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Exponential Growth & Decay

• Derivatives measure (instantaneous) rates of change.
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Exponential Growth & Decay

• Derivatives measure (instantaneous) rates of change.

• As we have seen, a rate of change can be a powerful tool for
expressing quantitatively a qualitative description.

• “The volume is decreasing at three cubic meters per minute.”

This gives an equation =⇒ dV

dt
= −3

m3

min
.

• Suppose we know that a nation’s population grows or declines
depending on the birth and death rates.

• What if, at any time t, the rate of change of the size of a growing
population is proportional to its size at that moment?
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Simplest Exponential Growth & Decay Model

Let y(t) be the size of the population at time t that is changing at a
rate proportional to its size and let y(0) = y0 be the initial size.
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Simplest Exponential Growth & Decay Model

Let y(t) be the size of the population at time t that is changing at a
rate proportional to its size and let y(0) = y0 be the initial size.

IVP


dy

dt
= ky

y(0) = y0

where k is the constant of proportionality.

Note that if k > 0, then the population is growing, and if k < 0,
then the population is decreasing (or “decaying”).

Theorem. The initial value problem above, where k is a constant,
has a unique solution

y = y(t) = y0e
kt.
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Example 1: Bacteria in a Culture

Suppose a bacteria culture grows at a rate proportional to the number
of cells present. If the culture contains 7,000 cells initially and 9,000
after 12 hours, how many will be present after 36 hours?
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Example 1: Bacteria in a Culture

Suppose a bacteria culture grows at a rate proportional to the number
of cells present. If the culture contains 7,000 cells initially and 9,000
after 12 hours, how many will be present after 36 hours?

Answer: There are ≈ 14,880 cells in the culture after 36 hours.
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Doubling Time and Half-Life

• In an exponential growth model (k > 0), the doubling time is the
length of time required for the population to double.
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Doubling Time and Half-Life

• In an exponential growth model (k > 0), the doubling time is the
length of time required for the population to double.

• In a decay model (k < 0), the half-life is the length of time
required for the population to be reduced to half its size. (See
half-life applet.) This is useful in studying radioactive elements.
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Doubling Time and Half-Life

• In an exponential growth model (k > 0), the doubling time is the
length of time required for the population to double.

• In a decay model (k < 0), the half-life is the length of time
required for the population to be reduced to half its size. (See
half-life applet.) This is useful in studying radioactive elements.

• A characteristic of exponential models is that these numbers are
independent of the point in time from which the measurement
begins!
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Example 2: Radioactive Decay

Carbon-14 14C is a radioactive isotope of carbon that has a half-life of
≈ 5,730 years, which makes it highly useful in radiocarbon dating
of ancient artifacts and remains that contain plant/animal residue.
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Example 2: Radioactive Decay

Carbon-14 14C is a radioactive isotope of carbon that has a half-life of
≈ 5,730 years, which makes it highly useful in radiocarbon dating
of ancient artifacts and remains that contain plant/animal residue.

Suppose an Egyptian papyrus parchment has 66.77% as much 14C
as does similar papyrus plant material on Earth today. Estimate the
age of the parchment and which Pharaoh it was produced under. Use
the Pharaonic timeline listed at this website.
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Example 2: Radioactive Decay

Carbon-14 14C is a radioactive isotope of carbon that has a half-life of
≈ 5,730 years, which makes it highly useful in radiocarbon dating
of ancient artifacts and remains that contain plant/animal residue.

Suppose an Egyptian papyrus parchment has 66.77% as much 14C
as does similar papyrus plant material on Earth today. Estimate the
age of the parchment and which Pharaoh it was produced under. Use
the Pharaonic timeline listed at this website.

Solution: The parchment is≈ 3,339 years old (ca. 1329 B.C.) which
places it in the reign of Pharaoh Tutankhamun (1334 -1325 B.C.) of
the 18th Dynasty.
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Newton’s Law of Cooling

A hot/warm object introduced into a medium (e.g., room, fridge,
water) maintained at a fixed cooler temperature will cool at a rate
proportional to the difference between its own temperature and that
of the surrounding medium.
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dy

dt
= k(y − Tm)

y(0) = y0

Solution: y − Tm = (y0 − Tm)ekt ⇒ y = Tm + (y0 − Tm)ekt.
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Newton’s Law of Cooling

A hot/warm object introduced into a medium (e.g., room, fridge,
water) maintained at a fixed cooler temperature will cool at a rate
proportional to the difference between its own temperature and that
of the surrounding medium.

If y(t) is the temp at time t of an object (with initial temp y0) placed
into a medium of fixed temp Tm < y0 then we have the IVP:

dy

dt
= k(y − Tm)

y(0) = y0

Solution: y − Tm = (y0 − Tm)ekt ⇒ y = Tm + (y0 − Tm)ekt.

NB: This also describes how cool objects warm up if Tm > y0...
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Forensics and Differential Equations

Newton’s Law of Cooling can be used in forensics to estimate the time
of death, if the victim is found before reaching room temperature in
a room of constant temperature. If the temperature is in degrees
Fahrenheit, then k ≈ −0.05.
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Forensics and Differential Equations

Newton’s Law of Cooling can be used in forensics to estimate the time
of death, if the victim is found before reaching room temperature in
a room of constant temperature. If the temperature is in degrees
Fahrenheit, then k ≈ −0.05.


dy

dt
= −0.05(y − Tm)

y(0) = 98.6◦F

where Tm = (fixed) temperature of the crime scene room/area.
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Example 3 (CSI: Vermont)

Detective Dan Whit found the stiff at 11 am on New Year’s Day in the
Norwich Inn room with a deadly kitchen knife wound. He immediately
measured the room and the body and found them to be 65◦F and
80◦F, respectively. The cook was implicated in the murder but she
left work early at 3:45 pm and was in Boston by 6:23 pm. Could she
be guilty?
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Example 3 (CSI: Vermont)

Detective Dan Whit found the stiff at 11 am on New Year’s Day in the
Norwich Inn room with a deadly kitchen knife wound. He immediately
measured the room and the body and found them to be 65◦F and
80◦F, respectively. The cook was implicated in the murder but she
left work early at 3:45 pm and was in Boston by 6:23 pm. Could she
be guilty? 

dy

dt
= −0.05(y − 65)

y(0) = 98.6◦F

Solution: The victim died ≈ 16 hours before 11 am, i.e., around
7:00 pm on New Year’s Eve. Thus, the cook is innocent!
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Separable Differential Equations

• A first-order differential equation in x and y is called separable if
it is of the form

dy

dx
= g(x)h(y).

• That is the x’s and dx’s can be put on one side of the equation
and the y’s and dy’s on the other (i.e., they “separate out”)
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Example 4 (Compare Ex 3(c) from Monday)

• Solve the IVP 
dy

dx
= x2y3

y(3) = 1
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Example 4 (Compare Ex 3(c) from Monday)

• Solve the IVP 
dy

dx
= x2y3

y(3) = 1

• The general solution is

− 1
2y2

=
x3

3
+ C.
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• From y(3) = 1, we find the particular solution:
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• From y(3) = 1, we find the particular solution:

C = −19
2

y =

√
1

19− 2x3

3
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Justification for the Method of Separation of
Variables

We need to show that given the equation

dy

dx
= g(x)h(y)⇒

∫
1

h(y)
dy =

∫
g(x) dx ???

i.e., does the antiderivative of 1
h(y) as a function of y equal the an-

tiderivative of g(x) as a function of x? Let y = f(x) be any solution:

y′ = h(y)g(x)

f ′(x) = h(f(x))g(x)

f ′(x)
h(f(x))

= g(x)
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Let H(y) be any antiderivative of 1/h(y)
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Let H(y) be any antiderivative of 1/h(y)

So H(f(x)) is an antiderivative of g(x)....

Thus, the solution y = f(x) indeed satisfies the equation∫
1

h(y)
dy = H(y) = H(f(x)) =

∫
g(x)dx ©
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Example 5

• Solve the differential equation

dy

dx
=

x

y
.
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Example 5

• Solve the differential equation

dy

dx
=

x

y
.

• Solutions are of the form

y2 − x2 = C

which represent hyperbolae in the xy-plane.
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Example 6

• Solve
dy

dx
=

2y

x
.
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Example 6

• Solve
dy

dx
=

2y

x
.

• The general solution is
y = Cx2

which represent parabolae in the xy-plane.

17



18



Example 7

• Solve
dy

dx
= − x

2y
.
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Example 7

• Solve
dy

dx
= − x

2y
.

• The general solution is

2y2 + x2 = C.

which represent ellipses in the xy-plane.
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Example 8

Use separation of variables to solve the IVP
x3 + (y + 1)2

dy

dx
= 0

y(0) = 1
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Example 8

Use separation of variables to solve the IVP
x3 + (y + 1)2

dy

dx
= 0

y(0) = 1

General Solution: 3x4 + 4(y + 1)3 = C
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x3 + (y + 1)2

dy

dx
= 0

y(0) = 1

General Solution: 3x4 + 4(y + 1)3 = C

When x = 0, y = 1 =⇒ C = 3 · 0 + 4(2)3 = 32.

Particular Solution: 3x3 + 4(y + 1)3 = 32
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Example 8

Use separation of variables to solve the IVP
x3 + (y + 1)2

dy

dx
= 0

y(0) = 1

General Solution: 3x4 + 4(y + 1)3 = C

When x = 0, y = 1 =⇒ C = 3 · 0 + 4(2)3 = 32.

Particular Solution: 3x3 + 4(y + 1)3 = 32

=⇒ y = −1 + 3

√
8− 3

4x
4 (Check on Graph Calc!)
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