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Method of Fundamental Solution (MFS)

Introduction

MFS is an e�cient way to solve partial di�erential equa-
tions (PDEs). The basic idea of MFS is to approximate the
solution u by a linear combination of fundamental solutions
of the problem:

u(r) ¥
NX

j=1
cj�(r ≠ rÕ

j) (1)

where N is the number of approximating functions each of
which is centered at rÕ

j and have coe�cient cj.

Fundamental solution

The fundamental solution for Laplace and Helmholtz equa-
tion is the following:

Laplace
8
<

:
�(r) = ≠ 1

2fi ln r, n=2.

�(r) = 1
4fir, n=3.

fundamental solutuion for Laplace equation when the singularity is at origin
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Helmholtz
8
<

:
�(r) = i

4H
(1)
0 (kr), n=2.

�(r) = eikr

4fir, n=3.

real part of fundamental solutuion for Helmholtz equation when the singularity is at origin and k=10
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Figure 1: 2D fundamental solution centered at origin

Example

Now, we use a test function u = ex cos(y) ≠ ey sin(x) to
demonstrate how to use MFS to solve a PDE. It is easy to
verify that u satisfy Laplace equation.
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Figure 2: set up for 2D Laplace problem and exponential convergence

We match boundary conditions at M points, using N un-
known coe�cients. So equation (1) becomes

Ac = b (2)
where A is a known M -by-N matrix, and b involves the
boundary data. By solving the linear system, we get the
coe�cients cj and we can then evaluate the solution at test
points and compare to the exact solution and get the error.
Figure 2 (b) clearly shows that MFS is exponential conver-
gence as N increases. This is in consistent with Barnett’s
and Katsurada’s work [2][5][4].

Dartmouth Graduate Poster Session April 8th 2014

Numerical Results

MFS combined with Fourier method

MFS applied in 3D can be computationally costly. But for cylindrically symmetric objects, we can exploit the symmetry and
further simplify the problem:

Kn(fl, z, flÕ, zÕ) =
Z 2fi

0
ein◊Õ�(r ≠ rÕ)d◊Õ ¥ 2fi

P

PX

m=1
ein2fim

P �(r ≠ rÕ
m) n = 1, 2, 3...P (3)

where (fl, z), (flÕ, zÕ) are the location of target point and MFS source ring in the flz plane, respectively. P is the number of
Fourier modes. r = (fl, z, 0), rÕ

m = (flÕ, zÕ, 2fim
P ) are the locations of the target point and m-th charge on the ring in a 3D

cylindrical coordinate system, respectively. All the kernels can be evaluated once by the Fast Fourier Transform (FFT). The
original 3D problem becomes P copys of independent 2D problems, one for each Fourier mode.

Helmholtz equation for high-frequency acoustics

We have implemented MFS for high-frequency Helmholtz problem. In figure 3(a), an acoustic wave is traveling in the +y
direction and transmitted into the object and was measured on the plane y = 1.5 (see figure 3a). We can clearly see the shadow
of the object. This method gives the error of order O(10≠10) even with high frequency k+ = 50, k≠ = 75 (31 wavelengths in
diameter) and it only takes 66 seconds to get the coe�cients. Once the matrix is factorized, new incident waves can be solved
in 2 seconds each. Figure 3b shows another wave traveling in the ≠z direction, met the objects, transmitted it and measured
its intensity at plane z = ≠2 with frequency k+ = 10, k≠ = 30.

Figure 3: Helmholtz transmission problem

Full Maxwell equation

The fundamental solution to Maxwell equation is just the electric and magnetic field generated by a single electric or magnetic
dipole. Here we take the electric dipole as the MFS source point. The electric field E and magnetic field H at point r generated
by a unit electric dipole located at r0 and oriented along · is [1] (R = r ≠ r0):

E =
3R(R· ) ≠ ·R2

R5 (1 ≠ ikR) ≠ k2R ◊ (R ◊ · )
R3

� eikR

4fi‘‘0
H =

 1
R2 ≠ ik

R

�
(R ◊ · ) ik0eikR

4fiR(µ0‘0)1/2µ
(4)

Figure 1d plots the z-component of the electric field Ez in the xy plane. The boundary in this problem is a unit sphere. We
can clearly see that the Ez is continuous across the boundary, which indicates the accuracy of the solution. The error tested in
the figure 4(d) case is in the order O(10≠12) and it takes 63 seconds to get the coe�cients. Once the matrix is factorized, new
incident waves can be solved in 0.63 seconds each.

Figure 4: Plots of Ez in the plane z = 0, with dipole source locating at (10, 10, 0) and orienting at (1, 1, 0): (a) k0 = 1 and the domain is perfect electric
conductor; (b)k0 = 1 and the domain is dielectrics; (c) k0 = 10 and the domain is perfect electric conductor; (d)k0 = 10 and the domain is dielectrics.

Future Work

Periodization

MFS can also be used to deal with periodization. In the
example shown in figure 5, there is a 2D square box with
length 2 and centered at origin. We can add MFS source
points outside of the box and impose the periodic conditions
to get the unknown charge strengths of the MFS points.
Figure 5 shows the plot of the solution inside of the box.
We can clearly see that the solution satisfies the periodic
condition. The error tested in this case is in the order
O(10≠13) and it takes 0.06 seconds to get the coe�cients.
We will complete the periodization in 3D.
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2D periodic matching condition when k = 10
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Figure 5: 2D periodic problem, where the blue box is the periodic unit

Periodic arrays of axisymmetric objects

The next goal is to solve the problem involving an ar-
ray of axisymmetric objects (see figure 6). This requires
to combine two kinds of MFS source points. One is the
MFS source points that model the fundamental solution of
Helmholtz equation or Maxwell equation. Another is the
MFS source points that lie outside of the box to model the
imposed periodic condition. We plan to compute it using a
3D generalization of recent method of Barnett–Greengard
[3].

incident light

doubly periodic dielectric

Figure 6: wave scattering from periodic arrays of axisymmetric
objects
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