Lecture 12
The isomorphism theorems
Picking up from last time

First isomorphism theorem: Of $\varphi : G \to H$ is a homomorphism of groups, then $\ker(\varphi) \trianglelefteq G$ and $G/\ker(\varphi) \cong \text{img}(\varphi)$.
Picking up from last time

First isomorphism theorem: If \(\varphi : G \to H \) is a homomorphism of groups, then \(\ker(\varphi) \subseteq G \) and \(G/\ker(\varphi) \cong \text{img}(\varphi) \).

Let \(A, B \leq G \), and define \(AB = \{ab \mid a \in A, b \in B\} \).
We showed that \(AB \leq G \) if and only if \(AB = BA \).
We also showed (back in the corollaries to Lagrange’s theorem) that for \(a, a' \in A \),
\[
aB = a'B \text{ if and only if } a(A \cap B) = a'(A \cap B).
\]
Picking up from last time

First isomorphism theorem: Of \(\varphi : G \to H \) is a homomorphism of groups, then \(\ker(\varphi) \leq G \) and \[G/\ker(\varphi) \cong \text{img}(\varphi). \]

Let \(A, B \leq G \), and define \(AB = \{ab \mid a \in A, b \in B\} \).

We showed that \(AB \leq G \) if and only if \(AB = BA \).

We also showed (back in the corollaries to Lagrange’s theorem) that for \(a, a' \in A \),

\[aB = a'B \text{ it and only if } a(A \cap B) = a'(A \cap B). \]

Theorem (Second (diamond) isomorphism theorem)

Suppose \(A \leq N_G(B) \) (we say \(A \) normalizes \(B \))

1. Then \(AB \leq G \).

 (In general, if \(B \leq G \), then \(AB \leq G \) for any \(A \leq G \).)
Picking up from last time

First isomorphism theorem: Of \(\varphi : G \to H \) is a homomorphism of groups, then \(\ker(\varphi) \trianglelefteq G \) and \(G/\ker(\varphi) \cong \text{img}(\varphi) \).

Let \(A, B \leq G \), and define \(AB = \{ab \mid a \in A, b \in B\} \).

We showed that \(AB \leq G \) if and only if \(AB = BA \).

We also showed (back in the corollaries to Lagrange’s theorem) that for \(a, a' \in A \),

\[
aB = a'B \text{ it and only if } a(A \cap B) = a'(A \cap B).
\]

Theorem (Second (diamond) isomorphism theorem)

Suppose \(A \leq N_G(B) \) (we say \(A \) normalizes \(B \))

1. Then \(AB \leq G \).
 (In general, if \(B \trianglelefteq G \), then \(AB \leq G \) for any \(A \leq G \).)

2. Additionally, \(B \trianglelefteq AB \), \(A \cap B \trianglelefteq A \) and

\[
AB/B \cong A/(A \cap B).
\]
Second (diamond) isomorphism theorem picture
Third isomorphism theorem

Theorem

Let $A, B \trianglelefteq G$ with $A \leq B$. Then

$$A \trianglelefteq B, \quad B/A \trianglelefteq G/A,$$

and

$$\frac{G/A}{B/A} \cong G/B.$$
Theorem
Let $A, B \trianglelefteq G$ with $A \trianglelefteq B$. Then

$$A \trianglelefteq B, \quad B/A \trianglelefteq G/A,$$

and

$$(G/A)/(B/A) \cong G/B.$$

Example:

$$(\mathbb{Z}/6\mathbb{Z})/(2\mathbb{Z}/6\mathbb{Z}) \cong \mathbb{Z}/2\mathbb{Z}.$$
Fourth (lattice) isomorphism theorem

Theorem

Let $N \trianglelefteq G$.

There natural projection $\pi : G \to G/N$ gives a bijection

$$\{ A \mid N \leq A \leq G \} \longleftrightarrow \{ \overline{A} \mid \overline{A} \leq G/N \}$$

where $\overline{A} = \pi(A) = A/N$.
Fourth (lattice) isomorphism theorem

Theorem

Let \(N \trianglelefteq G \).

There natural projection \(\pi : G \to G/N \) gives a bijection

\[
\{ A \mid N \leq A \leq G \} \longleftrightarrow \{ \bar{A} \mid \bar{A} \leq G/N \}
\]

where \(\bar{A} = \pi(A) = A/N \).

For all \(N \leq A, B \leq G \), this bijection additionally satisfies

1. \(A \trianglelefteq G \) if and only if \(\bar{A} \trianglelefteq \bar{G} \),
2. \(A \leq B \) if and only if \(\bar{A} \leq \bar{B} \),
3. if \(A \leq B \), then \(|B : A| = |\bar{B} : \bar{A}| \),
4. \(\langle A, B \rangle = \langle \bar{A}, \bar{B} \rangle \).
Lattice of D_{16}

\begin{align*}
\{1, r, r^2, r^3, r^4, r^5, r^6, r^7, s, sr, sr^2, sr^3, sr^4, sr^5, sr^6, sr^7\} \\
\{1, r^2, r^4, r^6, s, sr^2, sr^4, sr^6\} \\
\{1, r^4, sr^2, sr^6\} \\
\{1, sr^6\} \\
\{1\}
\end{align*}
Lattice of D_{16}
Lattice of D_{16}
Lattice of D_{16}

\begin{align*}
\{Z, rZ, r^2Z, r^3Z, sZ, srZ, sr^2Z, sr^3Z\} \\
\{Z, rZ, r^2Z, r^3Z\} \\
\{Z, r^2Z, srZ, sr^3Z\} \\
\{Z, r^2Z, srZ, sr^3Z\} \\
\{Z, sr^2Z\} \\
\{Z, sZ\} \\
\{Z, r^2Z\} \\
\{Z, sr^3Z\} \\
\{Z, srZ\} \\
\{Z, srZ\}
\end{align*}