Homework 4

1. From an earlier homework, there exists a space X such that \(\pi(X, x_0) = G \). (By the way, this is true for any group \(G \).) Let \(\tilde{X}, \tilde{x}_0 \) be the universal covering space corresponding to \(H = N \leq \pi(X, x_0) \). Then \(\tilde{X} \) is normal and \(\pi(\tilde{X}) \cong G/H \).

Let \(H \leq \pi(X, x_0) \) be the commutator subgroup (which is normal) and \(\tilde{X}_a \) the normal covering corresponding to \(H \). Then \(\pi(\tilde{X}_a) \cong \pi(X, x_0)/H \) is abelian. If \(\tilde{X} \) is a covering such that \(\pi(\tilde{X}) \) is abelian, then \(\pi(X, x_0)/p_* \pi(\tilde{X}, \tilde{x}) \) is abelian. Therefore \(p_* \pi(\tilde{X}_a, \tilde{x}_a) \leq p_* \pi(\tilde{X}, \tilde{x}) \), so there exists a homomorphism \(\phi: \tilde{X}_a \rightarrow \tilde{X} \) such that \(p\phi = p_a \).

2. The subgroups of \(\mathbb{Z} \) are \(n\mathbb{Z} \), \(n \neq 0 \). The subgroups of \(\mathbb{Z}_2 \) are \(\mathbb{Z}_2 \) and \(\{0\} \). We know the covering spaces for each of these subgroups. In the third example, the total space \(X \) is a closed annulus containing a circle as dt. Subgroups of the fundamental group are \(n\mathbb{Z}, n \neq 0 \). The covering spaces (other than \(X \)) are helicoids.

There can be visualized by taking the midpoint of a helical closed line segment \(L \) of length 1 and having it trace out a surface as the center of \(L \) moves around a helix. If the subgroup is \(n\mathbb{Z}, n \neq 1 \), go around the helix \(n \) times and identify the top and bottom (much as was done for the covering \(\mathbb{P} \) of \(S^1 \)).

Define \(\theta: K \rightarrow \pi(X) \) by \(\theta(k) = \psi_k \).

1. \(\psi_k \) is a homeomorphism \(\psi_k(x) = \pi(x, k) = \pi(x) \cdot k = \pi(x) \cdot c = \pi(x) \).
2. \(\theta \) is a homomorphism \(k, l \in K \)
 \[(\psi_k \psi_l)(x) = \psi_k(kx) = (lk) \cdot x = \psi_{lk}(x) \text{ so } \theta(lk) \theta(k) = \theta(lk) \]
3. \(\theta \) is onto: Let \(\psi \in \pi(X) \) let \(k = \theta(\psi) \). \(\psi_k(x) = \psi(x) \).
 \[x = \psi_k^{-1} \psi(x) \text{ so } \psi = \theta(k) \].
4. \(\Theta \) is one-one: Suppose \(\Theta(x) = \Theta(y) \Rightarrow x = y \). Apply to \(x \).

(a) This is a 2-sheeted cover. The index of \(\pi \) in \(\pi \) is 2. But any subgroup of index 2 is normal.

(b) Read from left to right and label the vertices \(e_1, e_0, e_1 \) and the medes \(e_1, e_0, e_0, e_1 \). If \(h \in A(\mathbb{E}) \) and \(h \neq \text{id} \), then \(h(e_0) = e_0 \) or \(e_1 \). But at \(e_1 \) there is one loop which projects onto \(B \) and so \(h(e_0) \neq e_0 \). Thus \(e_0 \) and \(e_1 \) have this property.

\(\vdash h = \text{id} \) so \(A(\mathbb{E}) \) is trivial.

5. For \(x_0 \in X \) and define \(\Theta : G \to X \) by \(\Theta(g) = x_0g \). By transitivity, \(\Theta \) is onto. Show \(\Theta(g_1g_2) = \Theta(g_2) \). \(\vdash \Theta \) induces \(\Theta' : G/\langle g_0 \rangle \to X \) which is onto. Show \(\Theta' \) is one-one.