Algebra questions

1. Let L be the splitting field of $x^{15} - 8$ over \mathbb{Q}, and let G be the Galois group $\text{Gal}(L/\mathbb{Q})$.

 (a) Show that G is a semidirect product of two proper subgroups K and H.

 (b) Identify the subgroups K, H as subgroups of the Galois group, i.e., in terms of intermediate fields, and determine their isomorphism types.

2. Give three equivalent conditions which characterize when an algebraic extension of fields L/K is a normal extension, and prove any two are equivalent.

3. Let F be a field of characteristic 0, $f \in F[x]$ an irreducible polynomial of degree $n \geq 1$, and K the splitting field of f over F. It should be well-known that $[K : F] \leq n!$. The point of this problem is to show $[K : F] \mid n!$. Hint: prove that there exists an injective homomorphism $\text{Gal}(K/F) \to S_n$ where S_n is the symmetric group on n letters.

4. Let G be a group of order pqr, where $p < q < r$ are distinct primes. Show that G is solvable.

5. Let K be the subgroup of $G = \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}$ generated by the three elements: $u_1 = (1, -3, -2)$, $u_2 = (1, 3, 2)$, and $u_3 = (3, 3, 4)$. Determine the structure of the quotient G/K as a direct sum of cyclic groups.

6. Let R be a commutative ring. An R-module M is flat if the functor $M \otimes_R (\cdot)$ is exact. Prove that any projective R-module is flat.

Topology questions

1. Let M be a smooth manifold, and let x^1, \ldots, x^n be a local coordinate system defined on an open set $U \subseteq M$. Consider the $(1, 1)$-tensor field C defined on U in local coordinates by

 $$C = \sum_{i=1}^{n} dx^i \otimes \frac{\partial}{\partial x^i}.$$

 Show that C is independent of the choice of local coordinates and hence defines a smooth global tensor field on M.

2. Determine the the critical points of the determinant mapping $\det: M_n(\mathbb{R}) \to \mathbb{R}$ defined on the space of $n \times n$ matrices. [Hint: The determinant is multilinear as a function of the columns of a matrix.]
3. Let $S \subseteq \mathbb{R}^3$ be the surface with boundary given by

$$S = \{(x, y, z) : z = x^2 + y^2, z \leq 9\},$$

oriented by the unit normal field $N = (n_1, n_2, n_3)$ with $n_3 < 0$. Let ω be the 2-form on \mathbb{R}^3 given by

$$\omega = e^{z \sin y} dy \wedge dz + \tan^{-1}(x \sinh z) dz \wedge dx + 2 dx \wedge dy.$$

Compute the integral $\int_S \omega$.

4. Suppose that a space X is the disjoint union $X = U \sqcup V$ of two open subspaces U and V.

(a) Use the Eilenberg-Steenrod axioms to prove that for any homology theory, the homology groups of X are given in terms of those of U and V by

$$H_q(X) = H_q(U) \oplus H_q(V).$$

(b) Why is this result easier if we take the homology theory to be singular homology?

5. Let $p : Y \to X$ be a covering map. Let Z be any connected space, and let $f : Z \to X$ be a continuous map. Suppose that $f_1 : Z \to Y$ and $f_2 : Z \to Y$ are continuous lifts of f (i.e., $p \circ f_i = f$ for $i = 1, 2$) that agree at some point $z_0 \in Z$. Show that $f_1 = f_2$ on all of Z.

6. Consider the space X obtained as the quotient space of a planar hexagon and its interior by identifying boundary edges of the hexagon in pairs according to the following scheme:

```
1 ← a ← 2
c

6
b

3
c

5 ← a ← 4
```

Compute the homology groups of X.

Analysis questions

1. State the Hahn-Banach Theorem and use it to show that if B is a Banach space, then its dual, B^*, of bounded linear functionals separates points of B. (That is, you are asked to show that if a and b are distinct elements of B, then there is a $\phi \in B^*$ such that $\phi(a) \neq \phi(b)$.)
2. State the Residue Theorem (from Complex Analysis) and use it to evaluate
\[\int_0^\infty \frac{x^2}{(x^2 + a^2)^2} \, dx \quad \text{for } a > 0. \]
Be sure to justify any limits required.

3. Consider a power series
\[\sum_{n=1}^\infty a_n x^n \quad (\dagger) \]
for real constants \(a_n \in \mathbb{R} \). Show that there is a \(\rho \in [0, \infty] \) such that either
(i) \(\rho = 0 \) by which we mean (\dagger) converges only for \(x = 0 \), or
(ii) \(\rho = \infty \) by which we mean (\dagger) converges absolutely for all \(x \), or
(iii) \(0 < \phi < \infty \) and (\dagger) converges absolutely if \(|x| < \rho \) and diverges if \(|x| > \rho \).
Give examples (with all \(a_n \neq 0 \)) where \(\rho = 0 \), \(\rho = \infty \) and \(0 < \phi < \infty \).

4. Give a precise statement of the theorem which implies that a holomorphic function on an open subset of the complex plain is locally represented by a power series. Use your theorem to calculate the radius of convergence of the MacLaurin series for
\[f(z) = \frac{1}{1 + e^z}. \]
(The MacLaurin series is just the Taylor series for \(f \) about \(z = 0 \).)

5. Let \(\mu \) be a measure on the Borel sets of \(\mathbb{R} \) such that for any Borel set \(E \subseteq \mathbb{R} \) we have
\[\mu(E) = \inf \{ \mu(U) : U \text{ is an open set containing } E \} \]
and \(\mu([a, b]) < \infty \) for an interval \([a, b]\).

(i) Show that for any \(\epsilon > 0 \) there is an open set \(O \) and a closed set \(C \) such that \(C \subseteq E \subseteq O \) and \(\mu(O \setminus C) < \epsilon \).

(ii) Using the above, show that there are Borel sets \(G \) and \(F \) such that \(F \subseteq E \subseteq G \) with \(\mu(G \setminus F) = 0 \).

(Hint: Finding a neighborhood \(O \) of \(E \) such that \(\mu(O \setminus E) < \epsilon \) is pretty easy if \(\mu(E) < \infty \).)

6. Show that a continuous function \(f : (0, 1] \to \mathbb{R} \) is uniformly continuous if and only if there is continuous extension \(g : [0, 1] \to \mathbb{R} \). (That is, \(g \) is a continuous function such that \(g(x) = f(x) \) for all \(x \in (0, 1] \).)