This paper is dedicated to the one I love.

Abstract

This is a great paper. Read no further, because I don’t want you to hurt yourself, but if you can’t help yourself, better strap in. It gets bumpy from here on in.

1 Introduction

The results which follow will dwarf all others that have come before. It amazes me that I have been able to write them down. I know that you too will be duly impressed.

2 Preliminaries

What! You don’t know what I’m talking about!!

Let’s try a little fraktur \(\mathbb{A}, \mathbb{B}, \mathbb{C} \). Let’s try a little black board bold \(\mathbb{Z}, \mathbb{P}, \mathbb{Q}, \mathbb{R}, \mathbb{C} \). Let’s try some other symbols like \(x \gg 0 \) or \(\otimes \). How about \(M \otimes \mathbb{Z} N \) or \(\mathbb{Z}^{\mathbb{Z}} \)?

How about \(p \nmid N \) or \(\boxplus \)?

3 Some sample theorems

Lemma 3.1. Let’s put here exactly what we need to prove the next theorem.

Theorem 3.2. Let \(f \) be a nonzero element of \(S_{k/2}(4N, \psi) \). Then there exist an infinite number of square-free positive integers \(t \) such that \(S_t(f) \neq 0 \).

Proof. If \(S_t(f) = 0 \) for all but a finite number of square-free positive integers \(t \), then by Lemma 3.1 the Fourier coefficients of \(f \) are supported on only a finite number of square classes. By Theorem 3 of [3] the weight of \(f \) must be \(1/2 \) of \(3/2 \) and at weight \(3/2 \) must be in the span of the theta series \(h_{\psi} \), contrary to assumption. \(\square \)

1991 Mathematics Subject Classification. Primary 11Fxx; Secondary 11Fxx

Key Words and Phrases. Maximal Order, Central Simple Algebra, Bruhat–Tits Building
By Theorem 3.2, we see that it we can always find nonzero Shimura lifts.

Definition 3.3. A horse is a horse of course, of course, but noone can talk to a horse of course

Here we have some displayed and aligned equations.

Here is an unnumbered displayed equation:

\[T(m)T(n) = \sum_{d/(m,n)} d^{k-1} \chi(d)T(mn/d^2). \]

Here is a numbered displayed equation:

\[T(m)T(n) = \sum_{d/(m,n)} d^{k-1} \chi(d)T(mn/d^2). \quad (3.1) \]

Here is the same expression, but inline and not displayed. Notice it is set smaller and the summation indices are placed differently: \(T(m)T(n) = \sum_{d/(m,n)} d^{k-1} \chi(d)T(mn/d^2) \). Note I need to use $ to surround my formula when in an inline mode.

For an aligned display we have

\[
\begin{align*}
\Lambda_N(s; f) &= \left(\frac{2\pi}{\sqrt{N}} \right)^{-s} \Gamma(s)L(s; f) \\
\Lambda_M(s; g) &= \left(\frac{2\pi}{\sqrt{M}} \right)^{-s} \Gamma(s)L(s; g)
\end{align*}
\]

A numbered version is given by

\[
\begin{align*}
\Lambda_N(s; f) &= \left(\frac{2\pi}{\sqrt{N}} \right)^{-s} \Gamma(s)L(s; f) \quad (3.2) \\
\Lambda_M(s; g) &= \left(\frac{2\pi}{\sqrt{M}} \right)^{-s} \Gamma(s)L(s; g) \quad (3.3)
\end{align*}
\]

A version with only one number associated to the group of equations is given by

\[
\begin{align*}
\Lambda_N(s; f) &= \left(\frac{2\pi}{\sqrt{N}} \right)^{-s} \Gamma(s)L(s; f) \\
\Lambda_M(s; g) &= \left(\frac{2\pi}{\sqrt{M}} \right)^{-s} \Gamma(s)L(s; g)
\end{align*}
\]

A version with only one number associated to the group of equations is given by

\[
\begin{align*}
\Lambda_N(s; f) &= \left(\frac{2\pi}{\sqrt{N}} \right)^{-s} \Gamma(s)L(s; f) \\
\Lambda_M(s; g) &= \left(\frac{2\pi}{\sqrt{M}} \right)^{-s} \Gamma(s)L(s; g)
\end{align*}
\]

Something with cases

\[
\phi_p(s) = \begin{cases}
\frac{(1-b(p)p^{-s}+\psi(p)p^{k-1-2s})}{1-a(p)p^{-s}+\chi(p)p^{k-1-2s}} & \text{if } p \mid L \\
1 & \text{if } p \nmid L.
\end{cases}
\]
Theorem 3.4. Suppose that N is an odd positive integer and ψ is an even Dirichlet character defined modulo $4N$. Let $F \in S_{k-1}^+(N, \psi^2) \cup S_{k-1}^+(2N, \psi^2)$ be a normalized newform, and suppose that $S_{k/2}(4M, \psi, F) \neq 0$ for some $M | N$. Then

1. $M = N$

2. $S_{k/2}^-(4N, \psi) \cap S_{k/2}(4N, \psi, F) = \{0\}$, and so $S_{k/2}(4N, \psi, F) \subset S_{k/2}^+(4N, \psi)$.

3. If N is square-free and $\psi^2 = 1$, then $S_{k/2}^+(4N, \psi)_K \subset S_{k/2}^+(4N, \psi)$.

Let’s get the other references in now. See [1] and [2].

References

