorem needs reproving: the implication from (4) to (5).

4. E has no left finite cycles, no left finite singular vertices, and no nonzero bounded graph traces.

5. For any $v \in E^0$ and any subset $F \subset E^0$, there exists $W \subset E^0 \setminus F$ such that $p_v \lesssim \sum_{w \in W} p_w$.

The implication (4) implies (5) is the hardest to prove. The proof in the literature has a gap in it. I found a proof of this implication that seems novel and is “low-tech.”

Idea of proof: Show that if we cannot construct the comparison by using the “obvious” strategy, then the graph must carry a bounded graph trace.

First, let’s take a look at what this “obvious” strategy might be.

Dan Crytser
Proof

One part of the theorem needs reproving: the implication from (4) to (5).

4. E has no left finite cycles, no left finite singular vertices, and no nonzero bounded graph traces.

5. For any $v \in E^0$ and any subset $F \subseteq E^0$, there exists $W \subset E^0 \setminus F$ such that $p_v \lesssim \sum_{w \in W} p_w$.

The implication (4) implies (5) is the hardest to prove. The proof in the literature has a gap in it. I found a proof of this implication that seems novel and is “low-tech.”

Idea of proof: Show that if we cannot construct the comparison by using the “obvious” strategy, then the graph must carry a bounded graph trace.
Proof

One part of the theorem needs reproving: the implication from (4) to (5).

4. \(E \) has no left finite cycles, no left finite singular vertices, and no nonzero bounded graph traces.

5. For any \(v \in E^0 \) and any subset \(F \subset E^0 \), there exists \(W \subset E^0 \setminus F \) such that \(p_v \preceq \sum_{w \in W} p_w \).

The implication (4) implies (5) is the hardest to prove. The proof in the literature has a gap in it. I found a proof of this implication that seems novel and is “low-tech.”

Idea of proof: Show that if we cannot construct the comparison by using the “obvious” strategy, then the graph must carry a bounded graph trace. First, let’s take a look at what this “obvious” strategy might be.
Comparison of range and source

For any directed path $\lambda = e_1 e_2 \ldots e_n$ in a directed graph E, we have a partial isometry $s_\lambda = s_{e_1} s_{e_2} \ldots s_{e_n}$. The partial isometry s_λ gives a subequivalence between $p_s(\lambda)$ and $p_r(\lambda)$, as $s_\lambda^* s_\lambda = p_s(\lambda)$ and $s_\lambda s_\lambda^* \leq p_r(\lambda)$.

Lemma

Suppose that v is a left infinite vertex and $F \subset E^0$ is a finite set. Then there exists finite $W \subset E^0 \setminus F$ such that $p_v \precsim \sum_{w \in W} p_w$.

This allows us to restrict our attention to left finite vertices when we are constructing graph traces later on.
If p_v is a vertex projection and $F \subset E^0$ then a cover for ν that avoids F is a set of vertices W with $p_v \preccurlyeq \sum_{w \in W} p_w$ and $W \cap F = \emptyset$.
Example

Let E be the graph

\[v_0 \xrightarrow{e_1} v_1 \xrightarrow{e_2} v_2 \xrightarrow{e_3} v_3 \xrightarrow{e_4} \ldots \]

Notice that this graph does not carry a nonzero bounded graph trace.
Example

Let E be the graph

We can cover vertex v_0 and avoid any finite $F = \{v_0, v_1, \ldots, v_n\}$. For

$$p_v = s_{e_1}s_{e_1}^* \sim s_{e_1}^*s_{e_1} = p_{v_1} = s_{e_2}s_{e_2}^* \sim s_{e_2}^*s_{e_2} = p_{v_2} \sim \ldots \sim p_{v_{n+1}}.$$

Thus $p_{v_{n+1}}$ is a cover for p_v and we can take $W = \{v_{n+1}\}$.
Example

Let E be the graph

\begin{center}
\begin{tikzpicture}
 \node[shape=circle,draw, inner sep=0pt, minimum size=5mm,fill] (A) at (0,0) {v_0};
 \node[shape=circle,draw, inner sep=0pt, minimum size=5mm,fill] (B) at (1,0) {v_1};
 \node[shape=circle,draw, inner sep=0pt, minimum size=5mm,fill] (C) at (2,0) {v_2};
 \node[shape=circle,draw, inner sep=0pt, minimum size=5mm,fill] (D) at (3,0) {v_3};
 \node[shape=circle,draw, inner sep=0pt, minimum size=5mm,fill] (E) at (4,0) {v_4};

 \draw (A) -- (B) node[pos=0.5, above] {e_1};
 \draw (B) -- (C) node[pos=0.5, above] {e_2};
 \draw (C) -- (D) node[pos=0.5, above] {e_3};
 \draw (D) -- (E) node[pos=0.5, above] {e_4};

\end{tikzpicture}
\end{center}

We can cover vertex v_0 and avoid any finite $F = \{v_0, v_1, \ldots, v_n\}$. For

\[p_v = s_{e_1}s_{e_1}^* \sim s_{e_1}^*s_{e_1} = p_{v_1} = s_{e_2}s_{e_2}^* \sim s_{e_2}^*s_{e_2} = p_{v_2} \sim \ldots \sim p_{v_{n+1}}. \]

Thus $p_{v_{n+1}}$ is a cover for p_v and we can take $W = \{v_{n+1}\}$. Notice that this graph does not carry a nonzero bounded graph trace.
Example

Let E be the graph

\[\begin{array}{c}
 v_0 & \xrightarrow{e_1} & v_1 & \xrightarrow{e_2} & v_2 & \xrightarrow{e_3} & v_3 & \xrightarrow{e_4} & \ldots \\
 \xleftarrow{e_1'} & & \xleftarrow{e_2'} & & \xleftarrow{e_3'} & & \xleftarrow{e_4'} & & \\
\end{array} \]
Example

Let E be the graph

\[\begin{array}{cccccccc}
 v_0 & e_1 & v_1 & e_2 & v_2 & e_3 & v_3 & e_4 & \ldots \\
 e_1' & & v_1 & e_2' & v_2 & e_3' & v_3 & e_4' & \\
\end{array} \]

Claim: we can’t cover v_0 and avoid $F = \{v_0\}$. We have $p_{v_0} = s_{e_1} s_{e_1}^* + s_{e_1'} s_{e_1'}^*$. Then $s_{e_1} s_{e_1}^* \sim s_{e_1'} s_{e_1'} = p_{v_1}$ and likewise for $s_{e_1'} s_{e_1}^*$. However we can’t write $p_v \preceq p_{v_1} + p_{v_1}$ because the sum is not a projection. So we cover one range projection and split the other. But this lands us exactly where we started. This process goes on forever.
Example

Let E be the graph

```
<table>
<thead>
<tr>
<th>e_1</th>
<th>e_2</th>
<th>e_3</th>
<th>e_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>v_0</td>
<td>v_1</td>
<td>v_2</td>
<td>v_3</td>
</tr>
<tr>
<td>e'_1</td>
<td>e'_2</td>
<td>e'_3</td>
<td>e'_4</td>
</tr>
</tbody>
</table>
```

Claim: we can’t cover v_0 and avoid $F = \{v_0\}$. We have $p_{v_0} = s e_1 s^{*} e_1 + s e'_1 s^{*} e'_1$. Then $s e_1 s^{*} e_1 \sim s^{*} e_1 s e_1 = p_{v_1}$ and likewise for $s e'_1 s^{*} e'_1$. However we can’t write $p_{v} \preccurlyeq p_{v_1} + p_{v_1}$ because the sum is not a projection. So we cover one range projection and split the other. But this lands us exactly where we started. This process goes on forever. Note that this graph carries a bounded trace with $g(v_i) = \frac{1}{2^{i+1}}$.
Now let’s sketch the proof of

4. \(E \) has no left finite cycles, no left finite singular vertices, and no nonzero bounded graph traces.

5. For any \(v \in E^0 \) and any subset \(F \subset E^0 \), there exists \(W \subset E^0 \setminus F \) such that \(p_v \lesssim \sum_{w \in W} p_w \).

Suppose that \(v \) is a regular vertex of \(E \) and \(F \) is a finite subset of \(E^0 \) such that for all \(W \subset E^0 \), we have \(p_v \lesssim \sum_{w \in W} p_w \).
Assume that all N_1 edges entering v have common source

Then $p_v = \sum_{r(e)=v} s_e s_e^*$. Let d_1 be the number of paths $\lambda_1, \ldots, \lambda_{d_1}$ which start at v_1 and terminate at a vertex not in F. If $d_1 \geq N_1$, then we can write $p_v \lesssim \sum_{w \in r(\{\lambda_i\})} p_w$.

Thus we must have $d_1 < N_1$, or equivalently $\frac{d_1}{N_1} < 1$.
Now assume we couldn’t find a comparison using edges going into \(v \).

Let \(N_2 \) be the number of edges from \(v_2 \) to \(v_1 \), and let \(d_2 \) be the number of paths which start at \(v_2 \), don’t include the \(N_1 \) edges from \(v_1 \) to \(v \), and don’t terminate in \(F \). If \(d_2 \geq N_2(N_1 - d_1) \), then we can construct the comparison. So we must have that \(d_2 < N_2(N_1 - d_1) \), or equivalently that \(\frac{d_1}{N_1} + \frac{d_2}{N_1N_2} < 1 \).
Definition of the graph trace

Inductively we find a chain of vertices v, v_1, \ldots with N_i vertices from v_i to v_{i-1}, and d_i paths out of v_i which do not terminate at a vertex in F. The nice thing about this chain is

$$\sum_{i=1}^{\infty} \frac{d_i}{N_1 \ldots N_i} < 1$$
Definition of the graph trace

Inductively we find a chain of vertices v, v_1, \ldots with N_i vertices from v_i to v_{i-1}, and d_i paths out of v_i which do not terminate at a vertex in F. The nice thing about this chain is

$$
\sum_{i=1}^{\infty} \frac{d_i}{N_1 \ldots N_i} < 1
$$

If $w \in E^0$, define

$$
g(w) = \sum_{i=1}^{\infty} \frac{|\{\text{nice paths } w \leftarrow v_i\}|}{N_1 \ldots N_i}.
$$

You can check that this is a graph trace.
Definition of the graph trace

Inductively we find a chain of vertices v, v_1, \ldots with N_i vertices from v_i to v_{i-1}, and d_i paths out of v_i which do not terminate at a vertex in F. The nice thing about this chain is

$$\sum_{i=1}^{\infty} \frac{d_i}{N_1 \ldots N_i} < 1$$

If $w \in E^0$, define

$$g(w) = \sum_{i=1}^{\infty} \frac{|\text{nice paths } w \leftarrow v_i|}{N_1 \ldots N_i}.$$

You can check that this is a graph trace. Bounded? Need to worry about the paths which terminate in the finite set F, but they just multiply the trace norm by a finite constant.
Thus we have seen that the failure of comparison within a C^*-algebra associated to a graph with left infinite cycles and singular vertices yields a nonzero graph trace on the graph, and hence a tracial state on the C^*-algebra. This seals the gap in the theorem on stability for graph algebras.
Stable \(k \)-graph algebras

Directed graphs can be generalized to more combinatorially rich objects called \(k \)-graphs.

Definition

A \(k \)-graph \(\Lambda \) is a category equipped with a degree functor \(d : \Lambda \rightarrow \mathbb{N}^k \) which satisfies the factorization property: if \(d(\lambda) = m + n \) for some \(m, n \in \mathbb{N}^k \), then there is a unique factorization of \(\lambda \) as \(\lambda = \mu \nu \) with \(d(\mu) = m \) and \(d(\nu) = n \). The objects of \(\Lambda \) are precisely \(d^{-1}(0) = \Lambda^0 \). In general if \(n \in \mathbb{N}^k \), then \(\Lambda^n \) denotes \(d^{-1}(n) \).
Stable k-graph algebras

Directed graphs can be generalized to more combinatorially rich objects called k-graphs.

Definition

A k-graph Λ is a category equipped with a degree functor $d : \Lambda \to \mathbb{N}^k$ which satisfies the *factorization property*: if $d(\lambda) = m + n$ for some $m, n \in \mathbb{N}^k$, then there is a unique factorization of λ as $\lambda = \mu \nu$ with $d(\mu) = m$ and $d(\nu) = n$. The objects of Λ are precisely $d^{-1}(0) = \Lambda^0$. In general if $n \in \mathbb{N}^k$, then Λ^n denotes $d^{-1}(n)$.

We can assign a C^*-algebra to a well-behaved k-graph in a manner very similar to the definition of graph algebras. It then becomes interesting to ask which k-graphs yield stable C^*-algebras.
Stable k-graph algebras

I wanted to look at a class of k-graphs which is amenable to the construction of k-graph traces developed by Evans, Rennie and Sims.

Definition

A k-graph is *balanced* if for any basis elements $e_i, e_k \in \mathbb{N}^k$, we have $|v \Lambda^{e_i} w| = |v \Lambda^{e_k} w|$.
Stable k-graph algebras

I wanted to look at a class of k-graphs which is amenable to the construction of k-graph traces developed by Evans, Rennie and Sims.

Definition

A k-graph is *balanced* if for any basis elements $e_i, e_k \in \mathbb{N}^k$ we have $|v \Lambda^{e_i} w| = |v \Lambda^{e_k} w|$.

Theorem (work in progress)

Let Λ be a row-finite balanced k-graph with no sources. Then the following are equivalent.

1. $C^*(\Lambda)$ is stable;
2. $C^*(\Lambda)$ has no tracial states and no nonzero unital quotients;
3. no left finite $v \in \Lambda^0$ lies on a cycle and Λ has no nonzero bounded k-graph traces.
The notion of a balanced k-graph above includes nice examples of k-graphs, but it’s fairly restrictive.
The notion of a balanced k-graph above includes nice examples of k-graphs, but it’s fairly restrictive. I think that I can extend it to *vertex-balanced* k-graphs: k-graphs in which every vertex receives the same number of edges of degree e_i for every basis element in \mathbb{N}^k. This class includes more interesting examples of k-graphs than the balanced class.
Stable k-graph algebras

The notion of a balanced k-graph above includes nice examples of k-graphs, but it’s fairly restrictive. I think that I can extend it to vertex-balanced k-graphs: k-graphs in which every vertex receives the same number of edges of degree e_i for every basis element in \mathbb{N}^k. This class includes more interesting examples of k-graphs than the balanced class. The combinatorics involved in constructing the k-graph traces under failure of comparison becomes more complicated.
Partial bibliography

Thank you!