Pre-calc
Basic functions and basic graphs
 lines (esp. point slope form)
 polynomials, rational functions,
 trigonometric functions
 unit circle, special values, identities (even/odd, Pythagorean, angle addition)
 exponentials, logarithms
Transformations (and using them to sketch)
Inverse functions (definition and graphing them)
Domain/range
Limits
 Calculating basic limits, properties of limits
 Limits at infinity (esp. rational functions, e^x)
 Asymptotes (vertical and horizontal)
 Continuity (definition, removable discontinuities, continuous extensions)

Differentiation
The basics
 Estimates: Average change, Mean Value Theorem
 Limit definition of a derivative
 Instantaneous rate of change
 Calculating derivatives using limits
 Properties of derivatives
 Derivatives of basic functions
 Derivative rules (scaling, sum, chain, product, quotient)
 Higher order derivatives (how, what they mean, notation)
Implicit differentiation
 Definition and how
 Derivatives of inverse functions
 How to simplify things like tan(arcsin(x))
 Related rates
Tangent lines and approximations
 Formula for tangent line
 Linearization
 Higher order: Taylor polynomials
 Newton's method for roots
 Rolle's Theorem
 Euler's method (see differential equations)
Meanings of derivatives
 Physics: position, velocity, acceleration
Graphing
 Critical points and intervals of increase/decrease
 Concavity and inflection points
 First and second derivative tests for finding local maxima and minima
 Optimization problems
Integration

Antiderivatives
- Meaning
- Scaling and sum rule
- Substitution
- Partial fractions (integrating things like \(1/(y(y-2))\))

Definite integrals

Estimates
- Rectangles
 - Upper (circumscribed, over-estimate, use max of \(f\) over each interval)
 - Lower (inscribed, under-estimate, use min of \(f\) over each interval)
- Left, Right, Mid
- Summation notation
- Limit definition of the definite integral
- Trapezoids
- Simpson’s rule
- Error

Properties of the definite integral
- Symmetries (even and odd functions)
- Reversing endpoints
- Area versus signed area

Fundamental theorem of calculus
- I: Evaluating definite integrals using antiderivatives
- II: Function endpoints and derivatives

Applications
- Average value
- Mean Value Theorem for integrals
- Arc length
- Area between curves
 - flipping inverse functions

Differential equations
- Initial value problems
 - General solution
 - Particular solution
- Separable equations
- Checking solutions to differential equations
- Word problems
 - Growth and decay problems
 - Newton's law of cooling
 - Logistic growth
- Slope fields
- Euler's Method