Written Certification Exam, Day 1
June 18, 2012, 9:00am – 12:00pm

(1) Let $p : X' \to X$ be a covering map, and assume that X' is path-connected. Let $x_0, x_1 \in X'$ and $x \in X$ be points such that $p(x_0) = x = p(x_1)$. Prove that the subgroups $p_*\pi_1(X',x_0)$ and $p_*\pi_1(X',x_1)$ are conjugate in $\pi_1(X,x)$.

(2) Ideals and quotients.
(a) Find all ideals of the quotient ring $\mathbb{Q}[x]/(x^{14} - 1)$. In particular, how many such ideals are there?
(b) Determine the structure of the quotient ring $\mathbb{Z}[x]/(5, x^2 - 2)$. Be as precise as you can.

(3) Of the following smooth manifolds, which ones admit a continuous nowhere vanishing vector field:
- S^2 minus a point.
- S^2
- S^3
- $S^1 \times S^1$
- $SL(n, \mathbb{R})$
- An oriented compact surface of genus three with no boundary.

(4) Let $f : A \subset \mathbb{R} \to \mathbb{R}$ be a function. Give three criteria (ϵ/δ, open sets, sequences) for f to be continuous on A. Show that these definitions are equivalent.

(5) Let Ω be an open connected subset of \mathbb{C}. Suppose that f_n is holomorphic1 on Ω for each $n \geq 1$ and that the sequence $\{f_n\}$ converges to a function f uniformly on each compact subset of Ω.
(a) Show that f is holomorphic on Ω.
(b) Show that the sequence $\{f'_n\}$ of derivatives converges to f' uniformly on compact subsets of Ω.

(6) Let L be the splitting field over \mathbb{Q} of $x^9 - 8$.
(a) Determine the degree $[L : \mathbb{Q}]$ carefully explaining all conclusions.
(b) Justify whether or not the Galois group $\text{Gal}(L/\mathbb{Q})$ is abelian.
(c) Justify whether or not the Galois group $\text{Gal}(L/\mathbb{Q})$ is solvable.

1We say that g is holomorphic on Ω if $g'(z)$ exists for all $z \in \Omega$.
Written Qualification Exam, Day 2

June 19, 2012, 9:00am – 12:00pm

(1) Let the field \(K \) be an extension field of a field \(k \). Show that there is a natural isomorphism of \(K \)-algebras \(K \otimes_k M_n(k) \rightarrow M_n(K) \), where for a ring \(R \), \(M_n(R) \) denotes the ring of \(n \times n \) matrices over \(R \).

(2) Denote by \(S^n \) the unit sphere in \(\mathbb{R}^{n+1} \). If \(F : S^n \rightarrow S^n \) is the antipodal map defined by \(F(x) = -x \), then show by calculation, that the degree of \(F \) is \((-1)^{n+1}\).

(3) Let \(C([0,1]) \) be the complex vector space of continuous complex-valued functions on \([0,1]\).

(a) Suppose that \(\{f_n\} \) is a sequence in \(C([0,1]) \) and that \(f \) is a function on \([0,1]\) such that \(f_n \) converges uniformly to \(f \). Show that \(f \in C([0,1]) \).

(b) Assume without proof that
\[
\|f\|_{\infty} := \sup \{ |f(t)| : t \in [0,1] \}
\]
is a norm on \(C([0,1]) \). Show that \(C([0,1]) \) is a Banach space with respect to \(\|\cdot\|_{\infty} \).

(4) Let \(T \) be a linear operator on a finite dimensional vector space \(V \) defined over a field \(k \). Let \(\chi_T(x) = (x - \lambda_1)^{m_1} \cdots (x - \lambda_r)^{m_r} \) be the characteristic polynomial, and assume all the \(\lambda_i \) are distinct. Let \(V_i \) be the eigenspace corresponding to the eigenvalue \(\lambda_i \).

(a) Show that \(\dim V_i \geq 1 \) for all \(i, 1 \leq i \leq r \).

(b) Choose nonzero \(v_i \in V_i \). Show that \(\{v_1, \ldots, v_r\} \) is linearly independent.

(c) Conclude that if \(\dim V_i = m_i \) for all \(i \), then \(T \) is diagonalizable.

(5) Determine the singular homology groups of the standard torus (i.e., regarded as an identification space of a 2-dimensional rectangle) using the Mayer-Vietoris sequence.

(6) Let \(\mathcal{H} \) be a complex Hilbert space and \(T : \mathcal{H} \rightarrow \mathcal{H} \) a linear map.

(a) Show that if \(T \) is bounded, then there is a linear map \(S : \mathcal{H} \rightarrow \mathcal{H} \) such that \((Tv \mid w) = (v \mid Sw)\) for all \(v, w \in \mathcal{H} \). (In other words, show that \(T \) has an adjoint.)

(b) Conversely, show that if there is a (not necessarily bounded) map \(S : \mathcal{H} \rightarrow \mathcal{H} \) such that \((Tv \mid w) = (v \mid Sw)\) for all \(v, w \in \mathcal{H} \), then \(T \) is bounded.
(1) Show that any group of order 30 is the semidirect product of two smaller abelian groups.

(2) Let \(f \) be a complex function on an open connected subset \(\Omega \) of the complex plane.
(a) What are the Cauchy-Riemann equations for \(f \) at \(z_0 \in \Omega \)?
(b) Discuss the existence of the complex derivative \(f'(z_0) \) in terms of the Cauchy-Riemann equations at \(z_0 \). (Ideally, you should give both necessary as well as sufficient conditions for \(f'(z_0) \) to exist. Note that you are not asked to prove anything here.)
(c) Show that a real-valued function on \(\Omega \) is holomorphic if and only if it is constant.

(3) Let \(m > 1 \) be a square-free integer, and \(n \geq 1 \) an odd integer. Let \(\mathbb{F}/\mathbb{Q} \) be any field extension with \([\mathbb{F} : \mathbb{Q}] = 2\). Show that \(x^n - m \) is irreducible in the polynomial ring \(\mathbb{F}[x] \).

(4) Let \(\mathcal{H} \) be a complex Hilbert space and \(T : \mathcal{H} \to \mathcal{H} \) a linear map.
(a) What does it mean for \(T \) to be bounded?
(b) Define the operator norm, \(||T|| \), of \(T \) and show that \(||Th|| \leq ||T|| \cdot ||h|| \) for all \(h \in \mathcal{H} \).
(c) Show that \(T \) is bounded if and only if \(T \) is continuous from \(\mathcal{H} \) to \(\mathcal{H} \).

(5) Let \(\phi_1 \) and \(\phi_2 \) be two charts on \(\mathbb{R} \) defined by \(\phi_1(t) = t \) and \(\phi_2(t) = t^3 \). Are they \(C^\infty \) compatible? Prove your answer.

(6) Define the wedge product of two differential forms on a manifold. How does one use this operation to define the cup product of two de Rham cohomology classes? Prove that the cup product is well defined.