Antiderivatives and Initial Value Problems
Warm up

If $\frac{d}{dx} f(x) = 2x$, what is $f(x)$?

Can you think of another function that $f(x)$ could be?

If $\frac{d}{dx} f(x) = 3x^2 + 1$, what is $f(x)$?

Can you think of another function that $f(x)$ could be?
Definition
An antiderivative of a function f on an interval I is another function F such that $F'(x) = f(x)$ for all $x \in I$.

Examples:
1. An antiderivative of $f(x) = 2x$ is $F(x) = x^2$.
2. Another antiderivative of $f(x) = 2x$ is $F(x) = x^2 + 1$.
3. There are lots of antiderivatives of $f(x) = 2x$ which look like $F(x) = x^2 + C$.
Definition
An antiderivative of a function f on an interval I is another function F such that $F'(x) = f(x)$ for all $x \in I$.

Examples:
1. An antiderivative of $f(x) = 2x$ is $F(x) = x^2$.
Definition
An antiderivative of a function f on an interval I is another function F such that $F'(x) = f(x)$ for all $x \in I$.

Examples:
1. An antiderivative of $f(x) = 2x$ is $F(x) = x^2$.
2. Another antiderivative of $f(x) = 2x$ is $F(x) = x^2 + 1$.
Definition
An antiderivative of a function f on an interval I is another function F such that $F'(x) = f(x)$ for all $x \in I$.

Examples:
1. An antiderivative of $f(x) = 2x$ is $F(x) = x^2$.
2. Another antiderivative of $f(x) = 2x$ is $F(x) = x^2 + 1$.
3. There are lots of antiderivatives of $f(x) = 2x$ which look like $F(x) = x^2 + C$.
Suppose that \(h \) is differentiable in an interval \(I \),
and \(h'(x) = 0 \) for all \(x \) in \(I \).

Then \(h \) is a constant function!
i.e. \(h(x) = C \) for all \(x \in I \), where \(C \) is a constant.

So, if \(F(x) \) is one antiderivative of \(f(x) \), then any other
antiderivative must be of the form \(F(x) + C \).
Suppose that h is differentiable in an interval I, and $h'(x) = 0$ for all x in I.

Then h is a constant function!
i.e. $h(x) = C$ for all $x \in I$, where C is a constant.

So, if $F(x)$ is one antiderivative of $f(x)$, then any other antiderivative must be of the form $F(x) + C$.

Example: All of the antiderivatives of $f(x) = 2x$ look like

$$F(x) = x^2 + C$$

for some constant C.
Every function f that has at least one antiderivative F has infinitely many antiderivatives

$$F(x) + C.$$
Every function f that has at least one antiderivative F has **infinitely many** antiderivatives

$$F(x) + C.$$

We refer to $F(x) + C$ as the **general antiderivative** or the **indefinite integral** and denote it by

$$F(x) + C = \int f(x) \, dx.$$
Every function f that has at least one antiderivative F has infinitely many antiderivatives

$$F(x) + C.$$

We refer to $F(x) + C$ as the

general antiderivative or the indefinite integral

and denote it by

$$F(x) + C = \int f(x)\,dx.$$

Example:

$$\int 2x \, dx = x^2 + C.$$
Examples

\[\int x^2 \, dx = \frac{1}{3}x^3 + C, \quad \text{because} \quad \frac{d}{dx}(\frac{1}{3}x^3 + C) = \frac{1}{3} \cdot 3x^2 = x^2 \]
Examples

\[\int x^2\, dx = \frac{1}{3}x^3 + C, \quad \text{because} \quad \frac{d}{dx}(\frac{1}{3}x^3 + C) = \frac{1}{3} \cdot 3x^2 = x^2 \]

\[\int x^3\, dx = \frac{1}{4}x^4 + C, \quad \text{because} \quad \frac{d}{dx}(\frac{1}{4}x^4 + C) = \frac{1}{4} \cdot 4x^3 = x^3 \]
Examples

\[\int x^2 \, dx = \frac{1}{3} x^3 + C, \quad \text{because} \quad \frac{d}{dx} \left(\frac{1}{3} x^3 + C \right) = \frac{1}{3} \times 3x^2 = x^2 \]

\[\int x^3 \, dx = \frac{1}{4} x^4 + C, \quad \text{because} \quad \frac{d}{dx} \left(\frac{1}{4} x^4 + C \right) = \frac{1}{4} \times 4x^3 = x^3 \]

\[\int x^5 \, dx = \]

\[\int x^{-3} \, dx = \]

\[\int x^k \, dx = \]
Some important basic integrals

\[
\int x^k \, dx = \frac{1}{k + 1} x^{k+1} + C \quad \text{if } k \neq -1
\]

\[
\int x^{-1} \, dx =
\]

\[
\int \sin(x) \, dx =
\]

\[
\int \cos(x) \, dx =
\]

\[
\int e^x \, dx =
\]

\[
\int \sec^2(x) \, dx =
\]

\[
\int \frac{1}{\sqrt{1 - x^2}} \, dx =
\]
Theorem (Opposite of sum and constant rules)

Suppose the functions f and g both have antiderivatives on the interval I. Then for any constants a and b, the function $af + bg$ has an antiderivative on I and

$$\int (a \cdot f(x) + b \cdot g(x)) \, dx = a \int f(x) \, dx + b \int g(x) \, dx$$
Differential equations

A differential equation is an equation involving derivatives.
Differential equations

A differential equation is an equation involving derivatives. The goal is usually to solve for y.
Differential equations

A **differential equation** is an equation involving derivatives. The **goal** is usually to solve for y.

Just like you could use algebra to solve

$$y^2 + x^2 = 1$$

for y, you can use calculus (and algebra) to solve things like

$$\frac{dy}{dx} - 5y = 0$$

for y.
Differential equations

A **differential equation** is an equation involving derivatives. The *goal* is usually to solve for *y*. Just like you could use algebra to solve

\[y^2 + x^2 = 1 \]

for *y*, you can use calculus (and algebra) to solve things like

\[\frac{dy}{dx} - 5y = 0 \]

for *y*.

A **solution** to a differential equation is a function you can plug in that satisfies the equation.
Differential equations

A **differential equation** is an equation involving derivatives. The *goal* is usually to solve for y.

Just like you could use algebra to solve

$$y^2 + x^2 = 1$$

for y, you can use calculus (and algebra) to solve things like

$$\frac{dy}{dx} - 5y = 0$$ for y.

A **solution** to a differential equation is a function you can plug in that satisfies the equation.

For example, $y = e^{5x}$ is a solution to the differential equation above since

$$\frac{d}{dx} e^{5x} = 5e^{5x},$$

so

$$\frac{dy}{dx} - 5y = (5e^{5x}) - 5(e^{5x}) = 0 \quad \checkmark$$
Finding an antiderivative can also be thought of as solving a differential equation:

“Solve the differential equation $\frac{d}{dx} y = x^2$.”

Answer: $y = \int x^2 \, dx = \frac{1}{3} x^3 + C.$

Check: $\frac{d}{dx} \left(\frac{1}{3} x^3 + C \right) = \frac{1}{3} \cdot 3 \cdot x^2 + 0 = x^2 \checkmark$
Examples

(1) Solve the differential equation \(y' = 2x + \sin(x) \).

(2) Check that \(\cos(x) + \sin(x) \) is a solution to \(\frac{d^2y}{dx^2} + y = 0 \).
Initial value problems

Find a solution to the differential equation \(\frac{d}{dx} y = x^2 + 1 \) which also satisfies \(y(2) = 8/3 \).
Initial value problems

Find a solution to the differential equation $\frac{d}{dx} y = x^2 + 1$ which also satisfies $y(2) = 8/3$.

general solution: $y = \frac{1}{3}x^3 + x + C$
Initial value problems

Find a solution to the differential equation \(\frac{d}{dx} y = x^2 + 1 \) which also satisfies \(y(2) = \frac{8}{3} \).

general solution: \(y = \frac{1}{3} x^3 + x + C \)

Each color corresponds to a choice of \(C \).
Initial value problems

Find a solution to the differential equation \(\frac{d}{dx} y = x^2 + 1 \) which also satisfies \(y(2) = \frac{8}{3} \).

general solution: \(y = \frac{1}{3} x^3 + x + C \)

Each color corresponds to a choice of \(C \).
Initial value problems

Find a solution to the differential equation $\frac{d}{dx} y = x^2 + 1$ which also satisfies $y(2) = 8/3$.

general solution: $y = \frac{1}{3}x^3 + x + C$

Each color corresponds to a choice of C.
Initial value problems

Find a solution to the differential equation \(\frac{d}{dx} y = x^2 + 1 \) which also satisfies \(y(2) = 8/3 \).

general solution: \(y = \frac{1}{3} x^3 + x + C \)

Each color corresponds to a choice of \(C \).
Red curve is the *particular* solution.
Initial value problems

Find a solution to the differential equation $\frac{d}{dx} y = x^2 + 1$ which also satisfies $y(2) = 8/3$.

General solution: $y = \frac{1}{3}x^3 + x + C$

Particular solution: $y = \frac{1}{3}x^3 + x - 2$

Each color corresponds to a choice of C. Red curve is the particular solution.
Definition

An **initial-value problem** is a differential equation together with enough additional conditions to specify the constants of integration that appear in the general solution.

The **particular solution of the problem** is then a function that satisfies both the differential equation and also the additional conditions.
Solve the initial value problem
\[\frac{dy}{dx} = 2x + \sin(x) \]
subject to \(y(0) = 0 \).
Solve the initial value problem

\[\frac{dy}{dx} = 2x + \sin(x) \]

subject to \(y(0) = 0 \).

general solution: \(y = x^2 - \cos(x) + C \)
Solve the initial value problem

\[\frac{dy}{dx} = 2x + \sin(x) \]

subject to \(y(0) = 0 \).

general solution: \(y = x^2 - \cos(x) + C \)
Solve the initial value problem

\[
\frac{dy}{dx} = 2x + \sin(x)
\]

subject to \(y(0) = 0 \).

general solution: \(y = x^2 - \cos(x) + C \)
Solve the initial value problem

\[\frac{dy}{dx} = 2x + \sin(x) \]

subject to \(y(0) = 0 \).

general solution: \(y = x^2 - \cos(x) + C \)
Solve the initial value problem

\[\frac{dy}{dx} = 2x + \sin(x) \]

subject to \(y(0) = 0 \).

general solution:

\[y = x^2 - \cos(x) + C \]

Algebraically: get a particular solution by solving

\[0 = y(0) = (0)^2 - \cos(0) + C = -1 + C \quad \text{(for } C) \]
Solve the initial value problem

\[
\frac{dy}{dx} = 2x + \sin(x)
\]

subject to \(y(0) = 0\).

general solution: \(y = x^2 - \cos(x) + C\)

Algebraically: get a particular solution by solving

\[
0 = y(0) = (0)^2 - \cos(0) + C = -1 + C \quad \text{(for C)}
\]

\[C = 1, \quad \text{so} \quad y = x^2 - \cos(x) + 1.\]
Solve the initial value problem

\[
\frac{dy}{dx} = 2x + \sin(x)
\]

subject to \(y(0) = 0 \).

general solution: \(y = x^2 - \cos(x) + C \)

Algebraically: get a particular solution by solving

\[
0 = y(0) = (0)^2 - \cos(0) + C = -1 + C \quad \text{(for } C)\]

\[
C = 1, \quad \text{so } y = x^2 - \cos(x) + 1.
\]
Solve the initial-value problem \(y'' = \cos x, \ y'(\frac{\pi}{2}) = 2, \ y(\frac{\pi}{2}) = 3\pi. \)
Solve the initial-value problem \(y'' = \cos x, \quad y'(\frac{\pi}{2}) = 2, \quad y(\frac{\pi}{2}) = 3\pi. \)

Step 1: Calculate the antiderivative of \(\cos(x) \) to find the general solution for \(y' \).

Step 2: Plug in the values \(y'(\frac{\pi}{2}) = 2 \) to calculate \(C \).

Step 3: Write down the \emph{particular} solution for \(y' \).

Step 4: Calculate the antiderivative of your particular solution in Step 3 to find the \emph{general solution for} \(y \).

Step 5: Plug in the values \(y(\frac{\pi}{2}) = 3\pi \) to solve for the new constant.

Step 6: Write down the \emph{particular} solution for \(y \).
Word problem:
An object dropped from a cliff has acceleration $a = -9.8 \, \text{m/sec}^2$ under the influence of gravity. What is the function $s(t)$ that models its height at time t?

Initial value problem:
Solve
\[
\frac{d^2 s}{dt^2} = -9.8, \quad s(0) = s_0, \quad s'(0) = 0.
\]
Word problem:
An object dropped from a cliff has acceleration $a = -9.8 \text{ m/sec}^2$ under the influence of gravity. What is the function $s(t)$ that models its height at time t?

Initial value problem:
Solve
\[
\frac{d^2s}{dt^2} = -9.8, \quad s(0) = s_0, \quad s'(0) = 0.
\]
Word problem:
An object dropped from a cliff has acceleration $a = -9.8 \text{ m/sec}^2$ under the influence of gravity. What is the function $s(t)$ that models its height at time t?

Initial value problem:
Solve

$$\frac{d^2 s}{dt^2} = -9.8, \quad s(0) = s_0, \quad s'(0) = 0.$$
Word problem:
Suppose that a baseball is thrown upward from the roof of a 100 meter high building. It hits the street below eight seconds later. What was the initial velocity of the baseball, and how high did it rise above the street before beginning its descent?

Initial value problem:
Solve
\[\frac{d^2s}{dt^2} = -9.8, \quad s(0) = 100, \quad s(8) = 0. \]

Use your solution to
(1) calculate \(s'(0) \), and
(2) solve \(s'(t_1) = 0 \) for \(t_1 \) and calculate \(s(t_1) \).
Word problem:
Suppose that a baseball is thrown upward from the roof of a 100 meter high building. It hits the street below eight seconds later. What was the initial velocity of the baseball, and how high did it rise above the street before beginning its descent?

Initial value problem:
Solve
\[\frac{d^2 s}{dt^2} = -9.8, \quad s(0) = 100, \quad s(8) = 0. \]

Use your solution to
(1) calculate \(s'(0) \), and
(2) solve \(s'(t_1) = 0 \) for \(t_1 \) and calculate \(s(t_1) \).
Word problem:
Suppose that a baseball is thrown upward from the roof of a 100 meter high building. It hits the street below eight seconds later. What was the initial velocity of the baseball, and how high did it rise above the street before beginning its descent?

Initial value problem:
Solve
\[
\frac{d^2 s}{dt^2} = -9.8, \quad s(0) = 100, \quad s(8) = 0.
\]

Use your solution to
(1) calculate \(s'(0) \), and
(2) solve \(s'(t_1) = 0 \) for \(t_1 \) and calculate \(s(t_1) \).
Word problem:
Suppose that a baseball is thrown upward from the roof of a 100 meter high building. It hits the street below eight seconds later. What was the initial velocity of the baseball, and how high did it rise above the street before beginning its descent?

Initial value problem:
Solve
\[\frac{d^2 s}{dt^2} = -9.8, \quad s(0) = 100, \quad s(8) = 0. \]
Use your solution to
(1) calculate \(s'(0) \), and
(2) solve \(s'(t_1) = 0 \) for \(t_1 \) and calculate \(s(t_1) \).
Word problem:
Suppose that a baseball is thrown upward from the roof of a 100 meter high building. It hits the street below eight seconds later. What was the initial velocity of the baseball, and how high did it rise above the street before beginning its descent?

Initial value problem:
Solve
\[
\frac{d^2 s}{dt^2} = -9.8, \quad s(0) = 100, \quad s(8) = 0.
\]
Use your solution to
(1) calculate \(s'(0)\), and
(2) solve \(s'(t_1) = 0\) for \(t_1\) and calculate \(s(t_1)\).