Sample LATEX document

Thomas R. Shemanske Dartmouth College

July 7, 2000

This is dedicated to the one I love

Abstract

This is a great paper. Read no further, because I don't want you to hurt yourself, but if you can't help yourself, better strap in. It gets bumpy from here on in.

1 Introduction

The results which follow will dwarf all others that have come before. It amazes me that I have been able to write them down. I know that you too will be duely impressed.

2 Preliminaries

What! You don't know what I'm talking about!!

Let's try a little fraktur \mathfrak{ABC} . Let's try a little black board bold $\mathbb{Z}, \mathbb{P}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$. Let's try some other symbols like $x \gg 0$ or \otimes . How about $M \otimes_{\mathbb{Z}} N$ or $\mathbb{Z}^{\mathbb{Z}^{\mathbb{Z}}}$?

How about $p \nmid N$ or \boxplus ?

3 Some sample theorems

Lemma 3.1. Let's put here exactly what we need to prove the next theorem.

Theorem 3.2. Let f be a nonzero element of $S_{k/2}(4N, \psi)$. Then there exist an infinite number of square-free positive integers t such that $\mathbf{S}_t(f) \neq 0$.

Proof. If $\mathbf{S}_t(f) = 0$ for all but a finite number of square-free positive integers t, then by Lemma 3.1 the Fourier coefficients of f are supported on only a finite number of square classes. By Theorem 3 of [3] the weight of f must be 1/2 of 3/2 and at weight 3/2 must be in the span of the theta series h_{ψ} , contrary to assumption.

¹⁹⁹¹ Mathematics Subject Classification. Primary 11Fxx; Secondary 11Fxx

Key Words and Phrases. Maximal Order, Central Simple Algebra, Bruhat–Tits Building

3 SOME SAMPLE THEOREMS

By Theorem 3.2, we see that it we can always find nonzero Shimura lifts.

Definition 3.3. A horse is a horse of course, of course, but noone can talk to a horse of course

Here we have some displayed and aligned equations. Here is an unnumbered displayed equation:

$$T(m)T(n) = \sum_{d|(m,n)} d^{k-1}\chi(d)T(mn/d^2).$$

Here is a numbered displayed equation:

$$T(m)T(n) = \sum_{d|(m,n)} d^{k-1}\chi(d)T(mn/d^2).$$
(3.1)

Here is the same expression, but inline and not displayed. Notice it is set smaller and the summation indeices are placed differently: $T(m)T(n) = \sum_{d|(m,n)} d^{k-1}\chi(d)T(mn/d^2)$. Note I need to use \$ to surround my formula when in an inline mode.

For an aligned display we have

$$\Lambda_N(s;f) = \left(\frac{2\pi}{\sqrt{N}}\right)^{-s} \Gamma(s)L(s;f)$$
$$\Lambda_M(s;g) = \left(\frac{2\pi}{\sqrt{M}}\right)^{-s} \Gamma(s)L(s;g)$$

A numbered version is given by

$$\Lambda_N(s;f) = \left(\frac{2\pi}{\sqrt{N}}\right)^{-s} \Gamma(s)L(s;f)$$
(3.2)

$$\Lambda_M(s;g) = \left(\frac{2\pi}{\sqrt{M}}\right)^{-s} \Gamma(s)L(s;g)$$
(3.3)

A version with only one number associated to the group of equations is given by

$$\Lambda_N(s;f) = \left(\frac{2\pi}{\sqrt{N}}\right)^{-s} \Gamma(s)L(s;f)$$

$$\Lambda_M(s;g) = \left(\frac{2\pi}{\sqrt{M}}\right)^{-s} \Gamma(s)L(s;g)$$
(3.4)

Something with cases

$$\phi_p(s) = \begin{cases} \left(\frac{1-b(p)p^{-s} + \psi(p)p^{k-1-2s}}{1-a(p)p^{-s} + \chi(p)p^{k-1-2s}}\right) & \text{if } p \mid L\\ 1 & \text{if } p \nmid L. \end{cases}$$

Theorem 3.4. Suppose that N is an odd positive integer and ψ is an even Dirichlet character defined modulo 4N. Let $F \in S_{k-1}^+(N, \psi^2) \cup S_{k-1}^+(2N, \psi^2)$ be a normalized newform, and suppose that $S_{k/2}(4M, \psi, F) \neq 0$ for some $M \mid N$. Then

- 1. M = N
- 2. $S_{k/2}^{-}(4N,\psi) \cap S_{k/2}(4N,\psi,F) = \{0\}$, and so $S_{k/2}(4N,\psi,F) \subset S_{k/2}^{+}(4N,\psi)$.
- 3. If N is square-free and $\psi^2 = 1$, then $S^+_{k/2}(4N, \psi)_K \subset S^+_{k/2}(4N, \psi)$.

Let's get the other references in now. See [1] and [2].

References

- B. Cipra, On the Niwa-Shintani Theta-Kernel Lifting of Modular Forms, Nagoya Math. J., 91, (1983), 49–117.
- [2] N. Koblitz, "Introduction to Elliptic Curves and Modular Forms", Springer-Verlag, New York, 1984.
- [3] J.-P. Serre and H. Stark, Modular Forms of Weight 1/2, In Lecture Notes in Math. 627, Springer-Verlag, Berlin and New York, (1977), 27–67.

DEPARTMENT OF MATHEMATICS, DARTMOUTH COLLEGE, HANOVER, NEW HAMPSHIRE 03755 E-mail address: Jumpin'.Jack.Flash@dartmouth.edu URL: http://www.math.dartmouth.edu/~trs/