1. Let V be a finite-dimensional vector space over a field k, and let $T : V \to V$ be a linear operator. Show that there is a decomposition $V = V_i \oplus V_n$ of V into T-invariant subspaces such that $T|_{V_i} : V_i \to V_i$ is invertible and $T|_{V_n} : V_n \to V_n$ is nilpotent.

2. Let A be a commutative ring, and let S and T be multiplicatively closed subsets of A such that $1 \in S \subseteq T$.

(a) Show that there is a well defined ring homomorphism $f : S^{-1}A \to T^{-1}A$ defined by $\frac{a}{s} \mapsto \frac{a}{s}$.

(b) Show that the following are equivalent:
 i. The map f is an isomorphism.
 ii. For each $t \in T$, the element $\frac{t}{1} \in S^{-1}A$ is a unit in $S^{-1}A$.
 iii. For each $t \in T$, there exists $x \in A$ such that $xt \in S$.

3. Show that the group $\text{SL}_2(\mathbb{F}_4)$ of two by two matrices of determinant one over the four-element field \mathbb{F}_4 is isomorphic to the alternating group A_5.

4. In this problem, each part is independent of the others. For each part, give a short but complete answer.

(a) Is $f(x) = x^3 + x + 1$ irreducible over \mathbb{F}_{256}?

(b) Let $\alpha = \sqrt[3]{10 + 6\sqrt{3}} \in \mathbb{R}$, i.e., $\alpha \in \mathbb{R}_{>0}$ satisfies $\alpha^3 = 10 + 6\sqrt{3} > 0$. Is the extension $\mathbb{Q}(\alpha)$ Galois over \mathbb{Q}?

(c) Let $K \supseteq F$ be an algebraic field extension, not necessarily finite. Let $R \subseteq K$ be a ring such that $F \subseteq R$. Show that R is a field.

5. Recall that a quartic polynomial $f(x) = x^4 + ax^2 + bx + c$ has discriminant
 \[D(f) = 16a^4c - 4a^3b^2 - 128a^2c^2 + 144ab^2c - 27b^4 + 256c^3 \]
and resolvent cubic
 \[g(x) = x^3 - ax^2 - 4cx + (4ac - b^2). \]

(a) For all primes $p \neq 3, 5$, determine the Galois group of $f_p(x) = x^4 + px + p$ over \mathbb{Q}.

(b) Determine the Galois group of $f_3(x) = x^4 + 3x + 3$. [Hint: reduce modulo 13.]

6. Let $\zeta = e^{2\pi i/15} \in \mathbb{C}$.

(a) Let $f(x) \in \mathbb{Q}[x]$ be the minimal polynomial of ζ over \mathbb{Q}. What is the degree of $f(x)$? List the zeros of $f(x)$.

(b) Show that $K = \mathbb{Q}(\zeta)$ is Galois over \mathbb{Q}.

(c) Let $G := \text{Gal}(K | \mathbb{Q})$. Exhibit an element $\sigma \in G$ of order 4.

(d) Consider $\alpha = \zeta + \zeta^{-1} = 2\cos(2\pi/15)$. Is the field $\mathbb{Q}(\alpha)$ constructible?
1. Use the dominated convergence theorem (DCT) to prove the following:

Theorem Let \(f : \mathbb{R} \rightarrow \mathbb{R} \) be differentiable and \(f' \) be bounded. Then \(f' \) is Lebesgue integrable on a closed interval \([a, b]\) and

\[
\int_a^b f'(x) d\lambda = f(b) - f(a).
\]

Hint: Consider the functions \(g_n(x) := n \cdot (f(x + \frac{1}{n}) - f(x)) = \frac{f(x + \frac{1}{n}) - f(x)}{\frac{1}{n}} \) for \(n \in \mathbb{N} \).

2. Let \(\gamma \) be a simple closed path around a bounded convex domain \(\Omega \subset \mathbb{C} \). Let \(f : \mathbb{C} \rightarrow \mathbb{C} \) be holomorphic. Show that

\[
\int_{\gamma} \frac{f'(w)}{w - z} \, dw = \int_{\gamma} \frac{f(w)}{(w - z)^2} \, dw \quad \text{for all} \quad z \in \mathbb{C} \setminus \{\gamma\}
\]

3. (Liouville’s theorem)
 a) State Liouville’s theorem.
 b) Let \(f, g : \mathbb{C} \rightarrow \mathbb{C} \) be entire functions, such that

\[
|f(z)| \leq |g(z)| \quad \text{for all} \quad z \in \mathbb{C}.
\]

Show that \(f(z) = c \cdot g(z) \) for some constant \(c \in \mathbb{C} \).

Hint: Consider the function \(\frac{f}{g} \).

4. Let \(X \) be a complex Banach space and \(\phi : X \rightarrow \mathbb{C} \) a linear map. Show that \(\phi \) is bounded if and only if \(\phi \) is continuous at \(0 \).

5. Let \(A \) be the collection \(C([0, 1]) \) of continuous complex-valued functions on \([0, 1]\). Show that \(A \) is complete with respect to the metric \(\rho(f, g) = \sup_{x \in [0, 1]} |f(x) - g(x)| \).

6. Let \(H \) be a complex Hilbert space and \(T : H \rightarrow H \) a linear map. Show that \(T \) is bounded if and only if \(T \) is continuous from \(H \) to \(H \) when \(H \) is given the weak topology.
1. Let M and N be smooth manifolds.

(a) Let $A \subseteq M$ be an arbitrary non-empty subset. What does it mean for a function $F : A \rightarrow N$ to be smooth?

(b) Let $A \subseteq M$ be a non-empty closed subset of M, $F : A \rightarrow \mathbb{R}^k$ a smooth function, and $O \subseteq M$ an open subset of M containing A. Please show there exists a smooth function $\tilde{F} : M \rightarrow \mathbb{R}^k$ such that the restriction of \tilde{F} to A agrees with F and the support of \tilde{F} is contained in O.

2. Let M be a smooth manifold and recall that given a smooth diffeomorphism $F : M \rightarrow M$ and a smooth vector field X on M, we obtain a smooth vector field $Y = F_*(X)$ on M via $Y_p \equiv F_*(X_{F^{-1}(p)})$. Now, let G be a Lie group and $\nu : G \rightarrow G$ be given by $x \mapsto x^{-1}$. Please demonstrate that for any left-invariant vector field X on G, the vector field $Y \equiv \nu_*(X)$ is right-invariant.

3. Let ω be the smooth 1-form on \mathbb{R}^3 given by

$$\omega = (e^{y+z} - 2y)dx + (xe^{y+z} + y)dy + e^{x+y}dz,$$

and let $S \subset \mathbb{R}^3$ be graph of the function $f(x, y) = x^2 + y^2$ over the unit disk:

$D = \{(x, y) : x^2 + y^2 \leq 1\}$. Please compute

$$\int_S d(i^*\omega).$$

4. Let $X = \mathbb{R}^3 \setminus (C \cup L)$ be the manifold obtained from \mathbb{R}^3 by removing the circle $C = \{(\cos t, \sin t, 0) \mid 0 \leq t < 2\pi\}$ and the z-axis $L = \{(0, 0, z) \mid z \in \mathbb{R}\}$.

What is the fundamental group of X?

5. (a) Choose a Δ-complex structure for the real projective plane $\mathbb{R}P^2$.

(b) Compute the cohomology ring $H^\bullet(\mathbb{R}P^2; \mathbb{Z}_2)$, and show that it is isomorphic to $\mathbb{Z}_2[x]/(x^3)$, where x is an element of degree 1.

6. Prove that every continuous map $f : S^2 \rightarrow S^1 \times S^1$ has degree zero.