Compact Spaces

Definition Let X be a space. A collection $\mathcal{A} = \{U_i\}_{i \in I}$ of open subsets of X such that $X = \bigcup_{i \in I} U_i$ is called an open cover of X. A subcollection $\mathcal{B} \subset \mathcal{A}$ is called a subcover if the union of the sets in \mathcal{B} is also X. A subcover is finite if it contains finitely many open sets.

Example The space $[0, 1]$ has an open cover $\{[0, 1/2)\} \cup \{(1/n, 1]\}$ for $n > 1$. The subcollection $\{[0, 1/2), (1/3, 1]\}$ is a finite subcover.

Definition Let X be a topological space. Then X is compact if every open cover has a finite subcover.

Example Any finite topological space is compact.

Example Any space equipped with the indiscrete or cofinite topology is compact.

Example A discrete space is compact if and only if it contains finitely many elements.

Theorem 11. Let $a < b$. Then $[a, b]$ is a compact space.

Proof. Suppose that $\mathcal{A} = \{U_i\}_{i \in I}$ is an open cover of $[a, b]$. We prove that there exists a finite subcover. Let $C = \{c \in [a, b] : [a, c] \text{ can be covered by a finite subcollection of } \mathcal{A}\}$. We aim to show that $b \in C$. Notice that C is bounded from above by b, as $C \subset [a, b]$. Furthermore, as we can pick a single open set U_j containing a, we have $[a, a + \delta] \subset U_j$ for some $\delta > 0$. Hence $a + \delta \in C$ for this δ. Thus C is a nonempty bounded subset of real numbers. Let x denote the least upper bound of C. Then $x \in [a, b]$ as a is bounded by x and x is no greater than the upper bound b of C. Note that $x \neq a$ as $a + \delta \leq x$ for the δ previously constructed. We claim that $x = b$. Otherwise take an open set U_j which contains x. It must also contain an interval $(x - \epsilon, x + \epsilon) \subset [a, b]$. But the property of the supremum we can take an element $c \in C$ such that $x - \epsilon < c < x$. We can take a finite open subcover of $[a, c]$, say with element U_{i_1}, \ldots, U_{i_n}. But then adding the set U_j we obtain a finite open subcover of $[a, x + \epsilon]$. This implies that $x + \frac{\epsilon}{2} \in C$, contradicting $x = \sup C$. Thus we must have $x = b$.

The same trick we used to show that $x = b$ is used to show that $b \in C$. Take an open set U_j containing b. It must contain some half-open interval $(b - \epsilon, b] \subset U_j$. Then the property of the supremum we can take $c \in C$ such that $b - \epsilon < c < b$. But we can take a finite open subcover U_{i_1}, \ldots, U_{i_n} of $[a, c]$. Then $U_j, U_{i_1}, \ldots, U_{i_n}$ is a finite open subcover of $[a, b]$. Thus $b \in C$. 1
Thus subsets of \(X \) contains \(C \). The latter set, which we call \(\{ V_i \}_{i \in I} \) form a cover of \(A \). We can extract a finite subcover \(f^{-1}(V_j), \ldots, f^{-1}(V_n) \), as \(A \) is compact. Then \(f(A) = f(\bigcup_{k=1}^{n} f^{-1}(V_{j_k})) \subset \bigcup_{k=1}^{n} V_{j_k} \). So \(f(A) \) is compact.

Theorem 14. Every closed subset of a compact space \(X \) is compact.

Proof. Suppose that \(C \) is a closed subset of \(X \). Let \(\mathcal{A} = \{ U_i \}_{i \in I} \) be a collection of open subsets of \(X \) whose union contains \(C \). We produce a finite sub-collection whose union still contains \(C \). Consider the collection \(\mathcal{A}' = \{ U_i \}_{i \in I} \cup \{ X - C \} \). As \(C \) is closed, this is a collection of open subsets of \(X \). The union contains \(\bigcup_i U_i \), hence it contains \(C \), and it contains \(X - C \). Thus \(\mathcal{A}' \) is an open covering of \(X \). Let \(\{ U_{i_k} \}_{k=1}^{n} \cup \{ X - C \} \) be a finite sub-cover contained in \(\mathcal{A}' \). Then \(\{ U_{i_k} \}_{k=1}^{n} \) is a sub-collection of \(\mathcal{A} \) such that the union of all elements in \(\mathcal{A} \) contains \(C \).

Theorem 15. Every compact subset of a Hausdorff space \(X \) is closed.

Proof. Let \(K \subset X \) be a compact subset of the Hausdorff space \(X \). We show that \(K \) is closed. We do this by showing that the complement \(X - K \) is an open subset, via the point-wise formulation of openness from the second homework assignment. Let \(x \in X - K \). We produce a nbhd \(U \) of \(x \). For any \(y \in K \), we pick disjoint nbhds \(U_y \) and \(V_y \) of \(x \) and \(y \) respectively. Note that \(K \subset \bigcup_{y \in K} V_y \). As \(\{ V_y \}_{y \in K} \) is an open cover of \(K \), we can select some finite subcover \(V_{y_1}, \ldots, V_{y_n} \). Then \(x \in U_{y_1}, \ldots, U_{y_n} \) by construction. Then \(x \in \bigcap_{i=1}^{n} U_{y_i} \), and the latter set, which we call \(U \), is open. We need to show that this nbhd.

But for any \(z \in K \), there is a \(V_{y_i} \) such that \(z \in V_{y_i} \). But then \(z \not\in U_{y_i} \), so that \(z \not\in U \). Thus \(U \) contains no elements of \(K \), and \(U \subset X - K \).
The following theorem is remarkably useful when dealing with compact Hausdorff spaces.

Theorem 16. Let \(f : X \to Y \) be a continuous map from a compact space \(X \) to a Hausdorff space. Then \(f \) is closed; that is, if \(C \subseteq X \) is a closed set, then \(f(C) \subseteq Y \) is closed.

Proof. If \(C \) is closed in \(X \), then \(C \) is compact. The image of \(C \) is therefore a compact subset of \(Y \). As \(Y \) is compact, any compact subset of \(Y \) is closed. Thus \(f(C) \) is closed. So \(f \) is a closed map. \(\square \)

Product Spaces

Just as the product of connected spaces is connected, the product of compact spaces is compact.

Theorem 17. If \(X \) and \(Y \) are compact spaces, then \(X \times Y \) is compact.

In order to prove this, it helps to distinguish a valuable lemma.

Lemma 6. (The Tube Lemma) Let \(X \) and \(Y \) be spaces, with \(Y \) compact. If \(N \subseteq X \times Y \) is open, and a slice \(\{ x_0 \} \times Y \subseteq N \) for some \(x_0 \in X \), then there is a nbhd \(W \) of \(x_0 \) such that \(W \times Y \subseteq N \).

Proof. For each \(y \), consider a basis element \(U_y \times V_y \) of \(X \times Y \) such that \(\{ x_0 \} \times y \subseteq U_y \times V_y \subseteq N \). (We can do this as \(N \) contains all the points of the slice \(\{ x_0 \} \times Y \) and is an open set.) Note that \(y \in V_y \) and \(x_0 \in U_y \) for all \(y \). Then the open sets \(\{ V_y \}_{y \in Y} \) form an open cover of the factor space \(Y \), because if \(y \in Y \), then \(\{ x_0 \} \times y \subseteq U_y \times V_y \). As \(Y \) is compact, we can select a finite subcover \(V_{y_1}, \ldots, V_{y_n} \) such that \(Y = \bigcup_{i=1}^n V_{y_i} \). Let \(W = \bigcap_{i=1}^n U_{y_i} \), a nbhd of \(x_0 \). Then \(W \) is the desired nbhd of \(x_0 \). Suppose that \((z, y) \in W \times Y \). Then there is an \(j \) such that \(y \in V_{y_j} \), as the collection \(\{ V_{y_i} \}_{i=1}^n \) covers \(Y \). As \(z \in W = \bigcap_{i=1}^n U_{y_i} \), we have \((z, y) \in U_j \times V_j \subseteq N \). \(\square \)

Proof. (Theorem)

Let \(\{ P_i \}_{i \in I} \) be a collection of open subsets of \(X \times Y \) covering \(X \times Y \). For each \(x \in X \), we can cover the space \(\{ x \} \times Y \) with finitely many open sets, say \(P_x^k \) for \(k = 1, \ldots, n_x \) (the \(x \) indicates that these open sets are intended to cover the slice \(\{ x \} \times Y \)). By the tube lemma we can take an open set \(W^x \) such that \(x \in W^x \) and \(W^x \times Y \subseteq Q^x = \bigcup_{k=1}^{n_x} P_x^k \). Then the open sets \(\{ W^x \} \) cover the compact space \(X \). Thus we can take a finite subcover \(W^{x_1}, \ldots, W^{x_m} \).

Claim: The collection of all \(P_k^{x_j} \) for \(k = 1, \ldots, n_{x_j} \) and \(j = 1, \ldots, m \), form a subcover of \(\{ P_i \}_{i \in I} \). For if \(x \times y \in X \times Y \), we can pick \(W^{x_j} \) such that \(x \in W^{x_j} \). Then \(W^{x_j} \times Y \subseteq \bigcup_{k=1}^{n_{x_j}} P_k^{x_j} \), so that there exists \(k \) between 1 and \(n_{x_j} \) such that \(x \times y \in P_k^{x_j} \). Thus we have constructed the finite subcover of \(X \times Y \), so that the latter set is compact. \(\square \)

Corollary 1. Any finite product of compact spaces is compact.

Proof. If \(X_1, \ldots, X_n \) is a collection of spaces, then \((X_1 \times \ldots \times X_{n-1}) \times X_n\) is homeomorphic to \(X_1 \times \ldots \times X_n \) via the map \((x_1, \ldots, x_{n-1}, x_n) \to (x_1, \ldots, x_n)\). Then induction and the fact that the continuous image of a compact space is compact finish the proof. \(\square \)
Corollary 2. Any product of closed intervals in \mathbb{R}, say $\prod_{i=1}^{n}[a_i, b_i]$, is compact in the product topology.

Theorem 18. (Tychonoff’s Theorem) If $\{X_i\}_{i \in I}$ is a collection of compact spaces, then $\prod_{i} X_i$ is compact in the product topology.

Proof. You can read about it in chapter 5. Interesting: Tychonoff’s theorem is equivalent to the axiom of choice. □

The Finite Intersection Property and Cantor’s Intersection Theorem

We can restate the definition of compactness as follows: Definition A collection C of subsets of a set X has the finite intersection property if every finite subcollection $\{C_1, \ldots, C_n\} \subset C$ has non-empty intersection $C_1 \cap \ldots \cap C_n$.

Theorem 19. Let X be a space. Then X is compact if and only if every collection C of closed subsets of X with the FIP has nonempty intersection $\cap_{C \in C} C$.

Proof. This is just using the contrapositive and DeMorgan’s laws. Read about it in Munkres if you need the details. □

We can use the language of the finite intersection property to prove a famous result of Cantor’s called the Intersection Theorem.

Theorem 20. Let $C_1 \supset C_2 \ldots$ be a descending chain of non-empty closed subsets of the compact space X. Then $\cap_{n=1}^{\infty} C_n \neq \emptyset$.

(We will use this theorem later to give a purely topological proof that the reals are uncountable).

Proof. Note that as X is compact, X must have the finite intersection property. If you take any finite collection C_{n_1}, \ldots, C_{n_k} their intersection is simply C_n, where $n = \max n_i$. This is non-empty, so the intersection of any finite subcollection of $\{C_n\}_{n=1}^{\infty}$ is non-empty. Thus the finite intersection property implies that $\cap_{n=1}^{\infty} C_n$ is non-empty. □