### Important Announcements

• You can drop your take-home exams between noon and 4pm today.
If the building is locked, call 603-646-1720 to be let in.
• Problem C2 of the take-home exam should start with Show that every, i.e., the question has an extra 'for' after 'that'.
• Problem D2 of the take-home exam should end with such that $$T = S_d^\alpha$$, i.e., the last '$$U$$' should be an '$$S$$'.
• Problem D3 of the take-home exam should start with Show that $$T:\mathsf{V}\to\mathsf{V}$$ is, i.e., the question has an extra 'if' after 'that'.

Below you will find the class schedule, with assigned reading and homework, in reverse chronological order.

• Regular homework assigned in a given week is due Wednesday of the following week.
• Special homework assigned in a given week is due Friday of the following week.
• Any problem that you are asked to attempt before class is for practice only. Do not submit these problems with your regular homework.

Any exceptions to these rules will be indicated in the class schedule below.

Sat 5/31
Final exam from 8am to 11am in Kemeny 105

Any special assignment resubmissions must be done before 5pm on Wednesday, May 28
Wed 5/28
Attempt §7.2: 1, 2, 3 before class
Slides used in class
Class worksheet with sample solutions

Start Take Home Exam 2 due June 1
Fri 5/23
Attempt §7.1: 1, 2ac, 3ac before class
Work on §7.1: 7abcd after class
Quiz on §6.1-§6.4 during class
Wed 5/21
Attempt §6.6: 1, 2 before class
Work on §6.6: 4*, 6 after class
Mon 5/19
Review section 6.4
Attempt §6.4: 1, 2ace, 3 before class
Work on §6.4: 5, 9* after class
Slides used in class

Read section 6.5 up to Theorem 6.21 before May 23

This is to prepare for the second take-home exam, where there will be one question on the material from §6.5. You should read and understand that section before the exam is handed out on Friday, May 23. The material after Theorem 6.21 is instructive and may help you better understand the ideas of §6.5, but it is not essential for answering the question related to §6.5 on the take-home exam.

Fri 5/16
Attempt §6.4: 1, 2ace, 3 before class
Slides used in class
Thu 5/15
Attempt §6.3: 1, 2ac, 3ac before class
Work on §6.3: 2b, 3b, 12a* after class
Quiz on §5.1-§5.4 during class
Wed 5/14
Review section 6.2
Attempt §6.2: 1, 2cei, 3, 4 before class
Work on §6.2: 2bd, 9 after class
Class worksheet with sample solutions
Mon 5/12
Attempt §6.1: 1, 2, 3 before class
Work on §6.1: 4, 12*, 17 after class
Slides used in class

Start Special Assignment 5 due Friday, May 16
Fri 5/9
Review section 5.4
Work on §5.4: 6bd, 7* after class
Worksheet used in class
Thu 5/8
Attempt §5.4: 1, 2, 3 before class
Quiz on §4.1 to §4.4 during class
Wed 5/7
(You may omit the part on differential equations)
Attempt §5.2: 1, 2ace, 3ace before class
Work on §5.2: 2f, 3f, 7, 11b* after class
Slides used in class
Mon 5/5
Attempt §5.1: 1, 2ace, 19 before class
Work on §5.1: 3cd, 4di, 6* after class
Slides used in class

Start Special Assignment 4 due Friday, May 9
Fri 5/2
Attempt §4.4: 1, 2ac, 3ac, 4ac before class
Thu 5/1
Attempt §4.3: 1, 2 before class
Work on §4.3: 11, 12 after class
Quiz on §3.1 to §3.4 during class
Class worksheet with some sample solutions
Wed 4/30
Classroom change to Kemeny 343
Read sections 4.1 and 4.2 before class
Practice quiz on §3.1 to §3.4 during class
Attempt §4.1: 1, 2 and §4.2:1, 2, 3, 4 before class
Work on §4.1: 9, 10, 11* and §4.2: 23*, 24 after class
Slides used in class
Mon 4/28
Attempt §3.4: 1, 2ceg, 3 before class
Work on §3.4: 4b, 15* after class
Class worksheet with sample solutions

Take Home Exam 1 due by 3pm on Friday, April 25
Fri 4/25
Special room: Kemeny 343
Review section 3.3. before class
Attempt §3.3: 1, 2ace, 3ace, 4 before class
Work on §3.3: 7be, 10 after class
Slides used in class
Thu 4/24
Special room: Kemeny 343
Class worksheet with sample solutions
Wed 4/23
Attempt §3.2: 1, 2ace, 4, 5ace before class
Work on §3.2: 6bf, 13b*, 19 after class
Slides used in class
Mon 4/21
Attempt §3.1: 1, 2, 3ac before class
Work on §3.1: 8* after class
Class worksheet with sample solutions

Start Take Home Exam 1 due Friday, April 25
Fri 4/18
Review sections 1.1-6 and 2.1-5 before class
Bring at least one written question to class
Thu 4/17
Attempt §2.5: 1, 2ac, 3ac, 4, 5 before class.
Work on §2.5: 6bd, 9, 12* after class
Class worksheet with sample solutions
Wed 4/16
Attempt §2.4: 1, 2, 3 before class
Work on §2.4: 4, 7, 16* after class
Optional make-up quiz on §2.1 to §2.3 during class
Slides used in class
Mon 4/14
Review sections 2.2. and 2.3 before class
Quiz on §2.1 to §2.3 during class
Slides used in class

Start Special Assignment 3 due Friday, April 18
Fri 4/11
Review section 2.2 and read section 2.3 before class (you may omit the applications part at the end)
Work on §2.3: 3, 4bd, 11* after class
Class worksheet with sample solutions
Thu 4/10
Work on §2.2: 5bde, 8*, 10 after class
Worksheet for woozle flows with sample solutions
Wed 4/9
Attempt problems from the worksheet
Review section 2.1 before class
Quiz on §1.4 to §1.6 during class
Class worksheet with sample solutions
Slides used in class
Mon 4/7
Work on §2.1: 5, 14*, 21 after class

Start Special Assignment 2 due Friday, April 11
Fri 4/4
Attempt to prove Theorems 2, 3, 4 of the worksheet
Review the proof of Theorem 1.10 before class
Class worksheet with sample solutions
Slides used in class
Thu 4/3
Work on §1.6: 11*, 14, 16 after class
Wed 4/2
Quiz on §1.1 to §1.4 during class
Work on §1.5: 2bf, 7, 17* after class
Class worksheet with sample solutions
Mon 3/31
Work on §1.4: 5dfh, 10, 12* after class
Class worksheet with sample solutions

Start Special Assignment 1 due Friday, April 4
Fri 3/28
Work on §1.3: 10, 13, 19* after class
Thu 3/27
Read the handout on proof strategies before class
Review section 1.2 and continue working on §1.2: 9*, 18 after class
Also review the handout on proof strategies and read the discussion added at the end after class
Wed 3/26
Read sections 1.1 and 1.2 before class
Work on §1.2: 9*, 18 after class
Mon 3/24
Work on Quiz 0 due Wednesday 3/26

## Regular Homework Guidelines

In order to get credit for regular homework assignments, you must follow the following guidelines. Your submission must be completely legible, on standard letter-size paper. Your submission must be stapled into one packet.

• Each starred problem must be on its own page, with no other problems above or below, even if you use multiple pages to solve the problem. Solutions to starred problems must be formulated in theorem-proof form. You will have to reformulate the problem in the form of a theorem in order to do this. Keep in mind that problems are often formulated as questions or instructions (prove that, show that) but theorems are just statements of fact, they don't instruct you to do anything.

For example, a plausible theorem statement matching §1.3#15 is:

Theorem. The set of all differentiable real-valued functions defined on $$\mathbb{R}$$ form a subspace of $$\mathsf{C}(\mathbb{R})$$.

If a problem has multiple parts, you may need to have more than one theorem for your solution.

• Non-starred problems can be gathered together on the same page but leave enough room for the grader to make notes.

You must restate each problem before you solve it. You are encouraged to restate the problem in your own words. For example, a good way to start a solution to §1.2#11 is:

I will show that the set $$\mathsf{V} = \{0\}$$ that consists of the single vector $$0$$ with $$0 + 0 = 0$$ and $$c0 = 0$$ for every scalar $$c$$ in $$F$$ is a vector space.

Make sure all problems are appropriately labeled.