Lecture 19
Sylow’s Theorems
Last time:

Definition
Let G be a group with $|G| = p^\alpha m$, where p is prime and $p \nmid m$. A subgroup of order p^α is called a **Sylow p-subgroup** of G. $\text{Syl}_p(G)$ is the set of Sylow p-subgroups and $n_p = n_p(G) = |\text{Syl}_p(G)|$.

Theorem (Sylow’s Theorem)

1. **Sylow p-subgroups of G exist**, i.e. $\text{Syl}_p(G) \neq \emptyset$.
2. **If P is a Sylow p-subgroup of G and Q is any p-subgroup of G, then Q is contained in some conjugate of P. In particular, any two Sylow p-subgroups of G are conjugate in G.**
3. **The number of Sylow p-subgroups of G satisfies**

 $$n_p \equiv 1 \pmod{p}, \quad \text{and} \quad n_p = |G : N_G(P)|$$

 for any Sylow p-subgroup P.
More from last time:

Corollary

Let P be a Sylow p-subgroup of G. Then the following are equivalent:

1. P is the unique Sylow p-subgroup of G, i.e., $n_p = 1$.
2. P is normal in G.
3. P is characteristic in G (from the exam!)
4. All subgroups generated by elements of the p-power order are p-groups, i.e. if $X \subseteq G$ such that $|x|$ is a power of p for all $x \in X$, then $\langle X \rangle$ is a p-group.
Let $|G| = pq$ with p and q prime with $p < q$.

Claim: If $q \not\equiv 1 \pmod{p}$, then $G \cong Z_{pq}$.
Back to $|G| = pq$

Let $|G| = pq$ with p and q prime with $p < q$.

Claim: If $q \not\equiv 1 \pmod{p}$, then $G \cong Z_{pq}$.

Proof.
Let $P \in Syl_p(G)$ and $Q \in Syl_q(G)$.
Always, $n_q = 1$ so $Q \trianglelefteq G$. Since $n_p \mid q$, either $n_p = q$ or 1.
Let $|G| = pq$ with p and q prime with $p < q$.

Claim: If $q \not\equiv 1 \pmod{p}$, then $G \cong Z_{pq}$.

Proof.

Let $P \in Syl_p(G)$ and $Q \in Syl_q(G)$. Always, $n_q = 1$ so $Q \trianglelefteq G$. Since $n_p \mid q$, either $n_p = q$ or 1.

If $q \not\equiv 1 \pmod{p}$, then $p = 1$. So $P \trianglelefteq G$.
Let $|G| = pq$ with p and q prime with $p < q$.

Claim: If $q \not\equiv 1 \pmod{p}$, then $G \cong Z_{pq}$.

Proof.

Let $P \in Syl_p(G)$ and $Q \in Syl_q(G)$.

Always, $n_q = 1$ so $Q \trianglelefteq G$. Since $n_p \mid q$, either $n_p = q$ or 1.

If $q \not\equiv 1 \pmod{p}$, then $p = 1$. So $P \trianglelefteq G$.

Let $P = \langle x \rangle$ and $Q = \langle y \rangle$.

Then $x^{-1}y^{-1}xy \in P \cap Q = 1$ (so $PQ = QP$ has order pq).
Let $|G| = pq$ with p and q prime with $p < q$.

Claim: If $q \not\equiv 1 \pmod{p}$, then $G \cong Z_{pq}$.

Proof.

Let $P \in Syl_p(G)$ and $Q \in Syl_q(G)$.

Always, $n_q = 1$ so $Q \trianglelefteq G$. Since $n_p | q$, either $n_p = q$ or 1.

If $q \not\equiv 1 \pmod{p}$, then $p = 1$. So $P \trianglelefteq G$.

Let $P = \langle x \rangle$ and $Q = \langle y \rangle$.

Then $x^{-1}y^{-1}xy \in P \cap Q = 1$ (so $PQ = QP$ has order pq).

So $|xy| = pq$ and so $G \cong Z_{pq}$.

\square
Direct products

Recall that the direct product of two groups \((G, \star)\) and \((H, \diamond)\) is

\[
G \times H = \{(g, h) \mid g \in G, h \in H\}
\]

with multiplication

\[
(g, h)(g', h') = (g \star g', h \diamond h').
\]
Direct products

Recall that the direct product of two groups \((G, \star)\) and \((H, \diamond)\) is

\[
G \times H = \{(g, h) \mid g \in G, h \in H\}
\]

with multiplication

\[
(g, h)(g', h') = (g \star g', h \diamond h').
\]

You showed that \(G \times (H \times K) \cong (G \times H) \times K\), so we can easily talk about the direct product of a finite collection of groups

\[
(G_1, \star_1), (G_2, \star_2), \ldots, (G_n, \star_n).
\]
Direct products

Recall that the direct product of two groups \((G, \star)\) and \((H, \Diamond)\) is

\[G \times H = \{(g, h) \mid g \in G, h \in H\} \]

with multiplication

\[(g, h)(g', h') = (g \star g', h \Diamond h').\]

You showed that \(G \times (H \times K) \cong (G \times H) \times K\), so we can easily talk about the direct product of a countable collection of groups

\[(G_1, \star_1), (G_2, \star_2), \ldots \]
Direct products

Recall that the direct product of two groups \((G, \star)\) and \((H, \diamond)\) is

\[G \times H = \{(g, h) \mid g \in G, h \in H\}\]

with multiplication

\[(g, h)(g', h') = (g \star g', h \diamond h').\]

You showed that \(G \times (H \times K) \cong (G \times H) \times K\), so we can easily talk about the direct product of a countable collection of groups

\[(G_1, \star_1), (G_2, \star_2), \ldots\]

Proposition

If \(G_1, \ldots, G_n\) are groups, their direct product is a group of order \(|G_1||G_2| \ldots |G_n|\).
Proposition

Let \(G_1, G_2, \ldots, G_n \) groups and let \(G = G_1 \times G_2 \times \cdots \times G_n \).

1. For each fixed \(i \), the set
 \[
 \{(1, \ldots, 1, \underbrace{g}_{i^{th} \text{ component}}, 1, \ldots, 1) \mid g \in G_i\} \subseteq G
 \]
 is a normal subgroup isomorphic to \(G_i \) with
 \[
 G/G_i \cong G_1 \times \cdots G_{i-1} \times G_{i+1} \times G_n.
 \]
Proposition

Let G_1, G_2, \ldots, G_n groups and let $G = G_1 \times G_2 \times \cdots \times G_n$.

1. For each fixed i, the set
\[
\{(1, \ldots, 1, g, 1, \ldots, 1) \mid g \in G_i\} \subseteq G
\]

is a normal subgroup isomorphic to G_i with
\[
G/G_i \cong G_1 \times \cdots G_{i-1} \times G_{i+1} \times G_n.
\]

2. For each fixed i define the projection
\[
\pi_i : G \to G_i \quad \text{by} \quad (g_1, \ldots, d_n) \mapsto g_i.
\]
Then π_i is a surjective homomorphism with
\[
\ker \pi_i = \{(g_1, \ldots, g_{i-1}, 1, g_{i+1}, \ldots g_n \mid g_j \in G_j\} \cong G/G_i.
\]
Proposition

Let G_1, G_2, \ldots, G_n groups and let $G = G_1 \times G_2 \times \cdots \times G_n$.

1. For each fixed i, the set
 $$\{(1, \ldots, 1, g_{i}, 1, \ldots, 1) \mid g \in G_i\} \subseteq G$$
 is a normal subgroup isomorphic to G_i with
 $$G/G_i \cong G_1 \times \ldots G_{i-1} \times G_{i+1} \times G_n.$$

2. For each fixed i define the projection
 $$\pi_i : G \to G_i \text{ by } (g_1, \ldots, d_n) \mapsto g_i.$$
 Then π_i is a surjective homomorphism with
 $$\ker \pi_i = \{(g_1, \ldots g_{i-1}, 1, g_{i+1}, \ldots g_n | g_j \in G_j\} \cong G/G_i.$$

3. If $x \in G_i$ and $y \in G_j$ for some $i \neq j$ then $xy = yx$.
Definition

1. A group G is **finitely generated** if there is a finite subset A of G such that $G = \langle A \rangle$.
Definition

1. A group G is **finitely generated** if there is a finite subset A of G such that $G = \langle A \rangle$.

2. For each $r \in \mathbb{Z}$ with $r \geq 0$, let $\mathbb{Z}^r = \mathbb{Z} \times \mathbb{Z} \times \cdots \times \mathbb{Z}$ be the direct product of r copies of the group \mathbb{Z}, where $\mathbb{Z}^0 = 1$. The group \mathbb{Z}^r is called the **free abelian group of rank** r.

Theorem (Fundamental Theorem of Finitely Generated Abelian Groups)

Let G be a finitely generated abelian group. Then

1. $G \cong \mathbb{Z}^{r_1} \times \mathbb{Z}^{n_1} \times \cdots \times \mathbb{Z}^{n_s}$ for some integers r_1, n_1, \ldots, n_s such that $r_1 \geq 0$ and $n_1 | n_2 | \cdots | n_s$.

2. The expression in (1) is unique.
Definition

1. A group G is **finitely generated** if there is a finite subset A of G such that $G = \langle A \rangle$.

2. For each $r \in \mathbb{Z}$ with $r \geq 0$, let $\mathbb{Z}^r = \mathbb{Z} \times \mathbb{Z} \times \cdots \times \mathbb{Z}$ be the direct product of r copies of the group \mathbb{Z}, where $\mathbb{Z}^0 = 1$. The group \mathbb{Z}^r is called the **free abelian group of rank** r.

Theorem (Fundamental Theorem of Finitely Generated Abelian Groups)

Let G be a finitely generated abelian group. Then

1. $$G \cong \mathbb{Z}^r \times \mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2} \times \cdots \times \mathbb{Z}_{n_s}$$
 *for some integers r, n_1, \ldots, n_s such that $r \geq 0$ and $2 \leq n_1 | n_2 | \cdots | n_s$.***
Definition

1. A group G is finitely generated if there is a finite subset A of G such that $G = \langle A \rangle$.

2. For each $r \in \mathbb{Z}$ with $r \geq 0$, let $\mathbb{Z}^r = \mathbb{Z} \times \mathbb{Z} \times \cdots \times \mathbb{Z}$ be the direct product of r copies of the group \mathbb{Z}, where $\mathbb{Z}^0 = 1$. The group \mathbb{Z}^r is called the free abelian group of rank r.

Theorem (Fundamental Theorem of Finitely Generated Abelian Groups)

Let G be a finitely generated abelian group. Then

1.

$$G \cong \mathbb{Z}^r \times \mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2} \times \cdots \times \mathbb{Z}_{n_s}$$

for some integers r, n_1, \ldots, n_s such that $r \geq 0$ and $2 \leq n_1 | n_2 | \cdots | n_s$.

2. The expression in (1) is unique.