Math 63
Real Analysis (honors)
Winter 2012

General Info | Day-to-day

Day to day: Reading, topics, homework

<>
 wk date reading topic homework links 1 1/4 Ch I.1-4 Sets Ch I: 3ab, 5a, 7cf, 10ab 1/6 Ch II.1-2 Ordered fields Ch II: 2ab, 3, 6 2 1/9 Ch II.3-4 Least upper bound Ch II: 10a, 11, 12, 13 1/11 Ch III.1 Metric spaces Ch III: 1ab 1/13 Ch III.2 Open sets Ch III: 3, 4, 5 1/16 Monday - Martin Luther King Jr. day 3 1/18 Ch III.3 Convergent seqn Ch III: 8, 10, 11, 18 1/20 Ch III.4 Complete spaces Ch III: 24 4 1/23 Ch III.5 Compact spaces Ch III: 32 1/25 Ch III.5 Heine-Borel thm Ch III: 35, 36, 37 1/27 Ch III.6 Connected spaces Ch III: 38 5 1/30 Ch IV.1 Continuous fns Ch IV: 1d, 2, 4 2/1 Ch IV.2 Cont. fns and limits (none) 2/3 Ch IV.3 Rational fns Ch IV: 9a 6 2/6 Ch IV.4 Fns on compact set Ch IV: 14ab [see example 2 in IV.1] 2/7 Tuesday x-hour: In-class exam 2/8 Ch IV.5 Fns on connected set Ch IV: 29b 2/10 Friday - Carnival holiday 7 2/13 Ch IV.6 Sequences of fns Ch IV: 33ab 2/15 Ch IV.6 Sequences of fns The Hilbert curve Animation 2/17 Ch V.1-3 Derivatives (none) 8 2/20 Ch V.4 Taylor's thm Ch V: 1b, 12 2/22 Ch VI.1-2 Riemann integral Ch VI: 11 2/24 Ch VI.3 Integrability Ch VI: 5, 8, 20 Lecture notes 9 2/27 Ch VI.4-5 Fund. theorem Ch VI: 17 2/29 Ch VII.1 Int/diff of seqn of fns Ch VII: 1, 4 3/1 Ch VII.2-3 Infinite series Ch VII: 8, 14, 41 10 3/5 Ch VII.2-3 Analytic functions (none) 3/7 Ch VI.5-VII.4 The elementary fns (none) 3/10: Final take-home exam due