Lecture 6
Special Subgroups
Recall, for any homomorphism $\varphi : G \to H$, the kernel of φ is

$$\ker(\varphi) = \{ g \in G \mid \varphi(g) = e_H \} \leq G$$

and the image of φ is

$$\text{img}(\varphi) = \{ h \in H \mid \varphi(g) = h \text{ for some } g \in G \} \leq H.$$

(They are subgroups of G and H respectively).

Subgroup criterion:
A non-empty subset $H \subseteq G$ is a subgroups if and only if

$$xy^{-1} \in H \quad \text{for all } x, y \in H.$$
From last time:

A group action of a group G on a set A is a map from

$$G \times A \rightarrow A$$

$$(g, a) \mapsto g \cdot a$$

which satisfies

$$g \cdot (h \cdot a) = (gh) \cdot a \quad \text{and} \quad 1 \cdot a = a$$

for all $g, h \in G$, $a \in A$. We say G acts on A.
A group action of a group G on a set A is a map from

$$G \times A \rightarrow A$$

$$(g, a) \mapsto g \cdot a$$

which satisfies

$$g \cdot (h \cdot a) = (gh) \cdot a$$

and

$$1 \cdot a = a$$

for all $g, h \in G, a \in A$. We say G acts on A.

Any group action is equivalent to a homomorphism

$$\rho : G \rightarrow S_A$$

$$g \mapsto \sigma_g$$

defined by $\rho(g)(a) = \sigma_g(a) = g \cdot a$.
Group action: \(g \cdot (h \cdot a) = (gh) \cdot a \) and \(1 \cdot a = a \).

Homomorphism: \(\rho : G \to S_A \), where \(\rho(g)(a) = \sigma_g(a) = g \cdot a \).

Example: \(D_8 \) (1) on single vertices, and (2) on unordered pairs of opposite vertices.
Group action: \(g \cdot (h \cdot a) = (gh) \cdot a \) and \(1 \cdot a = a \).

Homomorphism: \(\rho: G \rightarrow S_A \), where \(\rho(g)(a) = \sigma_g(a) = g \cdot a \).

Definition
Let \(a \) be a fixed element of \(A \). The **stabilizer** of \(a \) in \(G \) (with respect to a given action) is

\[
G_a = \{ g \in G \mid g \cdot a = a \} \subseteq G.
\]

Example: \(D_8 \) (1) on single vertices, and (2) on unordered pairs of opposite vertices.
Group action: \(g \cdot (h \cdot a) = (gh) \cdot a \) and \(1 \cdot a = a \).

Homomorphism: \(\rho : G \rightarrow S_A \), where \(\rho(g)(a) = \sigma_g(a) = g \cdot a \).

Definition
Let \(a \) be a fixed element of \(A \). The stabilizer of \(a \) in \(G \) (with respect to a given action) is

\[
G_a = \{ g \in G \mid g \cdot a = a \} \subseteq G.
\]

If \(S \subseteq A \), then

\[
G_S = \{ g \in G \mid g \cdot s = s \text{ for all } s \in S \} \subseteq G.
\]

The kernel of the group action is \(G_A \).

Example: \(D_8 \) (1) on single vertices, and (2) on unordered pairs of opposite vertices.
Group action: \(g \cdot (h \cdot a) = (gh) \cdot a \) and \(1 \cdot a = a \).

Homomorphism: \(\rho : G \rightarrow S_A \), where \(\rho(g)(a) = \sigma_g(a) = g \cdot a \).

Definition

Let \(a \) be a fixed element of \(A \). The **stabilizer** of \(a \) in \(G \) (with respect to a given action) is

\[
G_a = \{ g \in G \mid g \cdot a = a \} \subseteq G.
\]

If \(S \subseteq A \), then

\[
G_S = \{ g \in G \mid g \cdot s = s \text{ for all } s \in S \} \subseteq G.
\]

The **kernel** of the group action is \(G_A \).

Theorem

For any non-empty \(S \subseteq A \), \(G_S \) is a subgroup of \(G \).

Example: \(D_8 \) (1) on single vertices, and (2) on unordered pairs of opposite vertices.
A group acts **on itself** in several ways \((A = G)\). Two important ways are

1. by **left multiplication**: \(g \cdot a = ga\), and
2. by **conjugation**: \(g \cdot a = gag^{-1}\).

Example: Let \(D_8\) act on itself by conjugation \((g \cdot a = gag^{-1})\).

Fill out the following table:

<table>
<thead>
<tr>
<th>act by</th>
<th>→</th>
<th>act on</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>r</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>r</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>r</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A group acts on itself in several ways \((A = G)\).

Two important ways are

1. by left multiplication: \(g \cdot a = ga\), and
2. by conjugation: \(g \cdot a = gag^{-1}\).

Example: Let \(D_8\) act on itself by conjugation \((g \cdot a = gag^{-1})\).
Fill out the following table:

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(r)</th>
<th>(r^2)</th>
<th>(r^3)</th>
<th>(s)</th>
<th>(sr)</th>
<th>(sr^2)</th>
<th>(sr^3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(r)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(r^2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(r^3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(s)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(sr)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(sr^2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(sr^3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

What subset of \(G\) fixes \(r\)? fixes \(s\)? fixes both \(s\) and \(r\)? fixes everything?
A group acts **on itself** in several ways \((A = G)\).

Two important ways are

1. by **left multiplication**: \(g \cdot a = ga\), and
2. by **conjugation**: \(g \cdot a = gag^{-1}\).

Example: Let \(D_8\) act on itself by conjugation \((g \cdot a = gag^{-1})\).

Fill out the following table:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>(r)</th>
<th>(r^2)</th>
<th>(r^3)</th>
<th>(s)</th>
<th>(sr)</th>
<th>(sr^2)</th>
<th>(sr^3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>(r)</td>
<td>(r^2)</td>
<td>(r^3)</td>
<td>(s)</td>
<td>(sr)</td>
<td>(sr^2)</td>
<td>(sr^3)</td>
</tr>
<tr>
<td>(r)</td>
<td>1</td>
<td>(r)</td>
<td>(r^2)</td>
<td>(r^3)</td>
<td>(sr^2)</td>
<td>(sr^3)</td>
<td>(s)</td>
<td>(sr)</td>
</tr>
<tr>
<td>(r^2)</td>
<td>1</td>
<td>(r)</td>
<td>(r^2)</td>
<td>(r^3)</td>
<td>(s)</td>
<td>(sr)</td>
<td>(sr^2)</td>
<td>(sr^3)</td>
</tr>
<tr>
<td>(r^3)</td>
<td>1</td>
<td>(r)</td>
<td>(r^2)</td>
<td>(r^3)</td>
<td>(sr^2)</td>
<td>(sr^3)</td>
<td>(s)</td>
<td>(sr)</td>
</tr>
<tr>
<td>(s)</td>
<td>1</td>
<td>(r^3)</td>
<td>(r^2)</td>
<td>(r)</td>
<td>(s)</td>
<td>(sr^3)</td>
<td>(sr^2)</td>
<td>(sr)</td>
</tr>
<tr>
<td>(sr)</td>
<td>1</td>
<td>(r^3)</td>
<td>(r^2)</td>
<td>(r)</td>
<td>(sr^2)</td>
<td>(sr)</td>
<td>(s)</td>
<td>(sr^3)</td>
</tr>
<tr>
<td>(sr^2)</td>
<td>1</td>
<td>(r^3)</td>
<td>(r^2)</td>
<td>(r)</td>
<td>(s)</td>
<td>(sr^3)</td>
<td>(sr^2)</td>
<td>(sr)</td>
</tr>
<tr>
<td>(sr^3)</td>
<td>1</td>
<td>(r^3)</td>
<td>(r^2)</td>
<td>(r)</td>
<td>(sr^2)</td>
<td>(sr)</td>
<td>(s)</td>
<td>(sr^3)</td>
</tr>
</tbody>
</table>

What subset of \(G\) fixes \(r\)? fixes \(s\)? fixes both \(s\) and \(r\)? fixes everything?
More special subgroups

Definition

Let A be a non-empty subset of G (not nec. subgroup). The centralizer of A in G is $C_G(A) = \{g \in G | gag^{-1} = a \text{ for all } a \in A\}$. Since $gag^{-1} = a \iff ga = ag$, this is the set of elements which commute with all a in A. If $A = \{a\}$, we write $C_G(\{a\}) = C_G(a)$.
More special subgroups

Definition
Let \(A \) be a non-empty subset of \(G \) (not nec. subgroup). The centralizer of \(A \) in \(G \) is

\[
C_G(A) = \{ g \in G \mid gag^{-1} = a \text{ for all } a \in A \}.
\]

Since

\[
gag^{-1} = a \iff ga = ag
\]

this is the set of elements which commute with all \(a \) in \(A \).

If \(A = \{a\} \), we write \(C_G(\{a\}) = C_G(a) \).
More on the centralizers

\[C_G(A) = \{ g \in G \mid gag^{-1} = a \text{ for all } a \in A \}. \]
More on the centralizers

\[C_G(A) = \{ g \in G \mid gag^{-1} = a \text{ for all } a \in A \} . \]

Theorem

For any non-empty \(A \subseteq G \), \(C_A(G) \) is a subgroup of \(G \).
More on the centralizers

\[C_G(A) = \{ g \in G \mid g a g^{-1} = a \text{ for all } a \in A \} \).

Theorem

For any non-empty \(A \subseteq G \), \(C_A(G) \) *is a subgroup of* \(G \).

Definition

The **center** of a group \(G \), denoted \(Z(G) \), is the set of elements which commute with everything in \(G \), i.e.

\[Z(G) = C_G(G). \]
More on the centralizers

\[C_G(A) = \{ g \in G \mid gag^{-1} = a \text{ for all } a \in A \} \].

Theorem

For any non-empty \(A \subseteq G \), \(C_A(G) \) is a subgroup of \(G \).

Definition

The center of a group \(G \), denoted \(Z(G) \), is the set of elements which commute with everything in \(G \), i.e.

\[Z(G) = C_G(G) \].

Corollary

The center \(Z(G) \) is a subgroup of \(G \) of \(C_G(A) \) for all \(A \subseteq G \).
And one more... Again, let $A \subseteq G$ be a subset of G, and fix an element $g \in G$. Let

$$gAg^{-1} = \{ h \in G \mid h = gag^{-1} \text{ for some } a \in A \} \subseteq G$$

be the set of all elements one can arrive at by conjugating elements of A by g. Definition

The normalizer of A in G is the set $N_G(A) = \{ g \in G \mid gAg^{-1} = A \} \subseteq G$ of all the elements of G which setwise fix A (individual elements don’t have to be fixed!)

Theorem

For any $A \subseteq G$, the normalizer $N_G(A)$ is a subgroup of G. Moreover, $Z(G) \leq C_G(A) \leq N_G(A) \leq G$.
And one more. . .

Again, let $A \subseteq G$ be a subset of G, and fix an element $g \in G$.
Let

$$gAg^{-1} = \{h \in G \mid h = gag^{-1} \text{ for some } a \in A\} \subseteq G$$

be the set of all elements one can arrive at by conjugating elements of A by g.

Definition
The normalizer of A in G is the set

$$N_G(A) = \{g \in G \mid gAg^{-1} = A\} \subseteq G$$

of all the elements of G which *setwise* fix A (individual elements don’t have to be fixed!)
And one more. . .

Again, let $A \subseteq G$ be a subset of G, and fix an element $g \in G$. Let

$$gAg^{-1} = \{ h \in G \mid h = gag^{-1} \text{ for some } a \in A \} \subseteq G$$

be the set of all elements one can arrive at by conjugating elements of A by g.

Definition
The normalizer of A in G is the set

$$N_G(A) = \{ g \in G \mid gAg^{-1} = A \} \subseteq G$$

of all the elements of G which setwise fix A (individual elements don’t have to be fixed!)

Theorem
For any $A \subseteq G$, the normalizer $N_G(A)$ is a subgroup of G. Moreover,

$$Z(G) \leq C_G(A) \leq N_G(A) \leq G.$$