Last lecture:

The Principle of Möbius Inversion

Let \(P \) be a locally finite poset, and \(f, g : P \to R \) (some ring).

If

\[
g(x) = \sum_{y \in P} f(y)
\]

for all \(x \in P \), then

\[
f(x) = \sum_{y \in P} \mu(x, y) g(y),
\]

where \(\mu \) is the Möbius function of \(P \).

Other direction:

If

\[
g(x) = \sum_{y \in P} f(y)
\]

for all \(x \in P \), then

\[
f(x) = \sum_{y \in P} \mu(y, x) g(y).
\]

Ex: \(P = (N, \leq) \). Then...

\[
\begin{array}{cccc}
& a & b & c & d & e \\
0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
\end{array}
\]

\(\mu \):

\[
\sum_{x \leq y} \mu(x, z) = 0.
\]

This last equation shows how to define \(\mu \) recursively, by

\[
\mu(x, y) = -\sum_{x \leq y} \mu(x, y).
\]

Proof: By definition, \(\mu(x, x) = 1 \)
and \(\mu(x, y) = 0 \) if \(x \not= y \), so it suffices to check that

\[
\sum_{x \leq y} \mu(x, z) = 0
\]

if \(x < y \). But this is clear, since this sum reduces to \(\mu(x, z) \cdot \mu(y, z) \).
Note: If \(g(n) = \sum_{i \leq n} f(i) \), then
\[
 f(n) = \sum_{i \leq n} \mu(i,n) g(i)
 = -g(n-1) + g(n)
 = g(n) - g(n-1).
\]

Ex 16.19 Let \(P = (a^n, S) \). Then:
\[
\mu(S,T) = \begin{cases}
(-1)^{|T-S|} & \text{if } S \subseteq T \\
0 & \text{otherwise.}
\end{cases}
\]

Proof: We must verify that this formula satisfies
\[
\mu(S, S) = 1 \quad \text{(clearly true)},
\mu(S, T) = 0 \quad \text{if } S \not\subseteq T \quad \text{(clearly true), and}
\sum_{S \subseteq T} \mu(S, T) = 0 \quad \text{if } S \subseteq T.
\]

This last equation reduces to
\[
\sum_{i=0}^{|T-S|} (-1)^i \binom{|T-S|}{i} = 0,
\]
which follows from the Binomial Theorem. \(\blacksquare\)

Ex 16.20 Let \(P \) be the set of positive integers under the divisor order.
Then:
\[
\mu(x, y) = \begin{cases}
(-1)^r & \text{if } \frac{y}{x} \text{ is the product of } r \text{ distinct primes,} \\
0 & \text{otherwise.}
\end{cases}
\]

Proof: Clearly \(\mu(x, x) = 1 \) because \(\frac{y}{x} \) is the product of 0 distinct primes. Also, \(\mu(x, y) = 0 \) if \(x \nmid y \). Therefore it suffices to check that
\[
\sum_{x \mid y} \mu(x, z) = 0
\]
when \(x \mid y \).

But we have \(\mu(x, z) = 0 \) whenever a square divides \(\frac{y}{x} \), so
\[
\sum_{x \mid y} \mu(x, z) = \sum_{x \mid y} \mu(x, z)
= \sum_{x \mid z} \mu(x, z)
\]
when \(\frac{y}{x} \) is square-free.

Now let \(p_1, \ldots, p_k \) denote the set of distinct primes that divide \(\frac{y}{x} \).
There are \(\binom{k}{i} \) integers \(z \) such that \(x \mid z \) and \(\frac{y}{x} \) is the product of \(i \) distinct primes, so this sum reduces to
\[
\sum_{x \mid y} \mu(x, z) = \sum_{i=0}^k \binom{k}{i} (-1)^i \binom{i}{i-1},
\]
which is 0 by the Binomial Theorem. \(\blacksquare\)
Interlude: A million dollar question.

The Mertens function is
\[M(n) = \sum_{1 \leq i \leq n} \mu(1, i). \]

If for every \(\varepsilon > 0 \) there is a constant \(C \) so that
\[M(n) < C n^{1/2 + \varepsilon} \]
then the Riemann hypothesis is true.

A common generalization of these two:
submultisets of a multiset.

Let \(M \) be a multiset. Then the Mobi\'us function for all submultisets of \(M \) is
\[\mu(S, T) = \begin{cases} (-1)^{|T-S|} & \text{if } S \subseteq T \text{ and } T \setminus S \text{ has no repeated elements} \\ 0 & \text{otherwise} \end{cases} \]

The proof is similar to the divisor poset proof.

Products of Posets
Let \(P_1 \) and \(P_2 \) be two posets.
Their product, \(P_1 \times P_2 \), is the poset defined on ordered pairs \((x_1, x_2) \) with \(x_1 \in P_1 \) and \(x_2 \in P_2 \) in which \((x_1, x_2) \leq (y_1, y_2) \) if and only if \(x_1 \leq y_1 \) (in \(P_1 \)) and \(x_2 \leq y_2 \) (in \(P_2 \)).

Isomorphism
Two posets \(P_1 \) and \(P_2 \) are isomorphic if there is a bijection
\[\psi: P_1 \to P_2 \]
such that \(x \leq y \) in \(P_1 \) if and only if \(\psi(x) \leq \psi(y) \) in \(P_2 \).

Claim: Our previous examples are isomorphic to products.

Ex: Divisors of 72: \(2^3 \cdot 3^2 \) ordered by divisibility:

\[\begin{array}{c}
72 = 2^3 \cdot 3^2 \\
2^3 \cdot 3^2 \\
2^3 \cdot 3^2 \\
2 \end{array} \]

\[\begin{array}{c}
(1, 1) \\
(3, 1) \\
(3, 1) \\
(1, 1) \\
(1, 1) \\
(3, 0) \\
(1, 0) \\
(1, 0) \\
(0, 0) \\
(0, 0) \\
(0, 0) \\
(10, 1, 1) \end{array} \]
Example: Subsets of \{1,2,3\} ordered by \subseteq:

\[\begin{array}{c}
1 & 12 & 13 & 23 & 123 \\
& 1 & 12 & 13 & 23 \\
& & 1 & 12 & 13 \\
& & & 1 & 12 \\
\end{array}\]

And:

\[\begin{array}{c}
1 & (1,0) & (1,0) & (0,1) & (0,1) \\
& 1 & (1,0) & (0,1) & (0,1) \\
& & 1 & (0,1) & (0,1) \\
& & & 1 & (0,1) \\
\end{array}\]

\((10,1), \subseteq^3\)

So, it would be nice to figure out the Möbius functions of products...

Product Formula 16.24

Let \(P = P_1 \times P_2\). The Möbius function of \(P\) is given by:

\[\mu_P((x_1,x_2),(y_1,y_2)) = \mu_{P_1}(x_1,y_1) \mu_{P_2}(x_2,y_2).\]

Proof: Clearly this function satisfies

\[\mu_P((x_1,x_2),(x_1,x_2)) = 1\]

and \(\mu_P((x_1,x_2),(y_1,y_2)) = 0\) if \((x_1,x_2) \not\leq (y_1,y_2)\). So it suffices to prove that for \((x_1,x_2)\leq (y_1,y_2)\),

\[\sum_{(x_1,x_2)\leq (y_1,y_2)} \mu_P((x_1,x_2),(y_1,y_2)) \mu_{P_1}(x_1,y_1) \mu_{P_2}(x_2,y_2) = 0\]

But this sum can be rewritten:

\[\left(\sum_{x_1 \leq y_1} \mu(x_1,y_1)\right) \left(\sum_{x_2 \leq y_2} \mu(x_2,y_2)\right)\]

so since either \(x_1 < y_1\) or \(x_2 < y_2\) (or both), we are done. \(\blacksquare\)