Math 22: Final Exam
November 16, 2012, 3pm-6pm

Your name (please print): ____________________________

Instructions: This is a closed book, closed notes exam. Use of calculators is not permitted. Unless otherwise stated, you must justify all of your answers to receive credit - please write in complete sentences in a paragraph structure. You may not give or receive any help on this exam and all questions should be directed to Professor Pauls.

You have 3 hours to work on all 9 problems. Please do all your work in this exam booklet.

The Honor Principle requires that you neither give nor receive any aid on this exam.
<table>
<thead>
<tr>
<th>Problem</th>
<th>Points</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>
(1) (10 points) Complete the following definitions - remember, state definitions of the terms, not properties of the terms. To get credit, your answers must make sense as English sentences.

(a) A set of vectors is linearly independent if . . .

(b) A map \(T: V \rightarrow W \) is a linear transformation of vectors spaces if . . .

(c) A matrix \(A \) is invertible if . . .
(d) Let B be an $n \times n$ matrix. Then, a vector \vec{v} is an eigenvector of A if . . .

(e) A set of vectors $\mathfrak{B} = \{\vec{v}_1, \ldots, \vec{v}_k\} \subset V$ is a basis for the vector space V if . . .

(f) A matrix C is an orthogonal matrix if . . .
(g) A a Markov chain is . . .

(h) Let D be a square matrix. Then, the characteristic polynomial of D is . . .

(i) The rank of a matrix is . . .
(j) The least squares solution to the matrix equation $A\vec{x} = \vec{b}$ is \ldots
(2) (35 points total, 5 points each) For each question, explain your process and write clearly. All answers must be fully justified, especially answers to yes or no questions.

(a) Let \(A_1 = \begin{pmatrix} 1 & 2 & -4 & -4 \\ 2 & 4 & 0 & 0 \\ 2 & 3 & 2 & 1 \\ -1 & 1 & 3 & 6 \end{pmatrix} \) and \(\vec{b} = \begin{pmatrix} 5 \\ 2 \\ 5 \\ 5 \end{pmatrix} \). Find all solutions to the matrix equation \(A_1 \vec{x} = \vec{b} \) or show that no solutions exist.
(b) Let $A_2 = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 4 \\ 0 & -1 & 2 \end{pmatrix}$. Show that the columns of A_2 are either linearly dependent or linearly independent. What does this say about the dimension of $\text{Col } A$? Does this imply anything about the dimension of $\text{Nul } A$? If so, what and why?
(c) Let \(A_3 = \begin{pmatrix} 2 & 3 \\ 1 & 5 \\ 4 & 7 \\ 3 & 6 \end{pmatrix} \). Find a basis for \(\text{Nul} \ A_3 \). What is the rank of \(A_3 \)? Is \(A_3 \) invertible?
(d) Let $A_4 = \begin{pmatrix} 3 & -1 & 5 \\ 2 & 1 & 3 \\ 0 & -5 & 1 \end{pmatrix}$. Find a basis for $\text{Row } A_4$. What is the rank of A_4?

What is the dimension of $\text{Nul } A$?
(e) Let $A_5 = \begin{pmatrix} 1 & 0 & -3 & 2 \\ 0 & 1 & -5 & 4 \\ 3 & -2 & 1 & 2 \end{pmatrix}$. Find a basis for $\text{Col} A_5$. What is the rank of A_5?
(f) Let $A_6 = \begin{pmatrix} 13 & -5 & 2 \\ -5 & 13 & 2 \\ 2 & 2 & 5 \end{pmatrix}$. Compute the determinant of A_6. Is A invertible?
(g) Let $A_7 = \begin{pmatrix} 13 & -5 & 1 \\ -6 & 10 & 3 \\ -5 & -2 & 3 \end{pmatrix}$. The eigenvalues of this matrix are 1, 2 and 3. Find all the eigenvectors of A_7. Is A_7 diagonalizable? If so, give the diagonalization.
(3) (10 points) Let $B = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

(a) Compute the reduced singular value decomposition of B. Does B have a trivial or non-trivial null space? What is the rank of B?
(b) Find the pseudo-inverse of B.
(4) (10 points) Let Q be an $n \times n$ orthogonal matrix and A an $n \times m$ matrix. Show that A and QA have the same singular values.
(5) (10 points) Let C be a 3×3 symmetric matrix with orthogonal diagonalization given by $C = PDP^{-1}$ where the columns of P are $\{\vec{p}_1, \ldots, \vec{p}_n\}$ and the nonzero entries of the matrix D are $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_r > 0$ where $r < n$. Let \mathfrak{B} denote the basis of eigenvectors of C.

(a) What is the change of basis matrix from the standard basis to \mathfrak{B}? What is the change of basis matrix from \mathfrak{B} to the standard basis (do not just state this as an inverse of another matrix)?
(b) What is $[C]_g$? Justify your answer.
(6) (5 points) Let
\[
D = \begin{pmatrix}
1 & 2 & 2 \\
-1 & 1 & 2 \\
-1 & 0 & 1 \\
1 & 1 & 2
\end{pmatrix}
\]

\(D\) has a QR decomposition given by
\[
D = QR = \begin{pmatrix}
\frac{1}{2} & \frac{3\sqrt{5}}{10} & -\frac{\sqrt{5}}{6} \\
-\frac{1}{2} & \frac{3\sqrt{5}}{10} & 0 \\
-\frac{1}{2} & \frac{\sqrt{5}}{10} & \frac{\sqrt{5}}{6} \\
\frac{1}{2} & \frac{\sqrt{5}}{10} & \frac{\sqrt{5}}{3}
\end{pmatrix} \begin{pmatrix}
2 & 1 & \frac{1}{2} \\
\sqrt{5} & 0 & \frac{3\sqrt{5}}{2} \\
0 & \frac{\sqrt{5}}{2} & 0
\end{pmatrix}
\]

Using the QR factorization, find the least squares solution to \(A\vec{x} = \vec{b}\) where
\[
\vec{b} = \begin{pmatrix}
2 \\
-3 \\
-2 \\
0
\end{pmatrix}
\]
(7) (10 points) Describe and explain the Gram-Schmidt algorithm.
Consider the following data series:

<table>
<thead>
<tr>
<th>x</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

Suppose we wish to construct a general linear model of the form $y = \beta_1 x + \beta_2 x^3$. What is are design matrix, observation vector and parameter vector for this model? Write down the normal equations for this model but do not solve them.
(9) (10 points) Let A be an $m \times n$ matrix. Show that $Nul A$ is a subspace of \mathbb{R}^n and that $Row A$ is its orthogonal complement.
This page is for additional work.
This page is for additional work.
This page is for additional work.