(3.5 # 44) Show that $\sqrt[3]{5}$ is irrational.

(a) Suppose $\sqrt[3]{5}$ is rational. Then we can write $\sqrt[3]{5} = a/b$ where $(a, b) = 1$ and $b \neq 0$. Then $5 = a^3/b^3$, so $5b^3 = a^3$. Now $5 \mid a^3$, so $5 \mid a$. Then we can write $a = 5k$ for some integer k, so $5b^3 = 125k^3$, and hence $5 \mid b^3$, so $5 \mid b$. But this is a contradiction since $(a, b) = 1$. Therefore $\sqrt[3]{5}$ is irrational.

(b) Since $\sqrt[3]{5}$ is not an integer, and it is the root of the polynomial $x^3 - 5$, it is irrational, by Theorem 3.18.

(3.5 # 74) Show that if p is prime and $1 \leq k < p$, then the binomial coefficient $\binom{p}{k}$ is divisible by p.

The binomial coefficient
$$\binom{p}{k} = \frac{p!}{k!(p-k)!} = \frac{1 \cdot 2 \cdots p}{1 \cdot 2 \cdots k \cdot 1 \cdot 2 \cdots (p-k)}.$$ Since $k < p$, all the factors in the denominator are less than p, so they do not cancel the p in the numerator. Therefore, p divides $\binom{p}{k}$.

(3.6 # 16) Show that if a is a positive integer and $a^m + 1$ is an odd prime, then $m = 2^n$ for some positive integer n.

Suppose that $a^m + 1$ is an odd prime. If $m = k\ell$ with $\ell > 1$ odd, then we can factor
$$a^m + 1 = (a^k + 1)(a^{k(\ell-1)} - a^{k(\ell-2)} + \cdots - a^{k} + 1).$$ Since $k < m$, $a^{k} + 1 < a^{m} + 1$, and since $a > 0$, $a^{k} + 1 > 1$, so this is a nontrivial factorization, and hence a contradiction. Therefore m must have no odd factors, so it must be of the form $m = 2^n$.

(3.6 # 18) Use the fact that every prime divisor of $F_4 = 2^{2^4} + 1$ is of the form $2^n k + 1$ to verify that F_4 is prime.

Any prime factor of F_4 must be of the form $64k + 1$, and must be less than or equal to $\lfloor \sqrt[4]{65,337} \rfloor = 256 = 2^8$. Then $64 + 1 = 65$ is not prime, $64 \cdot 2 + 1 = 129$ is not prime, and $64 \cdot 3 + 1 = 193 \nmid F_4$. The next possible factor $64 \cdot 4 + 1 = 2^8 + 1$ is too big, so F_4 is prime.
(4.1 # 12) Construct a table for addition modulo 6.

<table>
<thead>
<tr>
<th>+</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>5</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

(4.1 # 14) Construct a table for multiplication modulo 6.

<table>
<thead>
<tr>
<th>×</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

(4.1 # 20) Show that if n is an odd positive integer or if n is a positive integer divisible by 4, then

$$1^3 + 2^3 + \cdots + (n-1)^3 \equiv 0 \pmod{n}.$$

Is this statement true if n is even but not divisible by 4?

By a problem from the first HW,

$$1^3 + 2^3 + \cdots + (n-1)^3 = \left[\frac{n(n-1)}{2}\right]^2 = \frac{n^2(n-1)^2}{4}.$$

If $4 \mid n$, then $n = 4k$ for some integer k, so

$$\frac{n^2(n-1)^2}{4} = kn(n-1)^2 \equiv 0 \pmod{n}.$$

If n is odd then $n-1$ is even, so $n-1 = 2m$ for some integer m. Then

$$\frac{n^2(n-1)^2}{4} = n^2m^2 \equiv 0 \pmod{n}.$$

If n is even but not divisible by 4, then $n = 2\ell$ for some odd integer ℓ, and

$$\frac{n^2(n-1)^2}{4} = \ell^2(n-1)^2 = \ell^2n^2 - 2\ell^2n + \ell^2 \equiv \ell^2 \pmod{n},$$

and since ℓ is odd and n is even, $n \nmid \ell^2$, so $\ell^2 \not\equiv 0 \pmod{n}$.

(4.1 # 22) Show by induction that if n is a positive integer, then $4^n \equiv 1 + 3n \pmod{9}$.

For the base case, $4 \equiv 1+3 \pmod{9}$. For the induction hypothesis, assume that $4^n \equiv 1+3n \pmod{9}$ for some positive integer n. Then

$$4^{n+1} = 4 \cdot 4^n \equiv 4(1+3n) \equiv 4 + 12n \equiv 4 + 3n \equiv 1 + 3(n+1) \pmod{9}.$$

Therefore $4^n \equiv 1 + 3n \pmod{9}$ for all positive integers n.

(4.1 # 26) Show that if \(p \) is prime, then the only solutions of the congruence \(x^2 \equiv x \pmod{p} \) are those integers \(x \) such that \(x \equiv 0 \) or \(1 \pmod{p} \).

If \(x^2 \equiv x \pmod{p} \), then \(x(x-1) \equiv 0 \pmod{p} \). Thus \(p \mid x(x-1) \), so \(p \mid x \) or \(p \mid x-1 \). Hence the only solutions are \(x \equiv 0 \pmod{p} \) or \(x \equiv 1 \pmod{p} \).

(4.2 # 2) Find all solutions to the following linear congruences.

(b) \(6x \equiv 3 \pmod{9} \).

Since \((6, 9) = 3 \), there are 3 incongruent solutions. It’s easy to see that \(x \equiv 2 \pmod{9} \) is one solution. Then since \(9/3 = 3 \), the other solutions are \(x \equiv 2 + 3 \equiv 5 \pmod{9} \) and \(x \equiv 2 + 6 \equiv 8 \pmod{9} \).

(c) \(17x \equiv 14 \pmod{21} \)

Since \((17, 21) = 1 \), there is a unique solution modulo 21. Using the Euclidean Algorithm we find that \(17(5) - 21(4) = 1 \), so multiplying by 14, we have \(17(70) - 21(56) = 14 \). Therefore the unique solution is \(x \equiv 70 \equiv 7 \pmod{21} \).

(d) \(15x \equiv 9 \pmod{25} \).

Since \((15, 25) = 5 \) and \(5 \nmid 9 \), there are no solutions.

(4.2 # 10) Determine which integers \(a \), where \(1 \leq a \leq 14 \), have an inverse modulo 14, and find the inverse of each of these integers modulo 14.

The numbers \(a \) with an inverse modulo 14 are those for which \((a, 14) = 1 \): 1, 3, 5, 9, 11, and 13. The inverse of each of these integers modulo 14 is also in that list, since if \(ab \equiv 1 \pmod{m} \), then both \(a \) and \(b \) have an inverse modulo \(m \). So we see that \(\overline{1} = 1, \overline{3} = 5, \overline{5} = 3, \overline{9} = 11, \overline{11} = 9, \) and \(\overline{13} = 13 \).

(4.2 # 18) Show that if \(p \) is an odd prime and \(a \) is a positive integer not divisible by \(p \), then the congruence \(x^2 \equiv a \pmod{p} \) has either no solution or exactly two incongruent solutions.

If the congruence has no solutions, we are done, so suppose that it has at least one solution \(c \). Then \(c^2 \equiv a \pmod{p} \), so also \((-c)^2 \equiv a \pmod{p} \). If \(c \equiv -c \pmod{p} \), then \(2c \equiv 0 \pmod{p} \). Since \(p \) is odd, this implies that \(p \mid c \). But then \(a \equiv c^2 \equiv 0 \pmod{p} \). This is a contradiction since \(p \nmid a \). Therefore \(c \) and \(-c \) are incongruent solutions. Now suppose \(b \) is another solution. Then \(b^2 \equiv c^2 \pmod{p} \), so \((b + c)(b - c) \equiv b^2 - c^2 \equiv 0 \pmod{p} \). Then either \(p \mid (b + c) \) or \(p \mid (b - c) \), so \(b \equiv \pm c \pmod{p} \). Therefore there are exactly two incongruent solutions modulo \(p \).

(4.3 # 12) If eggs are removed from a basket 2, 3, 4, 5, and 6 at a time, there remain, respectively, 1, 2, 3, 4, and 5 eggs. But if the eggs are removed 7 at a time, no eggs remain. What is the least number of eggs that could have been in the basket?
We need to find the least positive integer solution to the system of congruences
\[\begin{align*}
 x &\equiv 1 \pmod{2} \\
 x &\equiv 2 \pmod{3} \\
 x &\equiv 3 \pmod{4} \\
 x &\equiv 4 \pmod{5} \\
 x &\equiv 5 \pmod{6} \\
 x &\equiv 0 \pmod{7}.
\end{align*} \]

Since the moduli are not pairwise coprime, we can’t use the Chinese Remainder Theorem. However, we notice from the first and fourth congruences that \(x \) must end in a 9, and from the last congruence, it must be a multiple of 7. Since \(49 \not\equiv 2 \pmod{3} \), we try the next number satisfying these properties, which is 119. It is easy to check that 119 satisfies every congruence.

(3.3 \# 14(b)) Use induction to show that if \(a_1, a_2, \ldots, a_n \) are integers, and \(b \) is another integer such that \((a_1, b) = (a_2, b) = \cdots = (a_n, b) = 1\), then \((a_1a_2 \cdots a_n, b) = 1\).

The base case is trivial. Suppose the statement is true for \(n \). Now suppose that \((a_1, b) = (a_2, b) = \cdots = (a_n, b) = (a_{n+1}, b) = 1\). By the induction hypothesis, \((a_1a_2 \cdots a_n, b) = 1\), so there are integers \(s \) and \(t \) such that
\[a_1a_2 \cdots a_n s + bt = 1. \]
Multiplying through by \(a_{n+1} \), we have
\[a_1a_2 \cdots a_n a_{n+1} s + a_{n+1} bt = a_{n+1}. \]
Also, since \((a_{n+1}, b) = 1\), we have integers \(e \) and \(f \) such that \(a_{n+1} e + bf = 1\). Substituting for \(a_{n+1} \), we have
\[(a_1a_2 \cdots a_n a_{n+1} s + a_{n+1} bt)e + bf = 1. \]
Rewriting, we have
\[(a_1a_2 \cdots a_n a_{n+1} (se) + b(a_{n+1} te + f) = 1, \]
so \((a_1a_2 \cdots a_n a_{n+1}, b) = 1\). Therefore, the statement is true for all positive integers \(n \).