Permutation Patterns in Algebraic Geometry

Henning Arnór Úlfarsson

Combinatorics Group, School of Computer Science, Reykjavik University

August 10, 2010
Table of Contents

1 Definitions
 • ... from Combinatorics
 • ... from Geometry

2 Patterns determine geometry
 • Three geometric properties of varieties
 • Description in terms of patterns

3 Open problems
We start with some definitions.
Permutations and patterns

A permutation in \mathcal{S}_n is a bijection $\pi: \{1, \ldots, n\} \rightarrow \{1, \ldots, n\}$. We will use one-line notation for permutations, for example, $\pi = 32415$ is the permutation in \mathcal{S}_5 that sends

1 \mapsto 3
2 \mapsto 2
3 \mapsto 4
4 \mapsto 1
5 \mapsto 5.
A permutation in \mathcal{S}_n is a bijection $\pi: \{1, \ldots, n\} \rightarrow \{1, \ldots, n\}$. We will use one-line notation for permutations, for example, $\pi = 32415$ is the permutation in \mathcal{S}_5 that sends

1 \mapsto 3
2 \mapsto 2
3 \mapsto 4
4 \mapsto 1
5 \mapsto 5.

Patterns are also permutations but we are interested in how they occur in other permutations . . .
Patterns inside permutations

Given a pattern p we say that it **occurs** in a permutation π if π contains a subsequence that is order-equivalent to p. If p does not occur in π we say that π **avoids** the pattern p. Let $\mathcal{S}_n(p)$ denote the set of permutations in \mathcal{S}_n that avoid the pattern p.

Example

The permutation $\pi = 32415$ has two occurrences of the pattern

\[
123 = \begin{array}{c}
\bullet \\
\end{array} \begin{array}{c}
\bullet \\
\end{array} : 32415, \quad 32415
\]

It avoids the pattern

\[
132 = \begin{array}{c}
\bullet \\
\end{array} \begin{array}{c}
\bullet \\
\end{array} .
\]
Babson and Steingrímsson (2000) defined generalized patterns, or vincular patterns, where conditions are placed on the locations of the occurrence.

Example

The permutation $\pi = 32415$ has one occurrence of the pattern

$$123 = \begin{array}{ccc}
\cdot & & \\
\cdot & & \\
\cdot & \cdot & \\
\end{array} : 32415$$

It avoids the pattern

$$123 = \begin{array}{cc}
\cdot & \\
\cdot & \\
\cdot & \cdot & \\
\end{array}.$$
Motivation for vincular patterns

- They simplify descriptions given in terms of more complicated patterns – we’ll see this later when we look at factorial Schubert varieties.
Motivation for vincular patterns

- They simplify descriptions given in terms of more complicated patterns – we’ll see this later when we look at factorial Schubert varieties.

- Many interesting sequences of integers come up when we count the permutations avoiding a pattern p. For example if p is any classical pattern of length 3 then

$$|\mathcal{S}_n(p)| = \text{n-th Catalan number} = \frac{1}{n+1} \binom{2n}{n}.$$

However Claesson showed in 2001 that

$$|\mathcal{S}_n(123)| = \text{n-th Bell number}.$$
Bivincular patterns

Bousquet-Mélou, Claesson, Dukes, and Kitaev (2010) defined **bivincular patterns** as vincular patterns with extra restrictions on the values in an occurrence.

Example

The permutation $\pi = 32415$ has one occurrence of the pattern

\[
\begin{array}{c}
123 \\
\overline{123}
\end{array} =
\begin{array}{c}
\ \ \ \\
\bullet \\
\bullet
\end{array} :
32415
\]

This is not an occurrence of $\overline{123}$. But it is an occurrence of

\[
\begin{array}{c}
123 \\
\overline{123}
\end{array} =
\begin{array}{c}
\ \ \ \\
\bullet \\
\bullet
\end{array} :
32415
\]
Motivation for bivincular patterns

- They simplify descriptions given in terms of more complicated patterns – we’ll see this later when we look at Gorenstein Schubert varieties.
Motivation for bivincular patterns

- They simplify descriptions given in terms of more complicated patterns – we'll see this later when we look at Gorenstein Schubert varieties.
- More interesting sequences of integers.
Motivation for bivincular patterns

- They simplify descriptions given in terms of more complicated patterns – we’ll see this later when we look at Gorenstein Schubert varieties.
- More interesting sequences of integers.
- New Wilf-equivalence: For example the patterns

12345678
76128543

are equivalent.
Motivation for bivincular patterns

- They simplify descriptions given in terms of more complicated patterns – we’ll see this later when we look at Gorenstein Schubert varieties.
- More interesting sequences of integers.
- New Wilf-equivalence: For example the patterns

\[
\begin{align*}
&1 \\ &2 \\ &3 \\ &4 \\ &5 \\ &6 \\ &7 \\ &8
\end{align*}
\]

\[
\begin{align*}
&12345678 \\
&65418723
\end{align*}
\]

are equivalent.
(Complete) flags

We will only consider complete flags in \mathbb{C}^m so we will simply refer to them as flags. A flag is a sequence of vector-subspaces of \mathbb{C}^m

$$E_\bullet = (E_1 \subset E_2 \subset \cdots \subset E_m = \mathbb{C}^m),$$

with the property that $\dim E_i = i$. The set of all such flags is called the (complete) flag manifold, and denoted by $F_\ell(\mathbb{C}^m)$.
(Complete) flags

We will only consider complete flags in \mathbb{C}^m so we will simply refer to them as flags. A flag is a sequence of vector-subspaces of \mathbb{C}^m

$$E_\bullet = (E_1 \subset E_2 \subset \cdots \subset E_m = \mathbb{C}^m),$$

with the property that $\dim E_i = i$. The set of all such flags is called the (complete) flag manifold, and denoted by $F\ell(\mathbb{C}^m)$. We want to consider special subsets of this flag manifold ...
Schubert cells in $F\ell(\mathbb{C}^m)$

If we choose a basis f_1, f_2, \ldots, f_m, for \mathbb{C}^m then we can fix a reference flag

$$F_\bullet = (F_1 \subset F_2 \subset \cdots \subset F_m)$$

such that F_i is spanned by the first i basis vectors.
Schubert cells in $F\ell(\mathbb{C}^m)$

If we choose a basis f_1, f_2, \ldots, f_m, for \mathbb{C}^m then we can fix a reference flag

$$F_\bullet = (F_1 \subset F_2 \subset \cdots \subset F_m)$$

such that F_i is spanned by the first i basis vectors. Using this reference flag and a permutation π in \mathfrak{S}_m we can define the **Schubert cell** $X^\circ_\pi \subseteq F\ell(\mathbb{C}^m)$ which contains the flags E_\bullet such that
Schubert cells in $F\ell(\mathbb{C}^m)$

If we choose a basis f_1, f_2, \ldots, f_m, for \mathbb{C}^m then we can fix a reference flag

$$F_\bullet = (F_1 \subset F_2 \subset \cdots \subset F_m)$$

such that F_i is spanned by the first i basis vectors. Using this reference flag and a permutation π in \mathfrak{S}_m we can define the Schubert cell $X^\circ_\pi \subseteq F\ell(\mathbb{C}^m)$ which contains the flags E_\bullet such that

$$\dim(E_p \cap F_q) = \#\{i \leq p \mid \pi(i) \leq q\},$$

for $1 \leq p, q \leq m$.
Schubert cells in $F\ell(\mathbb{C}^m)$

If we choose a basis f_1, f_2, \ldots, f_m, for \mathbb{C}^m then we can fix a reference flag

$$F_\bullet = (F_1 \subset F_2 \subset \cdots \subset F_m)$$

such that F_i is spanned by the first i basis vectors. Using this reference flag and a permutation π in \mathfrak{S}_m we can define the **Schubert cell** $X_\pi^\circ \subseteq F\ell(\mathbb{C}^m)$ which contains the flags E_\bullet such that

$$\dim(E_p \cap F_q) = \#\{i \leq p \mid \pi(i) \leq q\},$$

for $1 \leq p, q \leq m$. Let’s look at an example.
A Schubert cell in $F_{\ell}(\mathbb{C}^3)$

Let $\pi = 231$. The conditions for the Schubert cell X_{231}°

$$\dim(E_p \cap F_q) = \# \{ i \leq p \mid \pi(i) \leq q \},$$

become
A Schubert cell in $F_\ell(\mathbb{C}^3)$

Let $\pi = 231$. The conditions for the Schubert cell X_{231}^0

$$\dim(E_p \cap F_q) = \# \{ i \leq p \mid \pi(i) \leq q \},$$

become

<table>
<thead>
<tr>
<th></th>
<th>$p = 1$</th>
<th>$p = 2$</th>
<th>$p = 3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$q = 1$</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>$q = 2$</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>$q = 3$</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>
A Schubert cell in $F\ell(\mathbb{C}^3)$

Let $\pi = 231$. The conditions for the Schubert cell X_{231}°

$$\dim(E_p \cap F_q) = \#\{ i \leq p \mid \pi(i) \leq q \},$$

become

<table>
<thead>
<tr>
<th></th>
<th>$p = 1$</th>
<th>$p = 2$</th>
<th>$p = 3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$q = 1$</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>$q = 2$</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>$q = 3$</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

E_1, E_2 intersect F_1 in a point
A Schubert cell in $F_\ell(\mathbb{C}^3)$

Let $\pi = 231$. The conditions for the Schubert cell X_{231}

$$\dim(E_p \cap F_q) = \#\{i \leq p \mid \pi(i) \leq q\},$$

become

<table>
<thead>
<tr>
<th></th>
<th>$p = 1$</th>
<th>$p = 2$</th>
<th>$p = 3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$q = 1$</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>$q = 2$</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>$q = 3$</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

E_1, E_2 intersect F_1 in a point

$E_1 \subset F_2$, $E_2 \cap F_2 = E_1$
Schubert varieties in $F\ell(\mathbb{C}^m)$

Given a Schubert cell X°_π we define the **Schubert variety** as the closure

$$X_\pi = \overline{X^\circ_\pi},$$

in the Zariski topology.
We will now show how pattern avoidance can be used to describe geometric properties of Schubert varieties.
Smooth, factorial and Gorenstein varieties

Pictorial definition of smoothness: the tangent space at every point has the right dimension.

(a) $y - x^2 = 0$.
(b) $y^2 - x^2 - x^3 = 0$.

Figure: Compare the single tangent direction in subfigure 1(a) with the two tangent directions in subfigure 1(b).
Smooth, factorial and Gorenstein varieties

Algebraic definitions: a variety:

<table>
<thead>
<tr>
<th>X is</th>
<th>if</th>
</tr>
</thead>
<tbody>
<tr>
<td>smooth</td>
<td>the local rings are regular</td>
</tr>
<tr>
<td>factorial</td>
<td>the local rings are unique factorization domains</td>
</tr>
<tr>
<td>Gorenstein</td>
<td>the local rings are Gorenstein</td>
</tr>
</tbody>
</table>
Smooth, factorial and Gorenstein varieties

Algebraic definitions: a variety:

<table>
<thead>
<tr>
<th>X is</th>
<th>if</th>
</tr>
</thead>
<tbody>
<tr>
<td>smooth</td>
<td>the local rings are regular</td>
</tr>
<tr>
<td>factorial</td>
<td></td>
</tr>
<tr>
<td>Gorenstein</td>
<td></td>
</tr>
</tbody>
</table>
Three geometric properties of varieties

Smooth, factorial and Gorenstein varieties

Algebraic definitions: a variety:

<table>
<thead>
<tr>
<th>X is</th>
<th>if</th>
</tr>
</thead>
<tbody>
<tr>
<td>smooth</td>
<td>the local rings are regular</td>
</tr>
<tr>
<td>factorial</td>
<td>the local rings are unique factorization domains</td>
</tr>
<tr>
<td>Gorenstein</td>
<td></td>
</tr>
</tbody>
</table>
Smooth, factorial and Gorenstein varieties

Algebraic definitions: a variety:

<table>
<thead>
<tr>
<th>X is</th>
<th>if</th>
</tr>
</thead>
<tbody>
<tr>
<td>smooth</td>
<td>the local rings are regular</td>
</tr>
<tr>
<td>factorial</td>
<td>the local rings are unique factorization domains</td>
</tr>
<tr>
<td>Gorenstein</td>
<td>the local rings are Gorenstein</td>
</tr>
</tbody>
</table>
Smooth, factorial and Gorenstein Schubert varieties

Ryan (1987), Wolper (1989), Lakshmibai and Sandhya (1990) showed that smoothness of Schubert varieties can be determined by pattern avoidance in the defining permutations:
Smooth, factorial and Gorenstein Schubert varieties

Ryan (1987), Wolper (1989), Lakshmibai and Sandhya (1990) showed that smoothness of Schubert varieties can be determined by pattern avoidance in the defining permutations:

<table>
<thead>
<tr>
<th>X_π is</th>
<th>if</th>
</tr>
</thead>
<tbody>
<tr>
<td>smooth</td>
<td>the local rings are regular</td>
</tr>
<tr>
<td>factorial</td>
<td>the local rings are unique factorization domains</td>
</tr>
<tr>
<td>Gorenstein</td>
<td>the local rings are Gorenstein</td>
</tr>
</tbody>
</table>
Smooth, factorial and Gorenstein Schubert varieties

Ryan (1987), Wolper (1989), Lakshmibai and Sandhya (1990) showed that smoothness of Schubert varieties can be determined by pattern avoidance in the defining permutations:

<table>
<thead>
<tr>
<th>X_π is</th>
<th>if</th>
</tr>
</thead>
<tbody>
<tr>
<td>smooth</td>
<td>π avoids 2143 and 1324</td>
</tr>
<tr>
<td>factorial</td>
<td>the local rings are unique factorization domains</td>
</tr>
<tr>
<td>Gorenstein</td>
<td>the local rings are Gorenstein</td>
</tr>
</tbody>
</table>
Definitions
Patterns determine geometry
Open problems

Description in terms of patterns

Smooth, factorial and Gorenstein Schubert varieties

Ryan (1987), Wolper (1989), Lakshmibai and Sandhya (1990) showed that smoothness of Schubert varieties can be determined by pattern avoidance in the defining permutations:

<table>
<thead>
<tr>
<th>X_{π} is</th>
<th>if</th>
</tr>
</thead>
<tbody>
<tr>
<td>smooth</td>
<td>π avoids 2143 and 1324</td>
</tr>
<tr>
<td>factorial</td>
<td>the local rings are unique factorization domains</td>
</tr>
<tr>
<td>Gorenstein</td>
<td>the local rings are Gorenstein</td>
</tr>
</tbody>
</table>

Bousquet-Mélou and Butler (2007) proved a conjecture by Yong and Woo (2005) and described factorial Schubert varieties in terms of a barred pattern.
Smooth, factorial and Gorenstein Schubert varieties

Ryan (1987), Wolper (1989), Lakshmibai and Sandhya (1990) showed that smoothness of Schubert varieties can be determined by pattern avoidance in the defining permutations:

<table>
<thead>
<tr>
<th>X_π is</th>
<th>if</th>
</tr>
</thead>
<tbody>
<tr>
<td>smooth</td>
<td>π avoids 2143 and 1324</td>
</tr>
<tr>
<td>factorial</td>
<td>π avoids 21354 and 1324</td>
</tr>
<tr>
<td>Gorenstein</td>
<td>the local rings are Gorenstein</td>
</tr>
</tbody>
</table>

Bousquet-Mélou and Butler (2007) proved a conjecture by Yong and Woo (2005) and described factorial Schubert varieties in terms of a barred pattern.
Smooth, factorial and Gorenstein Schubert varieties

Ryan (1987), Wolper (1989), Lakshmibai and Sandhya (1990) showed that smoothness of Schubert varieties can be determined by pattern avoidance in the defining permutations:

\[
\begin{array}{|c|c|}
\hline
X_\pi \text{ is} & \text{if} \\
\hline
\text{smooth} & \pi \text{ avoids } 2143 \text{ and } 1324 \\
\hline
\text{factorial} & \pi \text{ avoids } 21354 \text{ and } 1324 \\
\hline
\text{Gorenstein} & \text{the local rings are Gorenstein} \\
\hline
\end{array}
\]

Bousquet-Mélou and Butler (2007) proved a conjecture by Yong and Woo (2005) and described factorial Schubert varieties in terms of a barred pattern. This description can be simplified using vincular patterns (U 2010).
Smooth, factorial and Gorenstein Schubert varieties

Ryan (1987), Wolper (1989), Lakshmibai and Sandhya (1990) showed that smoothness of Schubert varieties can be determined by pattern avoidance in the defining permutations:

<table>
<thead>
<tr>
<th>X_π is</th>
<th>if</th>
</tr>
</thead>
<tbody>
<tr>
<td>smooth</td>
<td>π avoids 2143 and 1324</td>
</tr>
<tr>
<td>factorial</td>
<td>π avoids 2143 and 1324</td>
</tr>
<tr>
<td>Gorenstein</td>
<td>the local rings are Gorenstein</td>
</tr>
</tbody>
</table>

Bousquet-Mélou and Butler (2007) proved a conjecture by Yong and Woo (2005) and described factorial Schubert varieties in terms of a barred pattern. This description can be simplified using vincular patterns (U 2010).
Smooth, factorial and Gorenstein Schubert varieties

Ryan (1987), Wolper (1989), Lakshmibai and Sandhya (1990) showed that smoothness of Schubert varieties can be determined by pattern avoidance in the defining permutations:

\[
\begin{array}{|c|c|}
\hline
X_\pi & \text{is} \\
\hline
\text{smooth} & \pi \text{ avoids } 2143 \text{ and } 1324 \\
\text{factorial} & \pi \text{ avoids } 2143 \text{ and } 1324 \\
\text{Gorenstein} & \text{the local rings are Gorenstein} \\
\hline
\end{array}
\]

Bousquet-Mélou and Butler (2007) proved a conjecture by Yong and Woo (2005) and described factorial Schubert varieties in terms of a barred pattern. This description can be simplified using vincular patterns (U 2010). Woo and Yong (2006) defined a new type of pattern avoidance, called **avoidance with Bruhat restrictions** and used it to give a description of Gorenstein Schubert varieties.
Smooth, factorial and Gorenstein Schubert varieties

Ryan (1987), Wolper (1989), Lakshmibai and Sandhya (1990) showed that smoothness of Schubert varieties can be determined by pattern avoidance in the defining permutations:

<table>
<thead>
<tr>
<th>X_\pi is</th>
<th>if</th>
</tr>
</thead>
<tbody>
<tr>
<td>smooth</td>
<td>\pi avoids 2143 and 1324</td>
</tr>
<tr>
<td>factorial</td>
<td>\pi avoids 21\underline{43} and 1324</td>
</tr>
<tr>
<td>Gorenstein</td>
<td>\pi avoids . . . with Bruhat restrictions . . .</td>
</tr>
</tbody>
</table>

Bousquet-Mélou and Butler (2007) proved a conjecture by Yong and Woo (2005) and described factorial Schubert varieties in terms of a barred pattern. This description can be simplified using vincular patterns (U 2010). Woo and Yong (2006) defined a new type of pattern avoidance, called avoidance with Bruhat restrictions and used it to give a description of Gorenstein Schubert varieties.
Smooth, factorial and Gorenstein Schubert varieties

Ryan (1987), Wolper (1989), Lakshmibai and Sandhya (1990) showed that smoothness of Schubert varieties can be determined by pattern avoidance in the defining permutations:

<table>
<thead>
<tr>
<th>X_π is</th>
<th>if</th>
</tr>
</thead>
<tbody>
<tr>
<td>smooth</td>
<td>π avoids 2143 and 1324</td>
</tr>
<tr>
<td>factorial</td>
<td>π avoids 2143 and 1324</td>
</tr>
<tr>
<td>Gorenstein</td>
<td>Description in terms of (bi)vincular patterns?</td>
</tr>
</tbody>
</table>

Bousquet-Mélou and Butler (2007) proved a conjecture by Yong and Woo (2005) and described factorial Schubert varieties in terms of a barred pattern. This description can be simplified using vincular patterns (U 2010). Woo and Yong (2006) defined a new type of pattern avoidance, called avoidance with Bruhat restrictions and used it to give a description of Gorenstein Schubert varieties.
Gorenstein Schubert varieties in terms of bivincular patterns

The short answer to the question is “yes”. The long answer should include that it is much more complicated than I had originally hoped.
Gorenstein Schubert varieties in terms of bivincular patterns

The short answer to the question is “yes”. The long answer should include that it is much more complicated than I had originally hoped.

- The first condition of factoriality, avoiding 2143, is weakened to

 avoiding $\begin{array}{c} 12345 \\ 31524 \end{array}$ and $\begin{array}{c} 12345 \\ 24153 \end{array}$.

Gorenstein Schubert varieties in terms of bivincular patterns

The short answer to the question is “yes”. The long answer should include that it is much more complicated than I had originally hoped.

- The first condition of factoriality, avoiding 2143, is weakened to

 avoiding $\begin{array}{c}12345 \\ 31524\end{array}$ and $\begin{array}{c}12345 \\ 24153\end{array}$.

- The second condition of factoriality, avoiding 1324, is weakened to the avoidance of two infinite families of bivincular patterns, which we now describe.
The associated partition of a permutation

Here we will only consider permutations with a unique descent, as this allows us to avoid a minor technical detail.
Here we will only consider permutations with a unique descent, as this allows us to avoid a minor technical detail. Given such a permutation π, with a descent at d, we construct its associated partition $\lambda(\pi)$ as the partition inside a bounding box with dimensions $d \times (n - d)$, whose lower border is the lattice path that starts at the lower left corner of the box and whose i-th step is vertical if i is weakly to the left of the position d, and horizontal otherwise.
Example

The permutation

\[\pi = 134892567|10 \]

has a unique descent at \(d = 5 \).
Example

The permutation

$$\pi = 13489 \downarrow 2567|10$$

has a unique descent at $d = 5$.

Figure: A bounding box with dimensions 5×5.
Example

The permutation

\[\pi = 13489 \downarrow 2567|10 \]

has a unique descent at \(d = 5 \).

Figure: A bounding box with dimensions 5×5.
Example

The permutation

$$\pi = 13489 \downarrow 2567|10$$

has a unique descent at $d = 5$.

Figure: A bounding box with dimensions 5×5.

Example

The permutation

$$\pi = 13489 \downarrow 2567|10$$

has a unique descent at $d = 5$.

Figure: A bounding box with dimensions 5×5.
Example

The permutation

\[\pi = 13489 \downarrow 2567|10 \]

has a unique descent at \(d = 5 \).

Figure: A bounding box with dimensions 5\(\times\)5.
Example

The permutation

$$\pi = 13489 \downarrow 2567|10$$

has a unique descent at $d = 5$.

Figure: A bounding box with dimensions 5×5.
Example

The permutation

$$\pi = 13489 \downarrow 2567|10$$

has a unique descent at $d = 5$.

Figure: A bounding box with dimensions 5×5.
Example

The permutation

$$\pi = 13489 \downarrow \ 2567|10$$

has a unique descent at $d = 5$.

Figure: A bounding box with dimensions 5×5.
Example

The permutation

$$\pi = 13489 \downarrow 2567|10$$

has a unique descent at \(d = 5 \).

Figure: A bounding box with dimensions 5×5.
Example

The permutation

$$\pi = 13489 \downarrow 2567|10$$

has a unique descent at $d = 5$.

Figure: A bounding box with dimensions 5×5.
Example

The permutation

\[\pi = 13489 \downarrow 2567|10 \]

has a unique descent at \(d = 5 \).

Figure: A bounding box with dimensions 5x × 5.
Inner corners of the partition

Yong and Woo (2006) showed that if π is Gorenstein then all the \textbf{inner corners} of the partition have to lie on the same diagonal.
Inner corners of the partition

Yong and Woo (2006) showed that if π is Gorenstein then all the **inner corners** of the partition have to lie on the same diagonal.

Figure: Inner corners of $\pi = 13489 \downarrow 2567|10$.
Yong and Woo (2006) showed that if π is Gorenstein then all the inner corners of the partition have to lie on the same diagonal.

Figure: Inner corners of $\pi = 13489 \downarrow 2567|10$.
Outer corners of the partition

If we want to translate this condition into pattern avoidance then it is actually better to consider the outer corners of the partition.
Outer corners of the partition

If we want to translate this condition into pattern avoidance then it is actually better to consider the outer corners of the partition.

Figure: Outer corners of $\pi = 13489 \downarrow 2567|10$.
Outer corners of the partition

If we want to translate this condition into pattern avoidance then it is actually better to consider the outer corners of the partition.

Figure: Outer corners of $\pi = 13489 \downarrow 2567|10$.
Depth and width of outer corners

We see that all the inner corners lie on the same diagonal if and only each outer corner has the same **depth** and **width**.

Figure: $\pi = 13589 \downarrow 2467|10$.
Detecting too wide outer corners

Let’s go back to the permutation \(\pi = 13489 \downarrow 2567|10 \), and consider the outer corner that is too wide.
Definitions

Patterns determine geometry

Open problems

Description in terms of patterns

Detecting too wide outer corners

Let’s go back to the permutation \(\pi = 13489 \downarrow 2567|10 \), and consider the outer corner that is too wide.

This outer corner comes from the subsequence \(13489 \downarrow 2567|10 \).
Detecting too wide outer corners cont.

The shape of this outer corner can be detected with the bivincular pattern

\[\begin{array}{c}
1234567 \\
1562347
\end{array} = \begin{array}{c}
\cdot \\
\cdot \\
\end{array} \]
Detecting too wide outer corners cont.

The shape of this outer corner can be detected with the bivincular pattern

\[
\begin{bmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
15 & 6 & 2 & 3 & 4 & 7
\end{bmatrix}
\]

In general, we can detect too wide outer corners with the patterns

\[
\begin{align*}
&\overline{12345} \quad \overline{1234567} \quad \overline{123456789} \quad \overline{12\cdot\cdots\cdot\cdots\cdot k} \\
&14235 \quad 1562347 \quad 167823459 \quad \cdots \quad 1\ell+1 \cdot 2 \cdot \ell k \quad \cdots
\end{align*}
\]
Detecting too wide outer corners cont.

The shape of this outer corner can be detected with the bivincular pattern

\[
\begin{array}{c}
1234567 \\
1562347
\end{array}
\]

In general, we can detect too wide outer corners with the patterns

\[
\begin{array}{cccccc}
12345 & 1234567 & 123456789 & 12\cdots k \\
14235 & 1562347 & 167823459 & 1\ell+1 \cdots 2 \cdots \ell k
\end{array}
\]

and too deep outer corners with the patterns

\[
\begin{array}{cccccc}
12345 & 1234567 & 123456789 & 12\cdots k \\
13425 & 1456237 & 156782349 & 1\ell+1 \cdots 2 \cdots \ell k
\end{array}
\]
The Schubert variety

<table>
<thead>
<tr>
<th>(X_\pi) is</th>
<th>if</th>
</tr>
</thead>
<tbody>
<tr>
<td>smooth</td>
<td>(\pi) avoids 2143 and 1324</td>
</tr>
<tr>
<td>factorial</td>
<td>(\pi) avoids 21_43_ and 1324</td>
</tr>
<tr>
<td>Gorenstein</td>
<td>(\pi) avoids (\frac{12345}{31524}) and (\frac{12345}{24153}), ...</td>
</tr>
</tbody>
</table>

...and the two infinite corner families — remember that this is modulo a technical detail I have omitted.
The Schubert variety

<table>
<thead>
<tr>
<th>X_π is</th>
<th>if</th>
</tr>
</thead>
<tbody>
<tr>
<td>smooth</td>
<td>π avoids 2143 and 1324</td>
</tr>
<tr>
<td>factorial</td>
<td>π avoids 2143 and 1324</td>
</tr>
<tr>
<td>Gorenstein</td>
<td>π avoids $\overline{12345}$ and $\overline{12345}$, ...</td>
</tr>
</tbody>
</table>

... and the two infinite corner families — remember that this is modulo a technical detail I have omitted.
The description is in terms of patterns only and one doesn’t need to construct the associated partition.
Benefits from the bivincular description

- The description is in terms of patterns only and one doesn’t need to construct the associated partition.
- It is very easy to see on the pattern level that smooth implies factorial implies Gorenstein.
We end with some open problems.
A variety is a **local complete intersection** if it can be described by the expected number of equations. This condition is in between factoriality and Gorensteinness and I’m working with Woo on giving a pattern description.
A variety is a **local complete intersection** if it can be described by the expected number of equations. This condition is in between factoriality and Gorensteinness and I’m working with Woo on giving a pattern description.

Recall that weakening smoothness to factoriality meant adding an underline in one of the patterns. It would be interesting to know what geometric property is described by the addition of more underlines and overlines.
A variety is a **local complete intersection** if it can be described by the expected number of equations. This condition is in between factoriality and Gorensteinness and I’m working with Woo on giving a pattern description.

Recall that weakening smoothness to factoriality meant adding an underline in one of the patterns. It would be interesting to know what geometric property is described by the addition of more underlines and overlines.

The Schubert varieties we looked at were algebraic subsets of the complete flag variety $F\ell(\mathbb{C}^m)$, that is, type A, what about other types?
A variety is a **local complete intersection** if it can be described by the expected number of equations. This condition is in between factoriality and Gorensteinness and I’m working with Woo on giving a pattern description.

Recall that weakening smoothness to factoriality meant adding an underline in one of the patterns. It would be interesting to know what geometric property is described by the addition of more underlines and overlines.

The Schubert varieties we looked at were algebraic subsets of the complete flag variety $F\ell(\mathbb{C}^m)$, that is, type A, what about other types?

Where do the **mesh patterns** patterns fit into this story?
The end! Questions?