Notes on Heat Equation on a plate

Let \(\Omega \) be a circle of radius \(r = 1 \). We want to solve

\[
(0.1)\quad u_t = a^2 \Delta u(x) = a^2 \left(u_{rr} + \frac{1}{r} u_r \right) \quad 0 \leq r \leq 1
\]

\[
u(0, t) = 0
\]

\[
u(r, 0) = F(r)
\]

We assume that the solution is separable, ie. \(u(r, t) = R(r)T(t) \). Plugging this into (0.1) we find

\[
RT' = a^2 \left(R'' + \frac{1}{r} R' \right) T
\]

We can separate this equation by grouping \(R \)'s and \(T \)'s.

\[
\frac{T'}{a^2 T} = \frac{R'' + \frac{1}{r} R'}{R} = -\lambda^2
\]

where \(\lambda \) is a constant to be determined.

First solving \(\frac{T'}{a^2 T} = -\lambda^2 \), we find \(T(t) = e^{-a^2 \lambda^2 t} \).

Now we must solve

\[
\frac{R'' + \frac{1}{r} R'}{R} = -\lambda^2.
\]

Putting everything on one side and multiplying by \(r^2 \), we get a second order differential equation

\[
(0.2)\quad r^2 R'' + r R' + \lambda^2 r^2 R = 0
\]

Note that this is very similar to the 0\(^{th} \) order Bessel equation. To see the difference, let’s look for a series solution of the form

\[
R(r) = \sum_{n=1}^{\infty} a_n(k) x^{n+k}.
\]

Plugging this into (0.2), we find the indicial equation is \(k^2 = 0 \), \(a_1 = 0 \) and the recurrence relation for the coefficients is

\[
a_n = -\frac{\lambda^2 a_{n-2}}{n^2}.
\]

Since \(a_1 = 0 \), all odd terms must equal zero.

\[
a_{2m} = \frac{(-1)^m (\lambda^2)^m a_0}{(m!)^2 2^{2m}}
\]

So the series solution is

\[
R_1(r) = 1 + \sum_{n=1}^{\infty} \frac{(-1)^m (\lambda r)^{2m}}{(m!)^2 2^{2m}} = J_0(\lambda r).
\]

Likewise, the second homogeneous solution is given by \(Y_0(\lambda r) \). Thus \(R(r) = c_1 J_0(\lambda r) + c_2 Y_0(\lambda r) \). Now \(Y_0 \) blows up at the origin so we must set \(c_2 = 0 \).

Thus \(R(r) = c_1 J_0(\lambda r) \). Hence, \(u(r, t) = c_1 J_0(\lambda r) e^{-a^2 \lambda^2 t} \).

We know that \(u(1, t) = 0 = J_0(\lambda) \). This means that \(\lambda \) must be the roots of \(J_0 \). \(J_0 \) has infinitely many roots thus by superposition
\[u(r, t) = \sum_{l=0}^{\infty} c_l J_0(\lambda_l r) e^{-a^2 \lambda_l^2 t} \]

The initial condition \(u(r, 0) = F(r) \) determines the coefficients \(c_l \).

The coefficients are (without explanation)

\[c_l = \frac{2}{J_1^2(\lambda_l)} \int_0^1 x J_0(\lambda_l r) F(r) dr. \]