1. Let V be a 3-dimensional \mathbb{Q}-vector space, and let $T : V \to V$ be a linear operator that has eigenvalues 1 and 2 but is not diagonalizable.

 (a) What are the possible rational canonical forms of T?

 (b) What are the possible Jordan canonical forms of the operator $\text{Id} \otimes T : \mathbb{C} \otimes \mathbb{Q} V \to \mathbb{C} \otimes \mathbb{Q} V$ on the complexification?

2. Let A be an integral domain.

 (a) Define what it means for an element $\pi \in A$ to be irreducible.

 (b) Suppose that $\pi \in A$ is irreducible. Show that the polynomial ring $A[x]$ is not a PID.

 (c) Show that $A[x]$ is a PID if and only if A is a field.

3. Let V be a finite-dimensional vector space over a field k of characteristic zero, and let $\langle \cdot, \cdot \rangle : V \times V \to k$ be a skew-symmetric bilinear form.

 (a) State what it means to say that the form is nondegenerate.

 (b) Let $W \subseteq V$ be a subspace of such that the restriction $\langle \cdot, \cdot \rangle : |_{W \times W} : W \times W \to k$ is nondegenerate. Show that V admits an orthogonal decomposition $V = W \oplus W^\perp$, where $W^\perp = \{ x \in V : \forall w \in W, \langle x, w \rangle = 0 \}$. Show also that if the bilinear form on V was nondegenerate, then so is its restriction to W^\perp.

 (c) Show that if the form is nondegenerate on V, then V is even-dimensional, and it has a basis relative to which the Gram matrix of the form is

 $\begin{bmatrix} 0 & -I_n \\ I_n & 0 \end{bmatrix}$,

 where I_n is the $n \times n$ identity matrix.

4. Let K be a field of prime characteristic p, \mathbb{F}_p the finite field with p elements.

 (a) First assume that K/\mathbb{F}_p is an algebraic extension. Show that for every $\alpha \in K$, there is a unique $\beta \in K$ with $\beta^p = \alpha$.

 (b) Now let K be an arbitrary field of characteristic p, and assume that L/K is a finite extension with $[L : K] = n$ and $p \nmid n$. Show that L/K is a separable extension of fields.
5. A nonabelian group G has exactly three conjugacy classes. What group is G, and why?

6. Let $n = 13 \cdot 29 = 377$, and $m \geq 3$ a square-free integer. Let L be the splitting field over \mathbb{Q} of $(x^7 - m)(x^n - 1)$.

 (a) Determine the splitting field L/\mathbb{Q} and its degree over \mathbb{Q}, justifying all steps.
 (b) Determine whether or not $\text{Gal}(L/\mathbb{Q})$ is abelian.
 (c) Determine whether or not $\text{Gal}(L/\mathbb{Q})$ is a solvable group, and if so, give an appropriate normal tower which demonstrates this fact. If not, be clear why the extension fails to have a solvable Galois group.

Topology

1. Let X and Y be topological spaces with $x_0 \in X$ and $y_0 \in Y$. Let $X \times Y$ have the product topology. Show that $\pi(X \times Y, (x_0, y_0))$ is isomorphic to $\pi(X, x_0) \times \pi(Y, y_0)$.

2. Let M be a smooth manifold, X a continuous vector field on M (i.e., a continuous section of the tangent bundle TM). There are two reasonable definitions of what it means for X to be smooth at a point p in M:

 (a) Definition 1: Let (x, U) be a local coordinate system defined on an open neighborhood U of p; then X can be expressed in local coordinates as $X = \sum_{i=1}^{n} a^i \frac{\partial}{\partial x^i}$ for some real-valued functions a^1, \ldots, a^n defined on U. Then X is smooth at p provided that each coefficient function a^i is smooth at p.
 (b) Definition 2: The vector field X is smooth at p if for every smooth function f defined on a neighborhood of p, the function $X(f)$ is smooth at p.

 Prove that these two definitions are equivalent.

3. Show that S^{n-1} is not a retract of $E^n = \{ x \in \mathbb{R}^n : |x| \leq 1 \}$ for $n \geq 1$. Use this to prove the Brouwer Fixed-Point Theorem; that is, show that if $n \geq 1$, then any continuous map $f : E^n \to E^n$ must have a fixed point.

4. a) Does a boundary of a parallelizable manifold have to be a parallelizable manifold? Prove your answer.
 b) Does a product of two parallelizable manifolds have to be a parallelizable manifold? Prove your answer.
 c) Is the Klein bottle a parallelizable manifold? How about the torus $S^1 \times S^1$? Prove your answer.
5. Let \(n \geq 2 \) and \(B \subset S^n \) be a wedge of two circles; that is, \(B \) is a closed subset of \(S^n \) homeomorphic to a figure eight so that \(B = C \cup D \) with \(C \) and \(D \) homeomorphic to \(S^1 \) and \(C \cap D \) a single point. Compute \(H_q(S^n \setminus B) \) for \(n \geq 2 \).

6. a) Let \(\phi : S^2 \to \mathbb{R}^{17} \) be a smooth map. Let \(\omega \) be a closed 2-form on \(\mathbb{R}^{17} \). Compute the integral \(\int_{S^2} \phi^* \omega \).

 b) Let \(\phi : S^3 \to S^2 \) and \(\psi : S^2 \to S^4 \) be smooth maps of oriented manifolds. Let \(\omega \) be a 3-form on \(S^4 \). Compute \(\int_{S^3} (\psi \circ \phi)^* \omega \).

Analysis

1. Suppose \(f \) is entire and \(\lim_{z \to \infty} f(z) \in \mathbb{C} \) exists. Show that \(f \) is constant.

2. Let \((V, (\cdot, \cdot))\) be an inner product space over the field \(\mathbb{F} \).

 a.) If \(\mathbb{F} = \mathbb{R} \), show that vectors \(x, y \in V \) are orthogonal if and only if

 \[
 \|x + y\|^2 = \|x\|^2 + \|y\|^2.
 \]

 b.) Show that (a) is false for any complex \((\mathbb{F} = \mathbb{C})\) inner product space \(V \), where \(x \) can be any nonzero vector in \(V \). (Hint: \(y \) should be more imaginary than \(x \).)

3. In each of the following, you are given a domain \(D \) and a function \(f : D \to \mathbb{C} \). Determine whether \(f \) has an anti-derivative on \(D \).

 (a) \(f(z) = e^{1/z} \log(z) \) where \(D \) is the complex plane with the origin and negative real axis removed.

 (b) \(f(z) = \frac{1}{z^2 - 1} \) where \(D \) consists of all points in \(\mathbb{C} \) except for \(\pm 1 \).

 (c) \(f(z) = \exp\left(\frac{1}{z^2}\right) \), where \(D = \mathbb{C} \setminus \{0\} \).

4. Consider \(C[0, 1] \) with the uniform norm \(\|f\|_\infty = \sup_{x \in [0, 1]} |f(x)| \). Show that the linear map

 \[
 V : C[0, 1] \to C[0, 1]
 \]

 defined by the formula

 \[
 V(f)(x) = \int_0^x f(t) \, dt
 \]

 is a bounded linear operator with no eigenvalues.

5. Find the limit of each of the following sequences of integrals. Justify fully. (Here \(m \) denotes Lebesgue measure on \(\mathbb{R} \).)
6. Let f, g be 2π-periodic (Lebesgue) measurable functions on \mathbb{R}. Let $f \ast g$ denote the (normalized) convolution function

$$f \ast g(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) g(x - t) \, dt.$$

a.) Show that if (their restrictions) $f, g \in L^2[-\pi, \pi]$ then $f \ast g(x)$ exists and is bounded on $[-\pi, \pi]$, in fact,

$$\|f \ast g\|_{\infty} = \sup_{x \in [-\pi, \pi]} |f \ast g(x)| \leq \frac{1}{2\pi} \|f\|_2 \|g\|_2.$$

b.) Show also that $\hat{f} \ast g(n) = \hat{f}(n) \hat{g}(n)$ for all $n \in \mathbb{Z}$, where

$$\hat{f}(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-inx} \, dx$$

is the n-th Fourier coefficient of f for $n \in \mathbb{Z}$.

(a) \(\lim_{n \to \infty} \int_{[0,\infty)} f_n \, dm \) where \(f_n(x) = \frac{\sin(nx)}{n(1 + x^2)} \)

(b) \(\lim_{n \to \infty} \int_{[0,\infty)} f_n \, dm \) where \(f_n(x) = e^{-\frac{x}{n}} \frac{1}{1 + x} \).