Lecture 9
Quotient groups
Last time

Consider the map

$$\varphi : \mathbb{Z} \to \mathbb{Z}/4\mathbb{Z}$$

$$z \mapsto \bar{z}.$$
Last time

Consider the map

\[\varphi : \mathbb{Z} \to \mathbb{Z}/4\mathbb{Z} \]

\[z \mapsto \bar{z}. \]

\[4\mathbb{Z} = \{4z \mid z \in \mathbb{Z}\} = \{\ldots, -8, -4, 0, 4, 8, \ldots\} \mapsto \{0\} \]

\[4\mathbb{Z} + 1 = \{4z + 1 \mid z \in \mathbb{Z}\} = \{\ldots, -7, -3, 1, 5, 9, \ldots\} \mapsto \{1\} \]

\[4\mathbb{Z} + 2 = \{4z + 2 \mid z \in \mathbb{Z}\} = \{\ldots, -6, -2, 2, 6, 10, \ldots\} \mapsto \{2\} \]

\[4\mathbb{Z} + 3 = \{4z + 3 \mid z \in \mathbb{Z}\} = \{\ldots, -5, -1, 3, 7, 11, \ldots\} \mapsto \{3\} \]

Warm up: Calculate the fibers of the map

\[\varphi : D_{12} \to S_3 \] defined by \(s \mapsto (12) \) and \(r \mapsto (123). \)
Recall that the **fibers** of a map $\varphi : X \to Y$ are the sets in $\varphi^{-1}(y) \subseteq X$ which all map to the same element $y \in Y$.

Theorem

Let $\varphi : G \to H$ be a surjective homomorphism of groups. For each $h \in H$, let $X_h = \varphi^{-1}(h) = \{ g \in G | \varphi(g) = h \}$ (so, in particular, $X_1 = \text{ker}(\varphi)$).

1. Then $x \in X_a$ and $y \in X_b$ implies $xy \in X_{ab}$. In particular as subsets of G, $\{ X_h | h \in H \}$ is a group under the operation $X_a \star X_b = X_{ab}$ (We call this group the **quotient group** $G/\text{ker}(\varphi)$).

2. Fix some fiber X_h. For any $x \in X_h$, $X_h = \{ xk | k \in \text{ker}(\varphi) \}$ and $X_h = \{ kx | k \in \text{ker}(\varphi) \}$.

Recall that the fibers of a map $\varphi : X \to Y$ are the sets in $\varphi^{-1}(y) \subseteq X$ which all map to the same element $y \in Y$.

Theorem

Let $\varphi : G \to H$ be a surjective homomorphism of groups. For each $h \in H$, let

$$X_h = \varphi^{-1}(h) = \{ g \in G \mid \varphi(g) = h \}$$

(so, in particular, $X_1 = \ker(\varphi)$).
Recall that the fibers of a map \(\varphi : X \to Y \) are the sets in \(\varphi^{-1}(y) \subseteq X \) which all map to the same element \(y \in Y \).

Theorem

Let \(\varphi : G \to H \) be a surjective homomorphism of groups. For each \(h \in H \), let

\[
X_h = \varphi^{-1}(h) = \{ g \in G \mid \varphi(g) = h \}
\]

(so, in particular, \(X_1 = \ker(\varphi) \)).

1. Then

\[
x \in X_a \text{ and } y \in X_b \quad \text{implies} \quad xy \in X_{ab}.
\]

In particular as subsets of \(G \), \(\{ X_h \mid h \in H \} \) is a group under the operation \(X_a * X_b = X_{ab} \). (We call this group the quotient group \(G/\ker(\varphi) \)).
Recall that the fibers of a map \(\varphi : X \to Y \) are the sets in \(\varphi^{-1}(y) \subseteq X \) which all map to the same element \(y \in Y \).

Theorem

Let \(\varphi : G \to H \) be a surjective homomorphism of groups. For each \(h \in H \), let

\[
X_h = \varphi^{-1}(h) = \{ g \in G \mid \varphi(g) = h \}
\]

(so, in particular, \(X_1 = \ker(\varphi) \)).

1. Then

\[
x \in X_a \text{ and } y \in X_b \quad \text{implies} \quad xy \in X_{ab}.
\]

In particular as subsets of \(G \), \(\{X_h \mid h \in H\} \) is a group under the operation \(X_a \circ X_b = X_{ab} \). (We call this group the quotient group \(G/\ker(\varphi) \)).

2. Fix some fiber \(X_h \). For any \(x \in X_h \),

\[
X_h = \{xk \mid k \in \ker(\varphi)\} \quad \text{and} \quad X_h = \{kx \mid k \in \ker(\varphi)\}.
\]
Definition
Let $N \leq G$ and fix $g \in G$. Then

$$gN = \{gx \mid x \in N\} \quad \text{and} \quad Ng = \{xg \mid x \in N\}$$

are the left and right cosets of N in G. Every element of gN or Ng is called a representative of the coset.
Definition

Let $N \leq G$ and fix $g \in G$. Then

$$gN = \{gx \mid x \in N\} \quad \text{and} \quad Ng = \{xg \mid x \in N\}$$

are the **left** and **right cosets** of N in G. Every element of gN or Ng is called a **representative** of the coset.

Example: We just showed that the fibers of a homomorphism are both left and right cosets of the kernel.
Definition
Let $N \leq G$ and fix $g \in G$. Then

$$gN = \{gx \mid x \in N\} \quad \text{and} \quad Ng = \{xg \mid x \in N\}$$

are the left and right cosets of N in G. Every element of gN or Ng is called a representative of the coset.

Example: We just showed that the fibers of a homomorphism are both left and right cosets of the kernel.

Example: Left and right cosets aren’t always equal.
For example, consider $G = S_3$, $N = \{1, (12)\}$, and $g = (23)$.
Definition
Let $N \leq G$ and fix $g \in G$. Then

$$gN = \{gx \mid x \in N\} \quad \text{and} \quad Ng = \{xg \mid x \in N\}$$

are the left and right cosets of N in G. Every element of gN or Ng is called a representative of the coset.

Example: We just showed that the fibers of a homomorphism are both left and right cosets of the kernel.
Example: Left and right cosets aren’t always equal. For example, consider $G = S_3$, $N = \{1, (12)\}$, and $g = (23)$.

Theorem (Last theorem revisited)
If K is the kernel of some homomorphism of a group G, then

$$G/K = \{xK \mid x \in G\}$$

is a group under the multiplication

$$xK \star yK = (xy)K.$$
Skip the homomorphism

When do the set of cosets of a set form a group?
i.e. when is the multiplication

\[xN \ast yN = (xy)N \] (1)

well-defined?
Skip the homomorphism

When do the set of cosets of a set form a group? i.e. when is the multiplication

\[xN \star yN = (xy)N \]

well-defined?

Proposition

Let \(N \leq G \).

1. The left cosets of \(N \) partition the elements of \(G \).
2. \(xN = yN \) if and only if \(y^{-1}x \in N \).
Skip the homomorphism

When do the set of cosets of a set form a group? i.e. when is the multiplication
\[xN \ast yN = (xy)N \quad (1) \]
well-defined?

Proposition

Let \(N \leq G \).

1. The left cosets of \(N \) partition the elements of \(G \).
2. \(xN = yN \) if and only if \(y^{-1}x \in N \).

Proposition

Let \(N \leq G \).

1. The operation \(\ast \) above is well defined if and only if \(gxg^{-1} \in N \) for all \(x \in N \) and \(g \in G \).
2. If \(\ast \) is well-defined, then \(G/N = \{gN \mid g \in G\} \) forms a group with \(1 = 1N \) and \((gN)^{-1} = g^{-1}N \).