Mathematics 74-114 Midterm Examination - Solutions
Spring 2012

I. Let \(p : \tilde{X} \to X \) be a covering map which is \(n \)-sheeted, \(2 < n < \infty \). Prove that there is no map \(s : X \to \tilde{X} \) such that \(ps = \text{id} \). (Such a map is called a section of \(p \).)

Proof 1

Let \(x_0 \in X \). Since \(ps = \text{id} \), \(p \circ ps = \text{id} \), and so \(p \) is \(\pi_1(\tilde{X}, \tilde{x}_0) \to \pi_1(X, x_0) \) an onto. Let \(\tilde{x}_0 = s(x_0) \), let \(\tilde{x} \in p^{-1}(x_0) \) and let \(l \) be a path in \(\tilde{X} \) from \(\tilde{x}_0 \) to \(\tilde{x} \). \([pl] = [p\tilde{x}_0 \tilde{x}l] \) for some loop \(\tilde{m} \) in \(\tilde{X} \) based at \(\tilde{x}_0 \). \(\therefore pl \sim \tilde{m} \) so \(l \sim m \).

\(\tilde{x} = l(1) = m(1) = \tilde{x}_0 \). \(\therefore p^{-1}(x_0) \) has one point. Contradiction.

So \(\exists \) no such \(s \).

Proof 2

\(s : X \to \tilde{X} \) \(p(s) = (ps)p = p \circ p(\text{id}) \), \(\therefore sp \) and id are both lifts of \(p \). To show that they are equal, they must agree on a point. Let \(x_0 \in X \) so \(s(x_0) \in \tilde{X} \).

\(sp(sx_0) = sx_0 = \text{id}(sx_0) \) and so \(sp = \text{id} \). \(\therefore p \) is a homeomorphism so \(\tilde{X} \) is 1-sheeted. Contradiction.
II. Let G be a group with unit e and let $S \subseteq G$ be a set. The normal closure \overline{S} of S is defined to be the intersection of all normal subgroups of G which contain S. Prove

$$\overline{S} = \{e\} \cup \{c_1 \cdots c_k \mid k \geq 1, c_i = a_i s_i^{\varepsilon_i} a_i^{-1}, \text{ where } a_i \in G, s_i \in S \text{ and } \varepsilon_i = \pm 1\}.$$

Let $H = \langle e \cup \{c_1 \cdots c_k\} \rangle$. Then H is closed under multiplication and inverses and so H is a subgroup. H is normal: Consider

$$x = a_1 c_1 \cdots c_k a_1^{-1} = (a_1 a_1^{-1})(a_2 a_1^{-1}) \cdots (a_k a_1^{-1}).$$

If $c_i = a_i s_i a_i^{-1}$,

then $a c_i = (a a_1 s_i a_1^{-1}) \cdots x \in H$ so H is normal. H

contains $S (s_i = e s_i e^{-1})$ so H is a normal subgroup containing S. \therefore $\overline{S} \subseteq H$. Conversely, \overline{S} is a normal subgroup containing S, so \forall $s_i \in S$, $c_i = a_i s_i a_i^{-1} \in \overline{S}$. \therefore $c_1 c_2 \cdots c_k \in \overline{S} \therefore H \subseteq \overline{S}$.

\therefore $H = \overline{S}$.

2
III. For any two based spaces \((U, u_0)\) and \((V, v_0)\) let \([U, V]\) denote the set of based homotopy classes of based maps \((U, u_0) \to (V, v_0)\). Now let \((A, a_0)\), \((X, x_0)\) and \((Y, y_0)\) be based spaces and define

\[
\theta : [A, X \times Y] \to [A, X] \times [A, Y]
\]

by \(\theta[f] = ([p_1 f], [p_2 f])\), where \(p_1 : X \times Y \to X\) and \(p_2 : X \times Y \to Y\) are the projections. Prove that \(\theta\) is a well-defined bijection.

\[
\text{Suppose } \Theta[fi] = \Theta[gi] \implies p_1 fi = p_2 gi \quad \text{(homotopy)}
\]

\[
\text{and } p_2 fi = p_3 gi \quad \text{(homotopy)}
\]

Then \(fi \simeq gi\) with homotopy \((f_i, g_i)\) \((f_i, g_i)(a) = (f_i(a), g_i(a))\). \(\Rightarrow \theta\) is one-one. If \([h, i] \in [A, X] \times [A, Y]\) and \([k, j] \in [A, X] \times [A, Y]\), then \(h\) and \(k\) determine \((h, k) : A \to X \times Y\)

\[
(h, k)(a) = (h(a), k(a)) \quad \text{and } p_1 (h, k) = h, p_2 (h, k) = k.
\]

\(\Rightarrow \Theta[h, i] = \Theta[k, j]\), so \(\theta\) is onto.
IV. Let \(f : X \to Y \) be a map and let \(p : \tilde{Y} \to Y \) be a covering map. Define the pull-back \(P \) by
\[
P = \{(x, \tilde{y}) \mid x \in X, \tilde{y} \in \tilde{Y} \text{ with } f(x) = p(\tilde{y})\}.
\]
Define maps \(q : P \to X \) and \(r : P \to \tilde{X} \) by \(q(x, \tilde{y}) = x \) and \(r(x, \tilde{y}) = \tilde{y} \).

1. Prove that \(q : P \to X \) is a covering map.
2. Prove that \(r \) induces a bijection \(q^{-1}(x) \to p^{-1}(f(x)) \).
3. Prove that there is a section for \(q : P \to X \) (that is, a map \(s : X \to P \) such that \(qs = \text{id} \)) if and only if \(f \) can be lifted to \(\tilde{Y} \).

1. Let \(x \in X \) and let \(U \) be an elementary nbhd of \(f(x) \).

 Claim: \(f^{-1}(U) \) is an elementary nbhd of \(x \) in \(X \).

 \[
p^{-1}(U) = UV, \quad q^{-1}(f^{-1}(U)) = r^{-1}p^{-1}(U) = U r^{-1}(V),
 \]
 a union of disjoint open sets. Clearly \(q' = q |_{p^{-1}(V)} : r^{-1}V \to f^{-1}(U) \). \(q' \) is continuous and we show it is a homeomorphism by constructing an inverse \(k : f^{-1}(U) \to r^{-1}(V) \) defined by

 \[
k(x) = (x, (p | V)^{-1}(f(x))).
 \]
 \(q'k(x) = x \) so \(q'k = \text{id} \). Let \((x, \tilde{y}) \in r^{-1}(V) \subseteq P \)

 \[
k'(x, \tilde{y}) = k(x) = (x, (p | V)^{-1}(f(x))).
 \]
 But \(\tilde{y} \in V \)

 and \(\tilde{y} = p\tilde{x} \) and so \(\tilde{x} = (p | V)^{-1}p\tilde{x} \) :

 \[
k'(x, \tilde{y}) = (x, \tilde{x}).
 \]
 So \(k' \) is a homeomorphism.

2. \((x, \tilde{y}) \in q^{-1}(x) \), \(x' = p\tilde{y} \) \(r(x, \tilde{y}) = \tilde{x} \in p^{-1}(x) \) : \(r \) induces

 \[
r' : q^{-1}(x) \to p^{-1}(x). \quad \text{We define } s' : p^{-1}(x) \to q^{-1}(x) : \text{Given}
 \]

 \[
\tilde{y} \in p^{-1}(x), \quad p\tilde{y} = x' \quad \text{so } (x, \tilde{y}) \in P \quad \text{and } \tilde{y} = (x, \tilde{x}) \]

 \[
\text{Set } s'(\tilde{y}) = (x, \tilde{x}). \quad \text{Then } r's' = \text{id}, \quad s'r' = \text{id} \quad \text{so } r' \text{ is bijection.}
 \]

3. \(\text{If } s \text{ is a section for } q, \text{ then } r's \text{ is a lift of } f \text{ to } \tilde{Y} \).

 Conversely, if \(\tilde{y} \) is a lift of \(f \) to \(\tilde{Y} \), define \(s : X \to P \) by

 \[
s(x) = (x, \tilde{y}(x)).
 \]
V. Let \tilde{X} be any normal cover of X with covering map p, let $x_0 \in X$ be the base point and choose $\tilde{x}_0 \in p^{-1}(x_0)$. Define $\theta : \pi(X, x_0) \to A(\tilde{X})$ (the group of deck transformations) as follows: Let $\alpha = [l] \in \pi(X, x_0)$ and let \tilde{l} be the lift of l to \tilde{X} starting at \tilde{x}_0. Set $x_0' = \tilde{l}(1)$. Then $p_*\pi(\tilde{X}, \tilde{x}_0)$ and $p_*\pi(\tilde{X}, x_0')$ are conjugate, hence equal. Therefore there exists $\phi \in A(\tilde{X})$ with $\phi(\tilde{x}_0) = x_0'$. Set $\theta(\alpha) = \phi$. Prove

1. θ is a homomorphism.
2. Kernel $\ker \theta = p_*\pi(\tilde{X}, \tilde{x}_0)$.

Thus θ incuces a homomorphism $\theta' : \pi(X, x_0)/p_*\pi(\tilde{X}, \tilde{x}_0) \to A(\tilde{X})$, where $\pi(X, x_0)/p_*\pi(\tilde{X}, \tilde{x}_0)$ is the set of right cosets. Prove

3. $\lambda\theta' = \mu$, where $\lambda : A(\tilde{X}) \to p^{-1}(x_0)$ and $\mu : \pi(X, x_0)/p_*\pi(\tilde{X}, \tilde{x}_0) \to p^{-1}(x_0)$ have been defined in class.

\[
\begin{align*}
1. \beta = \sum J, \text{ lift of } m \text{ starting at } \tilde{x}_0. \text{ Let } \psi \in A(\tilde{X}) \text{ such that } \\
\psi(\tilde{x}_0) = \tilde{x}_0(1). \text{ Then } \psi \text{ is lift of } m \text{ starting at } \psi(\tilde{x}_0) = x_0' \\
\text{ Here path } \tilde{\gamma} \cdot \psi \tilde{\gamma} \text{ in } \tilde{X} \text{ starting at } \tilde{x}_0 \text{ and } p(\tilde{\gamma} \cdot \psi \tilde{\gamma}) = m \\
\theta(\tilde{\gamma}) \in A(\tilde{X}) \text{ and } \theta(\tilde{\gamma}) (\tilde{x}_0) = (\gamma \cdot \psi \tilde{\gamma})(1) = \psi(\tilde{\gamma}1). \\
\theta(\tilde{\gamma}) \psi(\tilde{\gamma}) = \psi \in A(\tilde{X}) \text{ and } \psi(\tilde{x}_0) = \psi(\tilde{x}_0) \Rightarrow \theta(\tilde{\gamma}) = \theta(\tilde{\gamma}) (\tilde{x}_0). \\
\text{ Let } \gamma = \sum K \in \ker \theta, \quad \theta(\gamma) = m. \text{ Let } \tilde{k} \text{ be a lift of } k \text{ starting at } \tilde{x}_0, \quad \tilde{k}(\tilde{x}_0) = \tilde{x}_0 = \tilde{1}(1), \text{ so } \tilde{k} \text{ is a loop, } \sum K \in \pi'(\tilde{X}, \tilde{x}_0). \\
p_k(\sum K) = \gamma \text{ so } \gamma \in \Im p_k. \text{ Conversely, if } \gamma = \sum K \text{ then } \gamma \cdot \tilde{k} \text{ is a loop in } \tilde{X} \text{ based at } \tilde{x}_0, \text{ m is } \tilde{k} \text{ a lift of } k. \text{ If } \theta(\gamma) = \psi, \quad \psi(\tilde{x}_0) = m(1) = \tilde{x}_0. \text{ Then } \psi = m \text{ so } \gamma \in \ker \theta.
\end{align*}
\]

See next page
Consider the diagram
\[\xymatrix{ \pi(X, x_0) \ar[r]^{\theta} & A(\tilde{x}) \ar[d]^{p^{-1}(\tilde{x}_0)} \ar[ld]^{\tilde{\mu}} } \]

If \(\alpha \in \pi(X, x_0) \), \(\alpha = \tilde{\epsilon} \) and \(\tilde{\epsilon} \) is a lifting of \(\epsilon \) starting at \(\tilde{x}_0 \), \(\tilde{\mu}(\alpha) = \tilde{\epsilon}(1) = x_0 \). Then
\[\lambda \theta(\alpha) = \lambda(\epsilon) = \psi(\tilde{x}_0), \]
where \(\psi \in A(\tilde{x}) \), such that \(\psi(\tilde{x}_0) = \tilde{\epsilon}(1) = x_0 \).

\[\therefore \lambda \theta(\alpha) = \psi(\tilde{x}_0) = \tilde{x}_0 = \tilde{\mu}(\alpha) \]

\[\therefore \text{The diagram is commutative: } \lambda \theta = \tilde{\mu}. \]

Let \(\nu : \pi(X, x_0) \rightarrow \pi(X, \tilde{x}_0) \) be the quotient map \(\tilde{\mu} \text{ mod } \mu \nu \) and
\[\theta' \nu = \theta. \]

Moreover, \(\lambda \theta = \tilde{\mu} \) becomes
\[\lambda \theta' \nu = \mu \nu. \]
Since \(\nu \) is onto, \(\lambda \theta' = \tilde{\mu} \).