Lecture 13
The alternating group and more on group actions
Reviewing groups actions

Recall that a group G has a group action on a set A

$$\sigma_g : A \to A \quad \text{where} \quad \sigma_g : a \mapsto g \cdot a$$

if

$$1 \cdot a = a \quad \text{and} \quad g \cdot (h \cdot a) = (gh) \cdot a$$

for all $g, h \in G, a \in A$.

Reviewing groups actions

Recall that a group G has a group action on a set A

$$\sigma_g : A \rightarrow A \quad \text{where} \quad \sigma_g : a \mapsto g \cdot a$$

if

$$1 \cdot a = a \quad \text{and} \quad g \cdot (h \cdot a) = (gh) \cdot a$$

for all $g, h \in G, a \in A$. The homomorphism

$$\varphi : G \rightarrow S_A \quad \text{defined by} \quad \varphi : g \rightarrow \sigma_g$$

is called the permutation representation induced (or afforded) by the action.
Reviewing groups actions

Recall that a group G has a group action on a set A

$$
\sigma_g : A \rightarrow A \quad \text{where} \quad \sigma_g : a \mapsto g \cdot a
$$

if

$$
1 \cdot a = a \quad \text{and} \quad g \cdot (h \cdot a) = (gh) \cdot a
$$

for all $g, h \in G, a \in A$. The homomorphism

$$
\varphi : G \rightarrow S_A \quad \text{defined by} \quad \varphi : g \rightarrow \sigma_g
$$

is called the permutation representation induced (or afforded) by the action .

Proposition

For any group G and any non-empty set A, there is a bijection between

$$
\{ \text{group actions of } G \text{ on } A \} \leftrightarrow \{ \text{homomorphisms } \varphi : G \rightarrow S_A \}. \quad (\text{We showed this bijection in Lecture 5})
$$
The stabilizer of any \(a \in A \) is

\[G_a = \{ g \in G \mid g \cdot a = a \}, \]

and is a subgroup of \(G \).
The stabilizer of any \(a \in A \) is

\[
G_a = \{g \in G \mid g \cdot a = a\},
\]

and is a subgroup of \(G \).

The kernel of the action is

\[
\ker = \{g \in G \mid g \cdot a = a \ \text{for all} \ a \in A\} = \bigcap_{a \in A} G_a,
\]

and is a subgroup of \(G \).

Proposition

For each \(a \in A \), the number of elements in the equivalence class containing \(a \) is

\[
|G : G_a|.
\]
The stabilizer of any \(a \in A \) is

\[
G_a = \{ g \in G \mid g \cdot a = a \},
\]

and is a subgroup of \(G \).

The kernel of the action is

\[
\ker = \{ g \in G \mid g \cdot a = a \text{ for all } a \in A \} = \bigcap_{a \in A} G_a,
\]

and is a subgroup of \(G \).

An action is faithful if and only if the kernel is trivial.
The stabilizer of any $a \in A$ is

$$G_a = \{ g \in G \mid g \cdot a = a \},$$

and is a subgroup of G.

The kernel of the action is

$$\ker = \{ g \in G \mid g \cdot a = a \text{ for all } a \in A \} = \bigcap_{a \in A} G_a,$$

and is a subgroup of G.

An action is faithful if and only if the kernel is trivial.

The relation on A defined by

$$a \sim b \quad \text{if and only if} \quad a = g \cdot b \quad \text{for some } g \in G$$

is an equivalence relation.
(* *) The stabilizer of any \(a \in A \) is

\[G_a = \{ g \in G \mid g \cdot a = a \}, \]

and is a subgroup of \(G \).

(* *) The kernel of the action is

\[\ker = \{ g \in G \mid g \cdot a = a \text{ for all } a \in A \} = \bigcap_{a \in A} G_a, \]

and is a subgroup of \(G \).

(* *) An action is **faithful** if and only if the kernel is trivial.

(* *) The relation on \(A \) defined by

\[a \sim b \quad \text{if and only if} \quad a = g \cdot b \text{ for some } g \in G \]

is an equivalence relation.

Proposition

For each \(a \in A \), the number of elements in the equivalence class containing \(a \) is \(|G : G_a| \).
Definition
Let G be a group acting on a set A.

1. The equivalence class $O_a = \{g \cdot a \mid g \in G\}$ is called the orbit of a.

2. The action of G on A is called transitive if there is only one orbit.
Back to the symmetric group

The symmetric group S_n is the group of permutations of n objects.

\[\sigma = \begin{array}{cccc}
1 & 2 & 3 & 4 \\
\bullet & \bullet & \bullet & \bullet \\
1 & 2 & 3 & 4 \\
\end{array} \quad \begin{array}{ccc}
5 & 6 & 7 \\
\bullet & \bullet & \bullet \\
5 & 6 & 7 \\
\end{array} \]
The symmetric group S_n is the group of permutations of n objects.

We can write a permutation as the product of disjoint cycles:

$$\sigma = (1324)(57)$$
Back to the symmetric group

The symmetric group S_n is the group of permutations of n objects.

We can write a permutation as the product of disjoint cycles:

$$\sigma = (1324)(57)$$

Advantage: unique up to reordering cycles (we still have to prove this!).

Disadvantage: How do we write down a presentation of S_n?
Reconstructing the symmetric group

Definition: The 2-cycles in S_n are called transpositions.

Since

$$(a_1 a_m) \cdots (a_1 a_4)(a_1 a_3)(a_1 a_2) =$$
Reconstructing the symmetric group

Definition: The 2-cycles in S_n are called transpositions.

Since

$$(a_1 a_m) \cdots (a_1 a_4)(a_1 a_3)(a_1 a_2) = (a_1 a_2 a_3 a_4 \cdots a_m),$$
Reconstructing the symmetric group

Definition: The 2-cycles in S_n are called transpositions.

Since

$$(a_1a_m) \cdots (a_1a_4)(a_1a_3)(a_1a_2) = (a_1a_2a_3a_4 \cdots a_m),$$

every cycle can be written as the product of transpositions, and so every permutation can be written as the product of transpositions. **Caution: not unique!**

For example

$$(1324)(57) = (14)(12)(13)(57)$$
$$= (23)(12)(24)(57)$$
$$= (23)(12)(34)(23)(34)(57)$$
Reconstructing the symmetric group

Definition: The 2-cycles in S_n are called transpositions.

Since

$$(a_1 a_m) \cdots (a_1 a_4)(a_1 a_3)(a_1 a_2) = (a_1 a_2 a_3 a_4 \ldots a_m),$$

every cycle can be written as the product of transpositions, and so every permutation can be written as the product of transpositions. **Caution: not unique!**

For example

$$(1324)(57) = (14)(12)(13)(57)$$

$$(1324)(57) = (14)(12)(13)(57)$$
$$= (23)(12)(24)(57)$$
$$= (23)(12)(34)(23)(34)(57)$$

But

$$S_n = \langle T \rangle \quad \text{where} \quad T = \{(i \ j) \mid 1 \leq i < j \leq n \}.$$
What *is* unique?

\[S_n = \langle T \rangle \quad \text{where} \quad T = \{(i, j) \mid 1 \leq i < j \leq n\}. \]

Claim

Fix \(\sigma \in S_n \). Every expression of \(\sigma \) as a product of transpositions has length of the same parity.
What is unique?

\[S_n = \langle T \rangle \quad \text{where} \quad T = \{(i \ j) \mid 1 \leq i < j \leq n\}. \]

Claim

Fix \(\sigma \in S_n \). Every expression of \(\sigma \) as a product of transpositions has length of the same parity.

Proof by way of the action on polynomials:

Recall that \(S_n \) acts on \(\mathbb{Z}[x_1, \ldots, x_n] \) by

\[\sigma \cdot p(x_1, \ldots, x_n) = p(x_{\sigma(1)}, \ldots, x_{\sigma(n)}). \]

Let

\[\Delta = \prod_{1 \leq i < j \leq n} (x_i - x_j) = (x_1 - x_2)(x_1 - x_3) \cdots (x_{n-1} - x_n) \]

\(n(n-1)/2 \) terms
Some examples

\[\Delta_3 = (x_1 - x_2) (x_1 - x_3) (x_2 - x_3) \]

\[\Delta_4 = (x_1 - x_2) (x_1 - x_3) (x_1 - x_4) (x_2 - x_3) (x_2 - x_4) (x_3 - x_4) \]

\[\Delta_5 = (x_1 - x_2) (x_1 - x_3) (x_1 - x_4) (x_1 - x_5) (x_2 - x_3) (x_2 - x_4) (x_2 - x_5) (x_3 - x_4) (x_3 - x_5) (x_4 - x_5) \]
Consider

$$\sigma \cdot \Delta = \prod_{1 \leq i < j \leq n} (x_{\sigma(i)} - x_{\sigma(j)})$$

$$= (-1)^{\#\{1 \leq i < j \leq n \mid \sigma(j) < \sigma(i)\}} \Delta.$$

For example, if \(n = 4\) and \(\sigma = (1324)\), then

$$\Delta = (x_1 - x_2)(x_1 - x_3)(x_1 - x_4)(x_2 - x_3)(x_2 - x_4)(x_3 - x_4)$$

$$(-1)^5 (x_1 - x_2)(x_1 - x_3)(x_1 - x_4)(x_2 - x_3)(x_2 - x_4)(x_3 - x_4)$$
Let

\[\epsilon = \begin{cases}
+1 & \text{if } \sigma \cdot \Delta = \Delta, \\
-1 & \text{if } \sigma \cdot \Delta = -\Delta.
\end{cases} \]

Then \(\epsilon(\sigma) \) is the sign of \(\sigma \).
Let
\[\epsilon = \begin{cases}
+1 & \text{if } \sigma \cdot \Delta = \Delta, \\
-1 & \text{if } \sigma \cdot \Delta = -\Delta.
\end{cases} \]

Then \(\epsilon(\sigma) \) is the sign of \(\sigma \).

Proposition

The map \(\epsilon : S_n \to \{\pm 1\}^\times \) is a homomorphism.
Let
\[\epsilon = \begin{cases}
+1 & \text{if } \sigma \cdot \Delta = \Delta, \\
-1 & \text{if } \sigma \cdot \Delta = -\Delta.
\end{cases} \]

Then \(\epsilon(\sigma) \) is the sign of \(\sigma \).

Proposition

The map \(\epsilon : S_n \to \{\pm 1\}^\times \) is a homomorphism.

Proposition

All transpositions have negative sign, i.e. \(\epsilon((i \ j)) = -1 \). Therefore,

1. the homomorphism \(\epsilon \) is surjective for all \(n > 1 \), and
2. for any expression of \(\sigma \in S_n \) as the product of transpositions, the parity of the length of that product is determined; namely the length is

 even if \(\epsilon(\sigma) = 1 \), and
 odd if \(\epsilon(\sigma) = -1 \).
Definition
We call a permutation even if $\epsilon(\sigma) = 1$ and odd if $\epsilon(\sigma) = -1$.

Caution: even/odd
An m-cycle is even if m is odd, and is odd if m is even.
Definition
We call a permutation even if $\epsilon(\sigma) = 1$ and odd if $\epsilon(\sigma) = -1$.

The alternating group A_n is the kernel of $\epsilon : S_n \rightarrow \{\pm 1\}^{\times}$, i.e.

$$A_n = \{\sigma \in S_n \mid \sigma \text{ is even} \}.$$
Definition
We call a permutation even if $\epsilon(\sigma) = 1$ and odd if $\epsilon(\sigma) = -1$.

The alternating group A_n is the kernel of $\epsilon : S_n \rightarrow \{\pm 1\}^\times$, i.e.

$$A_n = \{\sigma \in S_n \mid \sigma \text{ is even}\}.$$

Caution: even/odd
An m-cycle is even if m is odd, and is odd if m is even.
Examples

\[A_1 = \{1\} \]

\[A_2 = \{1\} \]

\[A_3 = \{1\} \cup \{3\text{-cycles}\} = \{1, (123), (132)\} \]

\[A_4 = \{1\} \cup \{3\text{-cycles}\} \cup \{\text{two disjoint 2-cycles}\} \]

\[= \{1, (123), (124), (132), (134), (142), (143), (234), (243), (12)(34), (13)(24), (14)(23)\} \]