1. (D&F 0.1.5) Determine whether the following functions \(f \) are well defined:

 (a) \(f : \mathbb{Q} \to \mathbb{Z} \) defined by \(f(a/b) = a \).

 (b) \(f : \mathbb{Q} \to \mathbb{Q} \) defined by \(f(a/b) = a^2/b^2 \).

2. (D&F 0.1.7+) Let \(f : A \to X \) be a surjective map of sets.

 (a) Prove that the relation
 \[
 a \sim b \text{ if and only if } f(a) = f(b)
 \]
 is an equivalence relation (the equivalence classes are called fibers).

 (b) Why do we require that \(f \) is surjective?

 (c) Describe the fibers when \(f \) is also injective.

3. (D&F 1.1.1-2) Of the following binary operations, determine which are (a) associative, and (b) commutative:

 i. the operation defined on \(\mathbb{Z} \) by \(a \star b = a - b \);

 ii. the operation defined on \(\mathbb{R} \) by \(a \star b = a + b + ab \).

4. (D&F 1.1.18) Determine (prove positive, or give a reason why not) which of the following sets are groups under addition:

 (a) the set of polynomials \(\mathbb{Z}[x] \);

 (b) the set of rational numbers (including \(0 = 0/1 \)) in lowest terms whose denominators are odd;

 (c) the set of rational numbers (including \(0 = 0/1 \)) in lowest terms whose denominators are even;

 (d) the set of rational numbers of absolute value < 1;

 (e) the set of rational numbers of absolute value \(\geq 1 \) together with 0;

 (f) the set of rational numbers (in lowest terms) with denominators equal to 1 or 2;

 (g) the set of rational numbers (in lowest terms) with denominators equal to 1, 2, or 3.

5. (D&F 1.1.18) Let \(x, y \in G \). Prove that \(xy = yx \) if and only if \(y^{-1}xy = x \) if and only if \(x^{-1}y^{-1}xy = 1 \).
6. Consider the set of functions

\[X = \left\{ f_1(x) = x, f_2(x) = \frac{1}{x}, f_3(x) = 1 - x, f_4(x) = \frac{1}{1 - x}, f_5(x) = \frac{-x}{1 - x}, f_6(x) = 1 - \frac{1}{x} \right\}. \]

These functions are all defined on \(\mathbb{R} \setminus \{0,1\} \). Prove \(X \) forms a group where the operation is function composition, and write the group’s multiplication table.

7. (D&F 0.1.11-14) Showing that \((\mathbb{Z}/n\mathbb{Z})^\times = \{ \bar{a} \in \mathbb{Z}/n\mathbb{Z} \mid (a,n) = 1 \} \) is a group under multiplication:

(a) Prove that if \(\bar{a}, \bar{b} \in \mathbb{Z}^\times \), then \(\bar{a} \cdot \bar{b} \in \mathbb{Z}^\times \).

(b) Let \(n \in \mathbb{Z}, n > 1 \), and let \(a \in \mathbb{Z} \) with \(1 \leq a \leq n \). Prove that if \(a \) and \(n \) are not relatively prime, there exists an integer \(b \) with \(1 \leq b < n \) such that \(ab \equiv 0 \) (mod \(n \)) and deduce that there cannot be an integer \(c \) such that \(ac \equiv 1 \) (mod \(n \)).

(c) Let \(n \) and \(a \) be as above. Prove that if \(a \) and \(n \) are relatively prime then there is an integer \(c \) such that \(ac \equiv 1 \) (mod \(n \)) [use the fact that the g.c.d. of two integers is a \(\mathbb{Z} \)-linear combination of the integers].

(d) Conclude from the previous two exercises that \((\mathbb{Z}/n\mathbb{Z})^\times \) is the set of elements \(\bar{a} \) of \(\mathbb{Z}/n\mathbb{Z} \) with \((a,n) = 1 \) and hence prove Proposition 4. Verify this directly in the case \(n = 12 \).