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Preface

This book is an introduction to combinatorial mathematics, also known
as combinatorics. The book focuses especially but not exclusively on the
part of combinatorics that mathematicians refer to as “counting.” The book
consists almost entirely of problems. Some of the problems are designed to
lead you to think about a concept, others are designed to help you figure out
a concept and state a theorem about it, while still others ask you to prove
the theorem. Other problems give you a chance to use a theorem you have
proved. From time to time there is a discussion that pulls together some
of the things you have learned or introduces a new idea for you to work
with. Many of the problems are designed to build up your intuition for how
combinatorial mathematics works. There are problems that some people
will solve quickly, and there are problems that will take days of thought for
everyone. Probably the best way to use this book is to work on a problem
until you feel you are not making progress and then go on to the next one.
Think about the problem you couldn’t get as you do other things. The next
chance you get, discuss the problem you are stymied on with other members
of the class. Often you will all feel you’ve hit dead ends, but when you
begin comparing notes and listening carefully to each other, you will see
more than one approach to the problem and be able to make some progress.
In fact, after comparing notes you may realize that there is more than one
way to interpret the problem. In this case your first step should be to think
together about what the problem is actually asking you to do. You may have
learned in school that for every problem you are given, there is a method
that has already been taught to you, and you are supposed to figure out
which method applies and apply it. That is not the case here. Based on
some simplified examples, you will discover the method for yourself. Later
on, you may recognize a pattern that suggests you should try to use this
method again.

The point of learning from this book is that you are learning how to
discover ideas and methods for yourself, not that you are learning to apply

vii



viii PREFACE

Table 1: The meaning of the symbols to the left of problem numbers.

• essential
◦ motivational material
+ summary

especially interesting
∗ difficult
· essential for this or the next section

methods that someone else has told you about. The problems in this book
are designed to lead you to discover for yourself and prove for yourself the
main ideas of combinatorial mathematics. There is considerable evidence
that this leads to deeper learning and more understanding.

You will see that some of the problems are marked with bullets. Those
are the problems that I feel are essential to having an understanding of what
comes later, whether or not it is marked by a bullet. The problems with
bullets are the problems in which the main ideas of the book are developed.
Your instructor may leave out some of these problems because he or she
plans not to cover future problems that rely on them. Many problems,
in fact entire sections, are not marked in this way, because they use an
important idea rather than developing one. Some other special symbols are
described in what follows; a summary appears in Table 1.

Some problems are marked with open circles. This indicates that they
are designed to provide motivation for, or an introduction to, the important
concepts, motivation with which some students may already be familiar.
You will also see that some problems are marked with arrows. These point
to problems that I think are particularly interesting. Some of them are also
difficult, but not all are. A few problems that summarize ideas that have
come before but aren’t really essential are marked with a plus, and problems
that are essential if you want to cover the section they are in or, perhaps, the
next section, are marked with a dot (a small bullet). If a problem is relevant
to a much later section in an essential way, I’ve marked it with a dot and a
parenthetical note that explains where it will be essential. Finally, problems
that seem unusually hard to me are marked with an asterisk. Some I’ve
marked as hard only because I think they are difficult in light of what has
come before, not because they are intrinsically difficult. In particular, some
of the problems marked as hard will not seem so hard if you come back to
them after you have finished more of the problems.
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If you are taking a course, your instructor will choose problems for you
to work on based on the prerequisites for and goals of the course. If you are
reading the book on your own, I recommend that you try all the problems
in a section you want to cover. Try to do the problems with bullets, but by
all means don’t restrict yourself to them. Often a bulleted problem makes
more sense if you have done some of the easier motivational problems that
come before it. If, after you’ve tried it, you want to skip over a problem
without a bullet or circle, you should not miss out on much by not doing that
problem. Also, if you don’t find the problems in a section with no bullets
interesting, you can skip them, understanding that you may be skipping an
entire branch of combinatorial mathematics! And no matter what, read
the textual material that comes before, between, and immediately after
problems you are working on!

One of the downsides of how we learn math in high school is that many of
us come to believe that if we can’t solve a problem in ten or twenty minutes,
then we can’t solve it at all. There will be problems in this book that
take hours of hard thought. Many of these problems were first conceived
and solved by professional mathematicians, and they spent days or weeks
on them. How can you be expected to solve them at all then? You have a
context in which to work, and even though some of the problems are so open
ended that you go into them without any idea of the answer, the context
and the leading examples that precede them give you a structure to work
with. That doesn’t mean you’ll get them right away, but you will find a real
sense of satisfaction when you see what you can figure out with concentrated
thought. Besides, you can get hints!

Some of the questions will appear to be trick questions, especially when
you get the answer. They are not intended as trick questions at all. Instead
they are designed so that they don’t tell you the answer in advance. For ex-
ample the answer to a question that begins “How many...” might be “none.”
Or there might be just one example (or even no examples) for a problem
that asks you to find all examples of something. So when you read a ques-
tion, unless it directly tells you what the answer is and asks you to show
it is true, don’t expect the wording of the problem to suggest the answer.
The book isn’t designed this way to be cruel. Rather, there is evidence that
the more open-ended a question is, the more deeply you learn from working
on it. If you do go on to do mathematics later in life, the problems that
come to you from the real world or from exploring a mathematical topic
are going to be open-ended problems because nobody will have done them
before. Thus working on open-ended problems now should help to prepare
you to do mathematics and apply mathematics in other areas later on.
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You should try to write up answers to all the problems that you work
on. If you claim something is true, you should explain why it is true; that
is you should prove it. In some cases an idea is introduced before you have
the tools to prove it, or the proof of something will add nothing to your
understanding. In such problems there is a remark telling you not to bother
with a proof. When you write up a problem, remember that the instructor
has to be able to “get” your ideas and understand exactly what you are
saying. Your instructor is going to choose some of your solutions to read
carefully and give you detailed feedback on. When you get this feedback,
you should think it over carefully and then write the solution again! You
may be asked not to have someone else read your solutions to some of these
problems until your instructor has. This is so that the instructor can offer
help which is aimed at your needs. On other problems it is a good idea to
seek feedback from other students. One of the best ways of learning to write
clearly is to have someone point out to you where it is hard to figure out
what you mean. The crucial thing is to make it clear to your reader that
you really want to know where you may have left something out, made an
unclear statement, or failed to support a statement with a proof. It is often
very helpful to choose people who have not yet become an expert with the
problems, as long as they realize it will help you most for them to tell you
about places in your solutions they do not understand, even if they think it
is their problem and not yours!

As you work on a problem, think about why you are doing what you are
doing. Is it helping you? If your current approach doesn’t feel right, try to
see why. Is this a problem you can decompose into simpler problems? Can
you see a way to make up a simple example, even a silly one, of what the
problem is asking you to do? If a problem is asking you to do something
for every value of an integer n, then what happens with simple values of
n like 0, 1, and 2? Don’t worry about making mistakes; it is often finding
mistakes that leads mathematicians to their best insights. Above all, don’t
worry if you can’t do a problem. Some problems are given as soon as there
is one technique you’ve learned that might help do that problem. Later
on there may be other techniques that you can bring back to that problem
to try again. The notes have been designed this way on purpose. If you
happen to get a hard problem with the bare minimum of tools, you will have
accomplished much. As you go along, you will see your ideas appearing again
later in other problems. On the other hand, if you don’t get the problem
the first time through, it will be nagging at you as you work on other things,
and when you see the idea for an old problem in new work, you will know
you are learning.
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There are quite a few concepts that are developed in this book. Since
most of the intellectual content is in the problems, it is natural that defini-
tions of concepts will often be within problems. When you come across an
unfamiliar term in a problem, it is likely it was defined earlier. Look it up
in the index, and with luck (hopefully no luck will really be needed!) you
will be able to find the definition.

Above all, this book is dedicated to the principle that doing mathematics
is fun. As long as you know that some of the problems are going to require
more than one attempt before you hit on the main idea, you can relax and
enjoy your successes, knowing that as you work more and more problems
and share more and more ideas, problems that seemed intractable at first
become a source of satisfaction later on.

The development of this book is supported by the National Science Foun-
dation. An essential part of this support is an advisory board of faculty
members from a wide variety of institutions who have tried to help me un-
derstand what would make the book helpful in their institutions. They
are Karen Collins, Wesleyan University, Marc Lipman, Indiana Univer-
sity/Purdue University, Fort Wayne, Elizabeth MacMahon, Lafayette Col-
lege, Fred McMorris, Illinois Institute of Technology, Mark Miller, Marietta
College, Rosa Orellana, Dartmouth College, Vic Reiner, University of Min-
nesota, and Lou Shapiro, Howard University. The overall design and most
of the problems in the appendix on exponential generating functions are due
to Professors Reiner and Shapiro. Any errors or confusing writing in that
appendix are due to me! I believe the board has managed both to make the
book more accessible and more interesting.
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Chapter 1

What is Combinatorics?

Combinatorial mathematics arises from studying how we can combine ob-
jects into arrangements. For example, we might be combining sports teams
into a tournament, samples of tires into plans to mount them on cars for
testing, students into classes to compare approaches to teaching a subject,
or members of a tennis club into pairs to play tennis. There are many ques-
tions one can ask about such arrangements of objects. Here we will focus on
questions about how many ways we may combine the objects into arrange-
ments of the desired type. These are called counting problems. Sometimes,
though, combinatorial mathematicians ask if an arrangement is possible (if
we have ten baseball teams, and each team has to play each other team
once, can we schedule all the games if we only have the fields available at
enough times for forty games?). Sometimes they ask if all the arrangements
we might be able to make have a certain desirable property (Do all ways of
testing 5 brands of tires on 5 different cars [with certain additional prop-
erties] compare each brand with each other brand on at least one common
car?). Counting problems (and problems of the other sorts described) come
up throughout physics, biology, computer science, statistics, and many other
subjects. However, to demonstrate all these relationships, we would have
to take detours into all these subjects. While we will give some important
applications, we will usually phrase our discussions around everyday expe-
rience and mathematical experience so that the student does not have to
learn a new context before learning mathematics in context!

1
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1.1 About These Notes

These notes are based on the philosophy that you learn the most about a
subject when you are figuring it out directly for yourself, and learn the least
when you are trying to figure out what someone else is saying about it. On
the other hand, there is a subject called combinatorial mathematics, and
that is what we are going to be studying, so we will have to tell you some
basic facts. What we are going to try to do is to give you a chance to discover
many of the interesting examples that usually appear as textbook examples
and discover the principles that appear as textbook theorems. Your main
activity will be solving problems designed to lead you to discover the basic
principles of combinatorial mathematics. Some of the problems lead you
through a new idea, some give you a chance to describe what you have
learned in a sequence of problems, and some are quite challenging. When
you find a problem challenging, don’t give up on it, but don’t let it stop you
from going on with other problems. Frequently you will find an idea in a
later problem that you can take back to the one you skipped over or only
partly finished in order to finish it off. With that in mind, let’s get started.
In the problems that follow, you will see some problems marked on the left
with various symbols. The preface gives a full explanation of these symbols
and discusses in greater detail why the book is organized as it is! Table 1.1,
which is repeated from the preface, summarizes the meaning of the symbols.

Table 1.1: The meaning of the symbols to the left of problem numbers.

• essential
◦ motivational material
+ summary

especially interesting
∗ difficult
· essential for this or the next section

1.2 Basic Counting Principles

◦1. Five schools are going to send their baseball teams to a tournament, in
which each team must play each other team exactly once. How many
games are required?
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Solution: Think of numbering the five teams. The first team must
play all four others, the second team will be in one of these games but
must play in three more games, with the third, fourth and fifth team.
The third team is in two of the games we’ve already mentioned, and
must still play the fourth and fifth team for two more games, and the
fourth team must play the fifth team in addition to playing in three
of the games already mentioned. Thus there are 4 + 3 + 2 + 1 = 10
games. Alternatively, there are five teams, each of which must play in
four games, giving us 20 pairings of two teams each. However, each
game involves two of these pairings, so there are 20/2 = 10 games.

•2. Now some number n of schools are going to send their baseball teams
to a tournament, and each team must play each other team exactly
once. Let us think of the teams as numbered 1 through n.

(a) How many games does team 1 have to play in?
Solution: n− 1

(b) How many games, other than the one with team 1, does team
two have to play in?
Solution: n− 2

(c) How many games, other than those with the first i − 1 teams,
does team i have to play in?
Solution: n− i

(d) In terms of your answers to the previous parts of this problem,
what is the total number of games that must be played?
Solution: 1 + 2 + · · ·+ n− 1. Although this need not be part
of the answer, a formula that we usually use in both algebra and
calculus courses tells us this sum is n(n− 1)/2.

•3. One of the schools sending its team to the tournament has to send its
players from some distance, and so it is making sandwiches for team
members to eat along the way. There are three choices for the kind
of bread and five choices for the kind of filling. How many different
kinds of sandwiches are available?

Solution: 3 · 5 = 15, or 5 + 5 + 5 = 15.

+ 4. An ordered pair (a, b) consists of two things we call a and b. We say
a is the first member of the pair and b is the second member of the
pair. If M is an m-element set and N is an n-element set, how many
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ordered pairs are there whose first member is in M and whose second
member is in N? Does this problem have anything to do with any of
the previous problems?

Solution: m · n. This is because if M = {x1, x2, . . . , xm}, then we
have n ordered pairs starting with x1, n ordered pairs starting with x2,
and so on, so the total number of ordered pairs is a sum of m terms, all
equal to n. In problem 3 we were looking at ordered pairs of bread and
filling. Less directly, and so not required for the answer, in Problem
1 we have 20 ordered pairs, and each baseball game involved two of
the ordered pairs so we had 10 baseball games. The same argument
applies to Problem 2; namely we have n teams each of which is in an
ordered pair with n−1 other teams, so we have n(n−1) ordered pairs,
and each game corresponds to two ordered pairs so we have n(n−1)/2
games. This gives us one proof of the formula we mentioned in the
solution to that problem.

◦5. Since a sandwich by itself is pretty boring, students from the school
in Problem 3 are offered a choice of a drink (from among five different
kinds), a sandwich, and a fruit (from among four different kinds). In
how many ways may a student make a choice of the three items now?

Solution: 5 · 15 · 4 = 300. Why do we multiply? Multiplying five
by 15 is equivalent to adding 15, the number of sandwiches, once for
each drink, giving us 75 combinations of drink and sandwich. For each
such pair we have 4 choices of fruit, and we can either think of adding
75 fours or adding four 75s to get three hundred. Thus we multiply
because multiplication is repeated addition.

•6. The coach of the team in Problem 3 knows of an ice cream parlor along
the way where she plans to stop to buy each team member a triple
decker cone. There are 12 different flavors of ice cream, and triple
decker cones are made in homemade waffle cones. Having chocolate
ice cream as the bottom scoop is different from having chocolate ice
cream as the top scoop. How many possible ice cream cones are going
to be available to the team members? How many cones with three
different kinds of ice cream will be available?

Solution: 12 · 12 · 12 = 1728 possible cones. If the flavors must be
different, we have 12 · 11 · 10 = 1320 possible cones. In both cases, the
reason we are multiplying is as a shortcut for repeated addition.

•7. The idea of a function is ubiquitous in mathematics. A function f from
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a set S to a set T is a relationship between the two sets that associates
exactly one member f(x) of T with each element x in S. We will come
back to the ideas of functions and relationships in more detail and from
different points of view from time to time. However, the quick review
above should probably let you answer these questions. If you have
difficulty with them, it would be a good idea to go now to Appendix A
and work through Section A.1.1 which covers this definition in more
detail. You might also want to study Section A.1.3 to learn to visualize
the properties of functions. We will take up the topic of this section
later in this chapter as well, but in less detail than is in the appendix.

(a) Using f , g, . . . , to stand for the various functions, write down
all the different functions you can from the set {1, 2} to the set
{a, b}. For example, you might start with the function f given
by f(1) = a, f(2) = b. How many functions are there from the
set {1, 2} to the set {a, b}?
Solution: f(1) = a, f(2) = b. Or, h(1) = a, h(2) = a. Or,
g(1) = b, g(2) = a. Or j(1) = b, j(2) = b. We have exhausted all
the possibilities for functions that associate a with 1 and all possi-
bilities for functions that associate b with 1, so we have exhausted
all possibilities. There are four such functions.

(b) How many functions are there from the three element set {1, 2, 3}
to the two element set {a, b}?
Solution: 2 · 2 · 2 = 8

(c) How many functions are there from the two element set {a, b} to
the three element set {1, 2, 3}?
Solution: 3 · 3 = 9

(d) How many functions are there from a three element set to a 12
element set?
Solution: 12 · 12 · 12 = 1728

(e) A function f is called one-to-one or an injection if whenever x
is different from y, f(x) is different from f(y). How many one-to-
one functions are there from a three element set to a 12 element
set?
Solution: 12 · 11 · 10 = 1320

(f) Explain the relationship between this problem and Problem 6.
Solution: When we counted the number of possible ice cream
cones we were counting functions from the three places in the cone
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where ice cream would sit to the 12 flavors. When we counted
the number of possible ice cream cones with different flavors, we
were counting the number of one-to-one functions from the three
places in the cone where ice cream would sit to the 12 flavors.

•8. A group of hungry team members in Problem 6 notices it would be
cheaper to buy three pints of ice cream for them to split than to buy
a triple decker cone for each of them, and that way they would get
more ice cream. They ask their coach if they can buy three pints of
ice cream.

(a) In how many ways can they choose three pints of different flavors
out of the 12 flavors?
Solution: There are 12 · 11 · 10 = 1320 ways to make a list of
three flavors. But a choice of three flavors accounts for 3 ·2 ·1 = 6
of those lists. Therefore there are 1320/6 = 220 ways to choose
the pints if the flavors are different. We will discuss the idea
behind this solution technique in great detail shortly.

(b) In how many ways may they choose three pints if the flavors don’t
have to be different?
Solution: If the flavors need not be different, we must add in
the number of ways to choose two pints of one flavor and one of a
second and also the number of ways to choose three pints of one
flavor. The first of these is 12 · 11 = 132 and the second is 12,
so we have 220 + 132 + 12 = 364 ways to choose three pints. We
can do a more elegant solution after we learn about multisets in
Problem 125.

•9. Two sets are said to be disjoint if they have no elements in common.
For example, {1, 3, 12} and {6, 4, 8, 2} are disjoint, but {1, 3, 12} and
{3, 5, 7} are not. Three or more sets are said to be mutually disjoint
if no two of them have any elements in common. What can you say
about the size of the union of a finite number of finite (mutually)
disjoint sets? Does this have anything to do with any of the previous
problems?

Solution: The size of a union of disjoint sets is the sum of their sizes.
We used this principle in Problems 1 and 2 directly, and indirectly in
every other problem when we multiplied the number of ways of doing
one thing times the number of ways of doing another. Note that we
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used this principle informally in the explanation in the solution of
Problem 4.

•10. Disjoint subsets are defined in Problem 9. What can you say about
the size of the union of m (mutually) disjoint sets, each of size n? Does
this have anything to do with any of the previous problems?

Solution: The size of the union is m · n. This is because the size of
a union of disjoint sets is the sum of their sizes, and a sum of m terms
each equal to n is m · n.

1.2.1 The sum and product principles

These problems contain among them the kernels of many of the fundamental
ideas of combinatorics. For example, with luck, you just stated the sum
principle (illustrated in Figure 1.1), and product principle (illustrated in
Figure 1.2) in Problems 9 and 10. These are two of the most basic principles
of combinatorics. These two counting principles are the basis on which we
will develop many other counting principles.

Figure 1.1: The union of these two disjoint sets has size 17.

Figure 1.2: The union of four disjoint sets of size five.
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You may have noticed some standard mathematical words and phrases
such as set, ordered pair, function and so on creeping into the problems.
One of our goals in these notes is to show how most counting problems can
be recognized as counting all or some of the elements of a set of standard
mathematical objects. For example, Problem 4 is meant to suggest that the
question we asked in Problem 3 was really a problem of counting all the
ordered pairs consisting of a bread choice and a filling choice. We use A×B
to stand for the set of all ordered pairs whose first element is in A and whose
second element is in B and we call A×B the Cartesian product of A and B.
Thus you can think of Problem 4 as asking you for the size of the Cartesian
product of M and N , that is, asking you to count the number of elements
of this Cartesian product.

When a set S is a union of disjoint sets B1, B2, . . . , Bm we say that the
sets B1, B2, . . . , Bm are a partition of the set S. Thus a partition of S is a
(special kind of) set of sets. So that we don’t find ourselves getting confused
between the set S and the sets Bi into which we have divided it, we often
call the sets B1, B2, . . . , Bm the blocks of the partition. In this language, the
sum principle says that

if we have a partition of a finite set S, then the size of S is
the sum of the sizes of the blocks of the partition.

The product principle says that

if we have a partition of a finite set S into m blocks, each of
size n, then S has size mn.

You’ll notice that in our formal statement of the sum and product principle
we talked about a partition of a finite set. We could modify our language
a bit to cover infinite sizes, but whenever we talk about sizes of sets in
what follows, we will be working with finite sets. So as to avoid possible
complications in the future, let us agree that when we refer to the size of a
set, we are implicitly assuming the set is finite. There is another version of
the product principle that applies directly in problems like Problem 5 and
Problem 6, where we were not just taking a union of m disjoint sets of size
n, but rather m disjoint sets of size n, each of which was a union of m′

disjoint sets of size n′. This is an inconvenient way to have to think about
a counting problem, so we may rephrase the product principle in terms of a
sequence of decisions:

•11. If we make a sequence of m choices for which
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• there are k1 possible first choices, and

• for each way of making the first i − 1 choices, there are ki ways
to make the ith choice,

then in how many ways may we make our sequence of choices? (You
need not prove your answer correct at this time.)

Solution: There are k1 · k2 · · · · · km =
∏m

i=1 ki ways to make the
sequence of choices.

The counting principle you gave in Problem 11 is called the general
product principle. We will outline a proof of the general product principle
from the original product principle in Problem 80. Until then, let us simply
accept it as another counting principle. For now, notice how much easier it
makes it to explain why we multiplied the things we did in Problem 5 and
Problem 6.

12. A tennis club has 2n members. We want to pair up the members by
twos for singles matches.

(a) In how many ways may we pair up all the members of the club?
(Hint: consider the cases of 2, 4, and 6 members.)
Solution: Suppose we list the people in the club in some way
(perhaps in alphabetical order), and keep that list for the remain-
der of the problem. Take the first person from the list and pair
that person with any of the 2n − 1 remaining people. Now take
the next unpaired person from the list and pair that person with
any of the remaining 2n− 3 unpaired people. Continuing in this
way, once k pairs have been selected, take the next unpaired per-
son from the list and pair that person with any of the remaining
2n− 2k− 1 unpaired people. Every pairing can arise in this way,
and no pairing can arise twice in this process. Thus the number
of outcomes is

∏n−1
i=0 2n− 2i− 1. This is the product of the odd

numbers between 1 and 2n − 1. It is also the product of every
second term of (2n)!. Notice that the other n terms of (2n)! are
even. In fact, if we double each term of n!, we would get the
missing terms of (2n)!. Thus

(2n)! = 2nn!
n−1∏
i=0

2n− 2i− 1.
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Therefore the number of tennis pairings is (2n)!
2nn! . While this seems

to be an algebraic trick here, in Problem 44 we will have tools to
explain it combinatorially.

(b) Suppose that in addition to specifying who plays whom, for each
pairing we say who serves first. Now in how many ways may we
specify our pairs?
Solution: Now in addition to our pairings, for each pairing we
have two choices of who will serve first, so after setting up the
pairings, we have 2n ways to decide which member of each pair
serves first. Thus we can do the pairings and choose first servers
in 2n∏n−1

i=0 2n − 2i − 1 ways. By the analysis of (2n)! in the
previous part, it is also (2n)!

n! .

+ 13. Let us now return to Problem 7 and justify—or perhaps finish—our
answer to the question about the number of functions from a three-
element set to a 12-element set.

(a) How can you justify your answer in Problem 7 to the question
“How many functions are there from a three element set (say
[3] = {1, 2, 3}) to a twelve element set (say [12])? ”
Solution: For a function f , we can decide on f(1) in twelve
ways, then, given the decision we make for f(1), we have 12 ways
to decide on f(2), and given the decisions we have made for f(1)
and f(2), we have 12 ways to decide on f(3). Therefore by the
general product principle, there are 123 = 1728 functions from
[3] to [12], or from any three element set to any twelve element
set.

(b) Based on the examples you’ve seen so far, make a conjecture
about how many functions there are from the set

[m] = {1, 2, 3, . . . ,m}

to [n] = {1, 2, 3, . . . , n} and prove it.
Solution: nm. We can think of choosing a function f as making
a sequence of m decisions, namely deciding on f(1), f(2), . . . , f(m).
We have n choices for f(1). Given the choices we have made for
f(1) through f(i − 1), we have n choices for f(i). Thus by the
general product principle we have a product of m terms each
equal to n, which is nm, as the number of ways to choose f .
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(c) A common notation for the set of all functions from a set M to
a set N is NM . Why is this a good notation?
Solution: Because there are nm such functions.

+ 14. Now suppose we are thinking about a set S of functions f from [m] to
some set X. (For example, in Problem 6 we were thinking of the set
of functions from the three possible places for scoops in an ice-cream
cone to 12 flavors of ice cream.) Suppose there are k1 choices for f(1).
(In Problem 6, k1 was 12, because there were 12 ways to choose the
first scoop.) Suppose that for each choice of f(1) there are k2 choices
for f(2). (For example, in Problem 6 k2 was 12 if the second flavor
could be the same as the first, but k2 was 11 if the flavors had to
be different.) In general, suppose that for each choice of f(1), f(2),
. . . f(i − 1), there are ki choices for f(i). (For example, in Problem
6, if the flavors have to be different, then for each choice of f(1) and
f(2), there are 10 choices for f(3).)

What we have assumed so far about the functions in S may be sum-
marized as

• There are k1 choices for f(1).
• For each choice of f(1), f(2), . . . , f(i − 1), there are ki choices

for f(i).

How many functions are in the set S? Is there any practical difference
between the result of this problem and the general product principle?

Solution: The number of functions in S is
∏m

i=1 ki. No, there is no
practical difference, because given a sequence of k possible decisions,
we have a function from the set [k] to the set of decisions, and the
number of choices for f(i) is the number of ways we can make the ith
decision. Similarly, given a function f from the set [k] to some set
X, the number of choices for f(i) is the number of possible results of
deciding on the value of f(i).

The point of Problem 14 is that the general product principle can be
stated informally, as we did originally, or as a statement about counting sets
of standard concrete mathematical objects, namely functions.

15. A roller coaster car has n rows of seats, each of which has room for
two people. If n men and n women get into the car with a man and a
woman in each row, in how many ways may they choose their seats?

Solution: (n!)22n
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+ 16. How does the general product principle apply to Problem 6?

Solution: By the general product principle, there are 12·11·10 triple
decker cones.

17. In how many ways can we pass out k distinct pieces of fruit to n
children (with no restriction on how many pieces of fruit a child may
get)?

Solution: Either by the formula for the number of functions from
an m-element set to an n-element set or the general product principle,
there are kn ways. (Each distribution is a function from the set of
fruit to the set of children, because each piece of fruit goes to one and
only one child.)

•18. How many subsets does a set S with n elements have?

Solution: To choose a subset, we must decide, for each element of S,
whether or not it is in the subset. Thus we have to make a sequence of
n decisions, and each one of them has two possible outcomes (take the
element, don’t take the element), regardless of our previous decisions.
Therefore by the general product principle, there are 2n subsets of an
n-element set.

◦19. Assuming k ≤ n, in how many ways can we pass out k distinct pieces
of fruit to n children if each child may get at most one? What is the
number if k > n? Assume for both questions that we pass out all the
fruit.

Solution: There are n choices for the child to whom the first piece
of fruit goes, then n−1 choices for the second, and, in general, n−i+1
choices for the ith piece of fruit. By the general product principle, this
gives us

∏k
i=1 n− i+1 ways to pass out the fruit. The number of ways

to pass out the fruit is zero if k > n, because the problem says each
child has to get at most one piece of fruit, and that all the fruit must
be passed out. This is impossible if k > n, so there are zero ways to
pass out the fruit. It is a nice coincidence that our formula for the
first question gives 0 if k > n.

•20. Another name for a list, in a specific order, of k distinct things chosen
from a set S is a k-element permutation of S. We can also think
of a k-element permutation of S as a one-to-one function (or, in other
words, injection) from [k] = {1, 2, . . . , k} to S. How many k-element
permutations does an n-element set have? (For this problem it is
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natural to assume k ≤ n. However, the question makes sense even
if k > n.) What is the number of k-element permutations of an n-
element set if k > n?

Solution: By the general product principle, the number is

k∏
i=1

n− i + 1.

In the case that k > n, there are no such lists with distinct entries,
and that is what the formula gives us, because n− (n + 1) + 1 = 0.

There are a variety of different notations for the number of k-element
permutations of an n-element set. The one we shall use was introduced by
Don Knuth; namely nk, read “n to the k falling” or “n to the k down.” In
Problem 20 you may have shown that

nk = n(n− 1) · · · (n− k + 1) =
k∏

i=1

(n− i + 1). (1.1)

It is standard to call nk the k-th falling factorial power of n, which
explains why we use exponential notation. We call it a factorial power since
nn = n(n − 1) · · · 1, which we call n-factorial and denote by n!. If you
are unfamiliar with the Pi notation, or product notation we introduced for
products in Equation 1.1, it works just like the Sigma notation works for
summations.

•21. Express nk as a quotient of factorials.

Solution: nk = n!/(n− k)!

22. How should we define n0?

Solution: Based on the the quotient of factorials formula, we would
expect to define n0 = 1. This says there should be one one-to-one
function from the empty set into an n-element set. Those who are
familiar with the ordered pairs definition of relations and functions
may recognize that the empty set of ordered pairs whose first element is
in ∅ and whose second element is in [n] is a function, and it satisfies the
rule defining one-to-one functions, because there are not two elements
x and y in ∅ such that f(x) = f(y).
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1.2.2 Functions and directed graphs

As another example of how standard mathematical language relates to count-
ing problems, Problem 7 explicitly asked you to relate the idea of counting
functions to the question of Problem 6. You have probably learned in alge-
bra or calculus how to draw graphs in the cartesian plane of functions from
a set of numbers to a set of numbers. You may recall how we can determine
whether a graph is a graph of a function by examining whether each verti-
cal straight line crosses the graph at most one time. You might also recall
how we can determine whether such a function is one-to-one by examining
whether each horizontal straight line crosses the graph at most one time.
The functions we deal with will often involve objects which are not numbers,
and will often be functions from one finite set to another. Thus graphs in
the cartesian plane will often not be available to us for visualizing functions.

However, there is another kind of graph called a directed graph or digraph
that is especially useful when dealing with functions between finite sets. We
take up this topic in more detail in Appendix A, particularly Section A.1.2
and Section A.1.3. In Figure 1.3 we show several examples of digraphs of
functions. If we have a function f from a set S to a set T , we draw a
line of dots or circles, called vertices to represent the elements of S and
another (usually parallel) line of vertices to represent the elements of T . We
then draw an arrow from the vertex for x to the vertex for y if f(x) = y.
Sometimes, as in part (e) of the figure, if we have a function from a set S
to itself, we draw only one set of vertices representing the elements of S, in
which case we can have arrows both entering and leaving a given vertex. As
you see, the digraph can be more enlightening in this case if we experiment
with the function to find a nice placement of the vertices rather than putting
them in a row.

Notice that there is a simple test for whether a digraph whose vertices
represent the elements of the sets S and T is the digraph of a function from
S to T . There must be one and only one arrow leaving each vertex of the
digraph representing an element of S. The fact that there is one arrow means
that f(x) is defined for each x in S. The fact that there is only one arrow
means that each x in S is related to exactly one element of T . (Note that
these remarks hold as well if we have a function from S to S and draw only
one set of vertices representing the elements of S.) For further discussion of
functions and digraphs see Sections A.1.1 and A.1.2 of Appendix A.

◦23. Draw the digraph of the function from the set {Alice, Bob, Dawn,
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Figure 1.3: What is a digraph of a function?
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(a)  The function given by f(x) = x   
on the domain {1,2,3,4,5}.
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(c)  The function from the set {-2,-1,0,1,2}
 to the set {0,1,2,3,4} given by  f (x) = x  .2
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(b)  The function from the set {0,1,2,3,4,5,6,7} to the set of triples
of zeros and ones given by f(x) = the binary representation of x.
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(d)  Not the digraph of a function.

(e) The function from {0, 1, 2, 3, 4, 5} 
to {0, 1, 2, 3, 4, 5} given by f (x) = x + 2 mod 6
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Bill} to the set {A, B, C, D, E} given by

f(X) = the first letter of the name X.

Solution:

Alice Bob Dawn Bill

A B C D E

•24. A function f : S → T is called an onto function or surjection if each
element of T is f(x) for some x ∈ S. Choose a set S and a set T
so that you can draw the digraph of a function from S to T that is
one-to-one but not onto, and draw the digraph of such a function.

Solution: The digraph of one such function follows.

S

T

a b c d

1 2 3 4 5

◦25. Choose a set S and a set T so that you can draw the digraph of a
function from S to T that is onto but not one-to-one, and draw the
digraph of such a function.

Solution: The digraph of one such function follows.

S

T

a b c d

1 2 3

•26. Digraphs of functions help us visualize the ideas of one-to-one functions
and onto functions.

(a) What does the digraph of a one-to-one function (injection) from a
finite set X to a finite set Y look like? (Look for a test somewhat
similar to the one we described for when a digraph is the digraph
of a function.)
Solution: A function from X to Y is one-to-one if, in its di-
graph, at most one arrow goes into each vertex representing a
member of Y . (For a digraph to be the digraph of a function
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from X to Y , one and only one arrow must come out of each
vertex representing a member of X.)

(b) What does the digraph of an onto function look like?
Solution: A function is onto if, in its digraph, at least one arrow
goes into each vertex representing a member of Y . (For a digraph
to be the digraph of a function from X to Y , one and only one
arrow must come out of each vertex representing a member of
X.)

(c) What does the digraph of a one-to-one and onto function from a
finite set S to a set T look like?
Solution: A function from X to Y is one-to one and onto if, in
its digraph, exactly one arrow goes into each vertex representing
a member of Y . (For a digraph to be the digraph of a function
from X to Y , one and only one arrow must come out of each
vertex representing a member of X.)

•27. The word permutation is actually used in two different ways in math-
ematics. A permutation of a set S is a one-to-one function from S
onto S. How many permutations does an n-element set have?

Solution: n!, by the general product principle.

Notice that there is a great deal of consistency between the use of the
word permutation in Problem 27 and the use in the Problem 20. If we have
some way a1, a2, . . . , an of listing our set S, then any other list b1, b2, . . . , bn

gives us the permutation of S whose rule is f(ai) = bi, and any permutation
of S, say the one given by g(ai) = ci gives us a list c1, c2, . . . , cn of S. Thus
there is really very little difference between the idea of a permutation of S
and an n-element permutation of S when n is the size of S.

1.2.3 The bijection principle

Another name for a one-to-one and onto function is bijection. The di-
graphs marked (a), (b), and (e) in Figure 1.3 are digraphs of bijections.
The description in Problem 26c of the digraph of a bijection from X to Y
illustrates one of the fundamental principles of combinatorial mathematics,
the bijection principle:

Two sets have the same size if and only if there is a bijection
between them.

It is surprising how this innocent sounding principle guides us into finding
insight into some otherwise very complicated proofs.
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1.2.4 Counting subsets of a set

28. The binary representation of a number m is a list, or string, a1a2 . . . ak

of zeros and ones such that m = a12k−1 +a22k−2 + · · ·+ak20. Describe
a bijection between the binary representations of the integers between
0 and 2n − 1 and the subsets of an n-element set. What does this tell
you about the number of subsets of the n-element set [n]?

Solution: The sequence a1a2 . . . ak corresponds to the set of i such
that ai = 1. This is a bijection because each sequence gives a subset
of [n], and each subset of [n] is the set of places where exactly one
sequence has its ones. Since there are 2n integers which are between
0 and 2n − 1, and they correspond to sequences of length n (notice,
we have another bijection, the one between a number and its binary
representation), there are 2n subsets of an n-element set.

Notice that the first question in Problem 8 asked you for the number of
ways to choose a three element subset from a 12 element subset. You may
have seen a notation like

(n
k

)
, C(n, k), or nCk which stands for the number

of ways to choose a k-element subset from an n-element set. The number(n
k

)
is read as “n choose k” and is called a binomial coefficient for reasons

we will see later on. Another frequently used way to read the binomial
coefficient notation is “the number of combinations of n things taken k at a
time.” We won’t use this way of reading the notation. You are going to be
asked to construct two bijections that relate to these numbers and figure out
what famous formula they prove. We are going to think about subsets of the
n-element set [n] = {1, 2, 3, . . . , n}. As an example, the set of two-element
subsets of [4] is

{{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}.

This example tells us that
(4
2

)
= 6.

•29. Let C be the set of k-element subsets of [n] that contain the number
n, and let D be the set of k-element subsets of [n] that don’t contain
n.

(a) Let C ′ be the set of (k − 1)-element subsets of [n− 1]. Describe
a bijection from C to C ′. (A verbal description is fine.)
Solution: Let f(X) = X−{n}, the set X with n removed. This
is a bijection because two different sets containing n must yield
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different sets when n is removed (one-to-one), and each (k − 1)-
element subset X of [n− 1] may be obtained from the k-element
subset X ∪ {n} of [n] by removing n (onto).

(b) Let D′ be the set of k-element subsets of [n−1] = {1, 2, . . . n−1}.
Describe a bijection from D to D′. (A verbal description is fine.)
Solution: Simply let f(X) = X. This is one-to-one by defini-
tion, and onto because the subsets of [n − 1] are identical with
the subsets of [n] not containing n.

(c) Based on the two previous parts, express the sizes of C and D in
terms of binomial coefficients involving n− 1 instead of n.
Solution: |C| =

(n−1
k−1

)
; |D| =

(n−1
k

)
(d) Apply the sum principle to C and D and obtain a formula that

expresses
(n
k

)
in terms of two binomial coefficients involving n−1.

You have just derived the Pascal Equation that is the basis for
the famous Pascal’s Triangle.
Solution:

(n
k

)
=
(n−1
k−1

)
+
(n−1

k

)
.

1.2.5 Pascal’s Triangle

The Pascal Equation that you derived in Problem 29 gives us the triangle in
Figure 1.4. This figure has the number of k-element subsets of an n-element
set as the kth number over in the nth row (we call the top row the zeroth
row and the beginning entry of a row the zeroth number over). You’ll see
that your formula doesn’t say anything about

(n
k

)
if k = 0 or k = n, but

otherwise it says that each entry is the sum of the two that are above it and
just to the left or right.

Figure 1.4: Pascal’s Triangle

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1
1 7 21 35 35 21 7 1



20 CHAPTER 1. WHAT IS COMBINATORICS?

30. Just for practice, what is the next row of Pascal’s triangle?

Solution: 1,8,28,56,70,56,28,8,1

31. Without writing out the rows completely, write out enough of Pascal’s
triangle to get a numerical answer for the first question in Problem 8.

Solution: Starting with row 9, we get

1 9 36 84
1 10 45 120

1 11 55 165
1 12 66 220

so the answer is 220. We actually didn’t need the 1, 12, and 66 in the
last row, or the 1 and 11 in the second last row, or the 1 in the third
last row.

It is less common to see Pascal’s triangle as a right triangle, but it
actually makes your formula easier to interpret. In Pascal’s Right Triangle,
the element in row n and column k (with the convention that the first row
is row zero and the first column is column zero) is

(n
k

)
. In this case your

formula says each entry in a row is the sum of the one above and the one
above and to the left, except for the leftmost and right most entries of a row,
for which that doesn’t make sense. Since the leftmost entry is

(n
0

)
and the

rightmost entry is
(n
n

)
, these entries are both one (to see why, ask yourself

how many 0-element subsets and how many n-element subsets an n-element
set has), and your formula then tells how to fill in the rest of the table.

Figure 1.5: Pascal’s Right Triangle

k = 0 1 2 3 4 5 6 7
n = 0 1

1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1
5 1 5 10 10 5 1
6 1 6 15 20 15 6 1
7 1 7 21 35 35 21 7 1

Seeing this right triangle leads us to ask whether there is some natural
way to extend the right triangle to a rectangle. If we did have a rectangular
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table of binomial coefficients, counting the first row as row zero (i.e., n = 0)
and the first column as column zero (i.e., k = 0), the entries we don’t yet
have are values of

(n
k

)
for k > n. But how many k-element subsets does an

n-element set have if k > n? The answer, of course, is zero, so all the other
entries we would fill in would be zero, giving us the rectangular array in
Figure 1.6. It is straightforward to check that Pascal’s Equation now works
for all the entries in the rectangle that have an entry above them and an
entry above and to the left.

Figure 1.6: Pascal’s Rectangle

k = 0 1 2 3 4 5 6 7
n = 0 1 0 0 0 0 0 0 0

1 1 1 0 0 0 0 0 0
2 1 2 1 0 0 0 0 0
3 1 3 3 1 0 0 0 0
4 1 4 6 4 1 0 0 0
5 1 5 10 10 5 1 0 0
6 1 6 15 20 15 6 1 0
7 1 7 21 35 35 21 7 1

32. Because our definition told us that
(n
k

)
is 0 when k > n, we got a

rectangular table of numbers that satisfies the Pascal Equation.

(a) Is there any other way to define
(n
k

)
when k > n in order to get

a rectangular table that agrees with Pascal’s Right Triangle for
k ≤ n and satisfies the Pascal Equation?
Solution: No, because there must be a zero directly above each
one not in column zero. That is, there must be a zero in row zero
and column 1, row 1 and column 2, and so forth. Then above
each zero not in column zero or one, there must be yet another
zero and so on.

(b) Suppose we want to extend Pascal’s Rectangle to the left and
define

( n
−k

)
for n ≥ 0 and k > 0 so that −k < 0. What should we

put into row n and column −k of Pascal’s Rectangle in order for
the Pascal Equation to hold true?
Solution: To the left of all the ones in column zero, we must
have zeros for the Pascal Equation to hold. To the left of those
zeros, we must again have zeros, and so on.
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∗(c) What should we put into row −n (assume n is positive) and col-
umn k or column −k in order for the Pascal Equation to continue
to hold? Do we have any freedom of choice?
Solution: Above row zero, we have some freedom. The -1,-1
and the (-1,0)-entry must add to one, so they can be −x and
x + 1 for any number x. To the right of the -1,0 entry they must
alternate between (−x − 1) and x + 1 while to the left of the
(-1,1)-entry they must alternate between −x and x, ending with
the −x in position (-1,1). Now if we know the entry in row -2
and column zero, we can use the Pascal equation (in the form(n−1
k−1

)
=
(n
k

)
−
(n−1

k

)
) to compute all the entries to the left of it,

and (in a different form) to compute all the entries to the right
of it. Thus we may be arbitrary about the entries in column 0
(or, in fact, one entry in each row) and then the Pascal Equation
tells us how to fill in the rest of each row. We shall see later on
that there is one very natural choice for how to fill in all the rows
above row zero.

33. There is yet another bijection that lets us prove that a set of size n
has 2n subsets. Namely, for each subset S of [n] = {1, 2, . . . , n}, define
a function (traditionally denoted by χS) as follows.1

χS(i) =
{

1 if i ∈ S
0 if i 6∈ S

The function χS is called the characteristic function of S. Notice that
the characteristic function is a function from [n] to {0, 1}.

(a) For practice, consider the function χ{1,3} for the subset {1, 3} of
the set {1, 2, 3, 4}. What are

i. χ{1,3}(1)?
Solution: 1

ii. χ{1,3}(2)?
Solution: 0

iii. χ{1,3}(3)?
Solution: 1

iv. χ{1,3}(4)?
Solution: 0

1The symbol χ is the Greek letter chi that is pronounced Ki, with the i sounding like
“eye.”
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(b) We define a function f from the set of subsets of [n] = {1, 2, . . . , n}
to the set of functions from [n] to {0, 1} by f(S) = χS . Explain
why f is a bijection.
Solution: Suppose S and T are subsets of [n]. If i ∈ S but
i 6∈ T , then χS(i) = 1 but χT (i) = 0. Thus if S 6= T , then χS 6=
χT . Therefore f is one-to-one. Given a function g from [n] to
{0, 1}, let S = {i|g(i) = 1}. Then by definition, g = χS = f(S).
Therefore f is onto, so it is a bijection.

(c) Why does the fact that f is a bijection prove that [n] has 2n

subsets?
Solution: We have seen that there are 2n functions from [n] to
the two-element set {0, 1}, and we have just described a bijection
between the set of all such functions and the subsets of [n].

In Problems 18, 28, and 33 you gave three proofs of the following theo-
rem.

Theorem 1 The number of subsets of an n-element set is 2n.

The proofs in Problem 28 and 33 use essentially the same bijection, but
they interpret sequences of zeros and ones differently, and so end up being
different proofs. We will give yet another proof, using bijections similar to
those we used in proving the Pascal Equation, at the beginning of Chapter 2.

1.2.6 The quotient principle

•34. As we noted in Problem 29, the first question in Problem 8 asked us
for the number of three-element subsets of a twelve-element set. We
were able to use the Pascal Equation to get a numerical answer to
that question. Had we had twenty or thirty flavors of ice cream to
choose from, using the Pascal Equation to get our answer would have
entailed a good bit more work. We have seen how the general product
principle gives us an answer to Problem 6. Thus we might think that
the number of ways to choose a three element set from 12 elements is
the number of ways to choose the first element times the number of
ways to choose the second element times the number of ways to choose
the third element, which is 12 · 11 · 10 = 1320. However, our result in
Problem 29 shows that this is wrong.

(a) What is it that is different between the number of ways to stack
ice cream in a triple decker cone with three different flavors of ice
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cream and the number of ways to simply choose three different
flavors of ice cream?
Solution: What is different is that the order in which we put
the scoops into the cone matters, but for simply choosing three
flavors, the order of the choices doesn’t matter.

(b) In particular, how many different triple decker cones use vanilla,
chocolate, and strawberry? (Of course any three distinct flavors
could substitute for vanilla, chocolate and strawberry without
changing the answer.)
Solution: Six different triple decker cones have the same three
flavors.

(c) Using your answer from part 34b, compute the number of ways to
choose three different flavors of ice cream (out of twelve flavors)
from the number of ways to choose a triple decker cone with three
different flavors (out of twelve flavors).
Solution: Since each choice of three flavors corresponds to six
cones, we have 1320/6 = 220 different ways to choose three flavors
of ice cream from 12 flavors.

•35. Based on what you observed in Problem 34c, how many k-element
subsets does an n-element set have?

Solution: Following the reasoning of Problem 34, the number of k-
element permutations of an n-element set is nk, and each k-element
subset of [n] is listed by k! of these permutations, so the number of
k-element subsets is nk

k! = n!
k!(n−k)! .

36. The formula you proved in Problem 35 is symmetric in k and n−k; that
is, it gives the same number for

(n
k

)
as it gives for

( n
n−k

)
. Whenever two

quantities are counted by the same formula it is good for our insight to
find a bijection that demonstrates the two sets being counted have the
same size. In fact this is a guiding principle of research in combinatorial
mathematics. Find a bijection that proves that

(n
k

)
equals

( n
n−k

)
.

Solution: For each k-element subset K of the n-element set N , de-
fine f(K) to be the set of all elements of N not in K. Then f is the
desired bijection.

•37. In how many ways can we pass out k (identical) ping-pong balls to n
children if each child may get at most one?
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Solution:
(n
k

)
, because we choose the k children to whom we give

ping-pong balls.

•38. In how many ways may n people sit around a round table? (Assume
that when people are sitting around a round table, all that really
matters is who is to each person’s right. For example, if we can get
one arrangement of people around the table from another by having
everyone get up and move to the right one place and sit back down,
then we get an equivalent arrangement of people. Notice that you can
get a list from a seating arrangement by marking a place at the table,
and then listing the people at the table, starting at that place and
moving around to the right.) There are at least two different ways of
doing this problem. Try to find them both.

Solution: The total number of ways to list how the n people sit
around the table is n!. However, two lists represent the same seating
arrangement if we get one from the other by shifting everyone right the
same number of places. (And if, in two lists, the same person is to each
person’s right, this is the only way the lists can differ.) This divides the
set of lists up into blocks of n mutually equivalent lists. The number
m of such blocks is the number of seating arrangements. However, by
the product principle, mn = n!, because we have partitioned up the
set of n! lists into m sets of size n. Therefore m = (n− 1)!

A second solution may be obtained by choosing one of the n people and
letting this person sit anywhere. Since all that matters is who is to the
right of each person, it doesn’t matter where this person sits. Once
this person is seated, let everybody else sit down. If the remaining
people sit down first in one order clockwise around the table and then
in some other order, the person to the right of somebody has changed.
Thus there are (n − 1)! ways (the number of ways to seat everybody
else) to seat the people around the table.

We are now going to analyze the result of Problem 35 in more detail in order
to tease out another counting principle that we can use in a wide variety of
situations.

In Table 1.2 we list all three-element permutations of the 5-element set
{a, b, c, d, e}. Each row consists of all 3-element permutations of some subset
of {a, b, c, d, e}. Because a given k-element subset can be listed as a k-element
permutation in k! ways, there are 3! = 6 permutations in each row. Because
each 3-element permutation appears exactly once in the table, each row is
a block of a partition of the set of 3-element permutations of {a, b, c, d, e}.
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Table 1.2: The 3-element permutations of {a, b, c, d, e} organized by which
3-element set they permute.

abc acb bac bca cab cba
abd adb bad bda dab dba
abe aeb bae bea eab eba
acd adc cad cda dac dca
ace aec cae cea eac eca
ade aed dae dea ead eda
bcd bdc cbd cdb dbc dcb
bce bec cbe ceb ebc ecb
bde bed dbe deb ebd edb
cde ced dce dec ecd edc

Each block has size six. Each block consists of all 3-element permutations
of some three element subset of {a, b, c, d, e}. Since there are ten rows, we
see that there are ten 3-element subsets of {a, b, c, d, e}. An alternate way
to see this is to observe that we partitioned the set of all 60 three-element
permutations of {a, b, c, d, e} into some number q of blocks, each of size six.
Thus by the product principle, q · 6 = 60, so q = 10.

•39. Rather than restricting ourselves to n = 5 and k = 3, we can partition
the set of all k-element permutations of an n-element set S up into
blocks. We do so by letting BK be the set (block) of all k-element
permutations of K for each k-element subset K of S. Thus as in our
preceding example, each block consists of all permutations of some
subset K of our n-element set. For example, the permutations of
{a, b, c} are listed in the first row of Table 1.2. In fact each row of that
table is a block. The questions that follow are about the corresponding
partition of the set of k-element permutations of S, where S and k are
arbitrary.

(a) How many permutations are there in a block?
Solution: The number of permutations in a block is k!.

(b) Since S has n elements, what does Problem 20 tell you about the
total number of k-element permutations of S?
Solution: Problem 20 tells us that the total number of k-element
permutations is nk = n!

(n−k)! .
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(c) Describe a bijection between the set of blocks of the partition and
the set of k-element subsets of S.
Solution: Each k-element set corresponds to the block of all
permutations of that set. It is immediate that this is a bijection.

(d) What formula does this give you for the number
(n
k

)
of k-element

subsets of an n-element set?
Solution: Assuming there are s subsets, we have s · k! permu-
tations in total, so by the product principle, s · k! = n!

(n−k)! or

s = n!
k!(n−k)! .

40. A basketball team has 12 players. However, only five players play at
any given time during a game.

(a) In how may ways may the coach choose the five players?
Solution:

(12
5

)
.

(b) To be more realistic, the five players playing a game normally
consist of two guards, two forwards, and one center. If there are
five guards, four forwards, and three centers on the team, in how
many ways can the coach choose two guards, two forwards, and
one center?
Solution: In the more realistic version,

(5
2

)(4
2

)(3
1

)
= 180.

(c) What if one of the centers is equally skilled at playing forward?
Solution: Either the versatile player is playing center or not,
and in the second case is available to play forward. This gives us(5
2

)(4
2

)(1
1

)
+
(5
2

)(5
2

)(2
1

)
= 260 ways to choose the players.

•41. In Problem 38, describe a way to partition the n-element permutations
of the n people into blocks so that there is a bijection between the set
of blocks of the partition and the set of arrangements of the n people
around a round table. What method of solution for Problem 38 does
this correspond to?

Solution: Put two permutations in the same block if we can get
one from the other by moving everyone (circularly) some number r
places to the right. This corresponds to the method that gives n!/n
as the answer. Many students should be able to answer this question
by saying “See the answer to Problem 38.”

•42. In Problems 39d and 41, you have been using the product principle in
a new way. One of the ways in which we previously stated the product
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principle was “If we partition a set into m blocks each of size n, then
the set has size m · n.” In problems 39d and 41 we knew the size p
of a set P of permutations of a set, and we knew we had partitioned
P into some unknown number of blocks, each of a certain known size
r. If we let q stand for the number of blocks, what does the product
principle tell us about p, q, and r? What do we get when we solve
for q?

Solution: p = qr, so that q = p/r.

The formula you found in Problem 42 is so useful that we are going to
single it out as another principle. The quotient principle says:

If we partition a set P of size p into q blocks, each of size r,
then q = p/r.

The quotient principle is really just a restatement of the product principle,
but thinking about it as a principle in its own right often leads us to find
solutions to problems. Notice that it does not always give us a formula
for the number of blocks of a partition; it only works when all the blocks
have the same size. In Chapter 6, we develop a way to solve problems with
different block sizes in cases where there is a good deal of symmetry in the
problem. (The roundness of the table was a symmetry in the problem of
people at a table; the fact that we can order the sets in any order is the
symmetry in the problem of counting k-element subsets.)

In Section A.2 of Appendix A we introduce the idea of an equivalence re-
lation, see what equivalence relations have to do with partitions, and discuss
the quotient principle from that point of view. While that appendix is not
required for what we are doing here, if you want a more thorough discussion
of the quotient principle, this would be a good time to work through that
appendix.

•43. In how many ways may we string n distinct beads on a necklace with-
out a clasp? (Perhaps we make the necklace by stringing the beads
on a string, and then carefully gluing the two ends of the string to-
gether so that the joint can’t be seen. Assume someone can pick up
the necklace, move it around in space and put it back down, giving an
apparently different way of stringing the beads that is equivalent to
the first.)

Solution: We can obtain a permutation of the beads by cutting the
necklace and stretching it out in a straight line. We can partition
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the permutations according to which necklace they come from in this
process. Two permutations are in the same block if we get one either
by circularly permuting the other and/or by reversing the other (this
corresponds to flipping the necklace over in space). Thus each necklace
corresponds to 2n permutations so by the quotient principle we have
n!/2n = (n− 1)!/2 ways to string n distinct beads on a necklace.

44. We first gave this problem as Problem 12a. Now we have several ways
to approach the problem. A tennis club has 2n members. We want to
pair up the members by twos for singles matches.

(a) In how many ways may we pair up all the members of the club?
Give at least two solutions different from the one you gave in
Problem 12a. (You may not have done Problem 12a. In that
case, see if you can find three solutions.)
Solution: Choose people in pairs. There are

(2n
2

)
ways to choose

one pair,
(2n−2

2

)
ways to choose a second pair, and once k pairs

have been chosen, there are
(2n−2k

2

)
ways to choose the next pair.

The number of lists of pairs we get in this way is
∏n−1

i=0

(2n−2i
2

)
=

(2n)!
2n . However, each way of pairing people gets listed n! times

since we see all possible length n lists of pairs. Therefore the
number of actual pairings is

(2n)!
2nn!

=
(2n)!

2n · 2n− 2 · 2n− 4 · · · · · 2
=

n−1∏
i=0

2n− 2i− 1.

Notice how this combinatorial solution gives the formula that we
found algebraically in Problem 12a, which then turns out to be
algebraically equivalent to the formula we first saw in the solution
to Problem 12a.
For yet another solution, we can list the 2n members in (2n)!
ways. Then we can take the first two as a tennis pair, the next
two, and so on. There are n! ways that a given set of tennis pair-
ings could be arranged, and each of the n pairs could appear in 2
ways, so the tennis pairings partition the set of all permutations
of the 2n members into blocks of size n!2n. Thus we have (2n)!

n!2n

tennis pairings once again.

(b) Suppose that in addition to specifying who plays whom, for each
pairing we say who serves first. Now in how many ways may we
specify our pairs? Try to find as many solutions as you can.
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Solution: Choose people in ordered pairs. The first person in
an ordered pair serves first. There are 2n(2n− 1) ways to choose
one pair, (2n− 2)(2n− 3) ways to choose a second pair, and once
k pairs have been chosen, there are (2n− 2k)(2n− 2k − 1) ways
to choose the next pair. The number of lists of pairs we get in
this way is

∏n−1
i=0 (2n− 2i)(2n− 2i− 1) = (2n)!. However, each

way of pairing people gets listed n! times since we see all possible
length n lists of pairs. Therefore the number of actual pairings is
(2n)!

n! = (2n)n.
For yet another solution, we can list the 2n members in (2n)!
ways. Then we can take the first two as a tennis pair, with the
first person serving first, the next two, and so on. There are n!
ways that a given set of tennis pairings could be arranged, so
the tennis pairings partition the set of all permutations of the 2n
members into blocks of size n!. Thus we have (2n)!

n! tennis pairings
once again.

·45. (This becomes especially relevant in Chapter 6, though it makes an
important point here.) In how many ways may we attach two identical
red beads and two identical blue beads to the corners of a square (with
one bead per corner) free to move around in (three-dimensional) space?

Solution: Two ways; either the red beads are side-by-side or diago-
nally opposite. If we think about partitioning lists of 2 Rs and 2 Bs
so that two are in the same block if we get one from the other by mov-
ing the square, we get two blocks, {RRBB, BRRB, BBRR, RBBR}
and {RBRB, BRBR}. This is an example of a problem with a good
deal of symmetry in which the blocks of the relevant partition have
different sizes.

46. While the formula you proved in Problem 35 and Problem 39d is very
useful, it doesn’t give us a sense of how big the binomial coefficients
are. We can get a very rough idea, for example, of the size of

(2n
n

)
by

recognizing that we can write (2n)n/n! as 2n
n · 2n−1

n−1 · · ·
n+1

1 , and each
quotient is at least 2, so the product is at least 2n. If this were an
accurate estimate, it would mean the fraction of n-element subsets of
a 2n-element set would be about 2n/22n = 1/2n, which becomes very
small as n becomes large. However, it is pretty clear the approximation
will not be a very good one, because some of the terms in that product
are much larger than 2. In fact, if

(2n
k

)
were the same for every k,

then each would be the fraction 1
2n+1 of 22n. This is much larger
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than the fraction 1
2n . But our intuition suggests that

(2n
n

)
is much

larger than
(2n

1

)
and is likely larger than

( 2n
n−1

)
so we can be sure our

approximation is a bad one. For estimates like this, James Stirling
developed a formula to approximate n! when n is large, namely n!
is about

(√
2πn

)
nn/en. In fact the ratio of n! to this expression

approaches 1 as n becomes infinite.2 We write this as

n! ∼
√

2πn
nn

en
.

We read this notation as n! is asymptotic to
√

2πnnn

en . Use Stirling’s
formula to show that the fraction of subsets of size n in an 2n-element
set is approximately 1/

√
πn. This is a much bigger fraction than 1

2n !

Solution:
(2n)!
n!n!

∼
√

4πn (2n)2n

e2n√
2πnnn

en

√
2πnnn

en

=
22n

√
πn

1.3 Some Applications of Basic Counting Princi-
ples

1.3.1 Lattice paths and Catalan Numbers

◦47. In a part of a city, all streets run either north-south or east-west, and
there are no dead ends. Suppose we are standing on a street corner.
In how many ways may we walk to a corner that is four blocks north
and six blocks east, using as few blocks as possible?

Solution: The shortest possible walk is going to be ten blocks. To
plan a walk, we must choose which four of those ten blocks go north;
the other six blocks we will have to go east. There are

(10
4

)
ways to

make this selection.

·48. Problem 47 has a geometric interpretation in a coordinate plane. A
lattice path in the plane is a “curve” made up of line segments that
either go from a point (i, j) to the point (i+1, j) or from a point (i, j)
to the point (i, j + 1), where i and j are integers. (Thus lattice paths

2Proving this takes more of a detour than is advisable here; however there is an elemen-
tary proof which you can work through in the problems of the end of Section 1 of Chapter
1 of Introductory Combinatorics by Kenneth P. Bogart, Harcourt Academic Press, (2000).
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always move either up or to the right.) The length of the path is the
number of such line segments.

(a) What is the length of a lattice path from (0, 0) to (m,n)?
Solution: The length of a lattice path from (0, 0) to (m,n) is
m + n.

(b) How many such lattice paths of that length are there?
Solution: The number of such paths is

(m+n
n

)
.

(c) How many lattice paths are there from (i, j) to (m,n), assuming
i, j, m, and n are integers?
Solution: Since lattice paths move up and to the right, there
are no paths from (i, j) to (m,n) unless i ≤ m and j ≤ n. In
that case, the number of paths is

(m+n−i−j
n−j

)
, which is the same

as
(m+n−i−j

m−i

)
.

·49. Another kind of geometric path in the plane is a diagonal lattice path.
Such a path is a path made up of line segments that go from a point
(i, j) to (i+1, j+1) (this is often called an upstep) or (i+1, j−1) (this
is often called a downstep), again where i and j are integers. (Thus
diagonal lattice paths always move towards the right but may move
up or down.)

(a) Describe which points are connected to (0, 0) by diagonal lattice
paths.
Solution: The points (m,n) connected to (0, 0) by diagonal
lattice paths will have m+n even, because each upstep adds two
to the sum of i and j while each downstep does not change the
sum. Further, since we go one step to the right each time we go
up or down, we cannot get above the line y = x or below the line
y = −x. However, for any point (m,n) with m and n nonnegative
integers such that m + n is even and −m ≤ n ≤ m, we can get
to (m,n) by making m−n

2 downsteps and m+n
2 upsteps.

(b) What is the length of a diagonal lattice path from (0, 0) to (m, n)?
Solution: From the previous part of this problem, we will make
a total of m−n

2 + m+n
2 = m steps, and our total motion parallel

to the y axis will be m+n
2 − m−n

2 = n. The length of such a path
is m

√
2; we might informally just call it m steps.

(c) Assuming that (m,n) is a point you can get to from (0, 0), how
many diagonal lattice paths are there from (0, 0) to (m,n)?
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Solution: The number of possible paths is the number of ways
we can choose which of the m steps are upsteps (or equivalently
downsteps). This number is

( m
m+n

2

)
.

◦50. A school play requires a ten dollar donation per person; the donation
goes into the student activity fund. Assume that each person who
comes to the play pays with a ten dollar bill or a twenty dollar bill.
The teacher who is collecting the money forgot to get change before
the event. If there are always at least as many people who have paid
with a ten as a twenty as they arrive the teacher won’t have to give
anyone an IOU for change. Suppose 2n people come to the play, and
exactly half of them pay with ten dollar bills.

(a) Describe a bijection between the set of sequences of tens and
twenties people give the teacher and the set of lattice paths from
(0, 0) to (n, n).
Solution: For each ten dollar bill take a rightstep and for each
twenty dollar bill take an upstep (where rightstep and upstep
have the hopefully natural meaning). The assumption that there
are an equal number of ten and twenty dollar bills means that the
path will end up at (n, n). Each sequence of tens and twenties
gives a lattice path and each lattice path corresponds to such a
sequence, so we have a bijection.

(b) Describe a bijection between the set of sequences of tens and
twenties that people give the teacher and the set of diagonal lat-
tice paths between (0, 0) and (2n, 0).
Solution: For each ten dollar bill take an upstep and for each
twenty dollar bill take a downstep. Each sequence of tens and
twenties will give us a diagonal lattice path from (0, 0), and each
diagonal lattice path from (0, 0) to (2n, 0) will give us a sequence
of tens and twenties with an equal number of tens and twenties,
so we have a bijection.

(c) In each of the previous parts, what is the geometric interpretation
of a sequence that does not require the teacher to give any IOUs?
Solution: In the first case a sequence that does not require the
teacher to give any IOUs will correspond to a lattice path that
stays on or below the line y = x, and in the second case such a
sequence will correspond to a diagonal lattice path that stays on
or above the x-axis.
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·51. Notice that a lattice path from (0, 0) to (n, n) stays inside (or on the
edges of) the square whose sides are the x-axis, the y-axis, the line
x = n and the line y = n. In this problem we will compute the
number of lattice paths from (0,0) to (n, n) that stay inside (or on the
edges of) the triangle whose sides are the x-axis, the line x = n and the
line y = x. Such lattice paths are called Catalan paths. For example,
in Figure 1.7 we show the grid of points with integer coordinates for
the triangle whose sides are the x-axis, the line x = 4 and the line
y = x.

Figure 1.7: The Catalan paths from (0, 0) to (i, i) for i = 0, 1, 2, 3, 4. The
number of paths to the point (i, i) is shown just above that point.

1

1

2

5

14

(a) Explain why the number of lattice paths from (0, 0) to (n, n)
that go outside the triangle described previously is the number
of lattice paths from (0, 0) to (n, n) that either touch or cross the
line y = x + 1.
Solution: If a lattice path between (0, 0) and (n, n) goes outside
the triangle, it can only do so on an upstep. (A step from (i, j) to
(i, j + 1).) And an upstep must originate at a point with integer
coordinates. If j < i, an upstep from (i, j)) cannot leave the
triangle. Thus to leave the triangle, the upstep must leave from
a point of the form (i, i), and go to (i, i + 1), which is on the line
y = x + 1.

(b) Find a bijection between lattice paths from (0, 0) to (n, n) that
touch (or cross) the line y = x + 1 and lattice paths from (−1, 1)
to (n, n).
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Solution: Suppose we have a lattice path from (0, 0) to (n, n)
which touches or crosses the line y = x + 1. Let (k, k + 1) be the
first point on the line y = x + 1 that the lattice path touches.
From that point, work backwards, replacing every upstep with a
step one unit to the left and every rightstep with a step one unit
down. The segment of the path you just changed will have moved
left k+1 times, so its leftmost x coordinate will be −1, and it will
have moved down k times, so its lowest y coordinate will be 1.
Thus we now have a lattice path from (−1, 1) to (n, n). Further,
given a lattice path from (−1, 1) to (n, n), it must cross the line
y = x + 1 at least once, because it starts above the line and ends
below it. At the first point where such a path touches the line
y = x+1, say (k′, k′+1), work backwards, replacing every upstep
with a step to the left and every rightstep with a step downwards.
The leftmost point on this path will have x coordinate 0, and the
lowest point will have y coordinate 0, so the new path will be a
lattice path from (0, 0) to (n, n) that touches the line y = x + 1.
Clearly these two processes reverse each other, and so they give
us a bijection between paths from (0, 0) to (n, n) that touch or
cross the line y = x + 1 and lattice lattice paths from (−1, 1) to
(n, n). Notice that geometrically what we are doing to get the
bijection is to take the portion of a lattice path that goes from the
initial point till the first touch of the line y = x+1 and reflecting
it around that line. This idea of reflection was introduced by
Feller, and is called Feller’s reflection principle.

(c) Find a formula for the number of lattice paths from (0, 0) to (n, n)
that do not go above the line y = x. The number of such paths
is called a Catalan Number and is usually denoted by Cn.
Solution: Cn =

(2n
n

)
−
( 2n
n+1

)
= 1

n+1

(2n
n

)
.

52. Your formula for the Catalan Number can be expressed as a binomial
coefficient divided by an integer. Whenever we have a formula that
calls for division by an integer, an ideal combinatorial explanation of
the formula is one that uses the quotient principle. The purpose of this
problem is to find such an explanation using diagonal lattice paths.3

A diagonal lattice path that never goes below the y-coordinate of its
first point is called a Dyck Path. We will call a Dyck Path from (0, 0)

3The result we will derive is called the Chung-Feller Theorem; this approach is based
on a paper of Wen-jin Woan “Uniform Partitions of Lattice Paths and Chung-Feller Gen-
eralizations,” American Mathematics Monthly 58 June/July 2001, p556.
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to (2n, 0) a (diagonal) Catalan Path of length 2n. Thus the number of
(diagonal) Catalan Paths of length 2n is the Catalan Number Cn. We
normally can decide from context whether the phrase Catalan Path
refers to a diagonal path, so we normally leave out the word diagonal.

(a) If a Dyck Path has n steps (each an upstep or downstep), why do
the first k steps form a Dyck Path for each nonnegative k ≤ n?
Solution: If no points on the path are lower than the first point,
then no points among the first k steps are lower than the first
point.

(b) Thought of as a curve in the plane, a diagonal lattice path can
have many local maxima and minima, and can have several ab-
solute maxima and minima, that is, several highest points and
several lowest points. What is the y-coordinate of an absolute
minimum point of a Dyck Path starting at (0, 0)? Explain why
a Dyck Path whose rightmost absolute minimum point is its last
point is a Catalan Path.
Solution: Since the path starts at (0, 0) and can’t go below it,
the y coordinate of an absolute minimum must be zero. If the
last point is an absolute minimum, then (because it ends with
the same y coordinate with which it starts) the path has an even
number 2k of steps and ends at (2k, 0), so it is a Catalan path.

(c) Let D be the set of all diagonal lattice paths from (0, 0) to (2n, 0).
(Thus these paths can go below the x-axis.) Suppose we partition
D by letting Bi be the set of lattice paths in D that have i upsteps
(perhaps mixed with some downsteps) following the last absolute
minimum. How many blocks does this partition have? Give a
succinct description of the block B0.
Solution: The path must have n upsteps total, and so can have
any number between 0 and n upsteps after the rightmost absolute
minimum. Thus the partition has n+1 blocks. Block B0 consists
of the Catalan Paths.

(d) How many upsteps are in a Catalan Path?
Solution: n.

∗(e) We are going to give a bijection between the set of Catalan Paths
and the block Bi for each i between 1 and n. For now, suppose
the value of i, while unknown, is fixed. We take a Catalan path
and break it into three pieces. The piece F (for “front”) consists
of all steps before the ith upstep in the Catalan path. The piece
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U (for “up”) consists of the ith upstep. The piece B (for “back”)
is the portion of the path that follows the ith upstep. Thus we
can think of the path as FUB. Show that the function that takes
FUB to BUF is a bijection from the set of Catalan Paths onto
the block Bi of the partition. (Notice that BUF can go below
the x axis.)
Solution: Since we are starting with a Catalan path, the point
on the path at the beginning of the ith upstep must have y co-
ordinate greater or equal to than zero. Thus wherever we start
the sequence F of upsteps and downsteps, a path constructed by
this sequence never goes lower than its starting point. Thus in
BUF the last absolute minimum is either right before the U or
earlier. But B is the final segment of a Catalan Path, so its final
point is at least as low as its starting point. Thus the point at the
beginning of the U in BUF is an absolute minimum, and there
are i upsteps after that absolute minimum. If we take two differ-
ent sequences and rearrange them in the same way, we get two
different sequences, so the function we just described is a one-to-
one function. If we take an arbitrary diagonal lattice path from
(0, 0) to (2n, 0), let U ′ be the first upstep after the last absolute
minimum, F ′ be the portion of the path that follows U ′, and B′

be the portion that precedes U ′, then F ′U ′B′ is a Catalan Path,
and U ′ is its ith upstep if and only if in B′U ′F ′ there are i upsteps
after the last absolute minimum. Thus the mapping from FUB
to BUF is a bijection.

(f) Explain how you have just given another proof of the formula for
the Catalan Numbers.
Solution: We have taken the set of all

(2n
n

)
diagonal lattice

paths of length 2n from (0, 0) to (2n, 0) and partitioned it into
n + 1 blocks all of size Cn. Thus by the quotient principle, Cn =

1
n+1

(2n
n

)
.

1.3.2 The Binomial Theorem

◦53. We know that (x+y)2 = x2 +2xy+y2. Multiply both sides by (x+y)
to get a formula for (x + y)3 and repeat to get a formula for (x + y)4.
Do you see a pattern? If so, what is it? If not, repeat the process
to get a formula for (x + y)5 and look back at Figure 1.4 to see the
pattern. Conjecture a formula for (x + y)n.



38 CHAPTER 1. WHAT IS COMBINATORICS?

Solution: (x+y)3 = x3 +2x2y+xy2 +x2y+2xy2 +y3 = x3 +3x2y+
3xy2 + y3.
Similarly, (x + 4)4 = x4 + 4x3y + 6x2y2 + 4xy3 + y4,
and (x + y)5 = x5 + 5x4y + 10x3y2 + 10x2y3 + 5xy4 + y5. The pattern
is that the coefficient of xiyj is

(i+j
i

)
which is the same as

(i+j
j

)
. Said

differently, the coefficient of xn−iyi is
(n

i

)
or the coefficient of xiyn−i is(n

i

)
. We conjecture that

(x + y)n =
n∑

i=0

(
n

i

)
xn−iyi.

(The reason for putting xn−iyi into the sum is so that as i goes from
0 to n, the powers of x decrease from n to 0.)

•54. When we apply the distributive law n times to (x + y)n, we get a sum
of terms of the form xiyn−i for various values of the integer i.

(a) If it is clear to you that each term of the form xiyn−i that we
get comes from choosing an x from i of the (x + y) factors and a
y from the remaining n − i of the factors and multiplying these
choices together, then answer this part of the problem and skip
the next part. Otherwise, do the next part instead of this one.
In how many ways can we choose an x from i terms and a y from
n− i terms?
Solution: The number of ways to choose an x from i of the
factors and a y from the remaining ones is the way to choose the
i factors from the n factors; that is,

(n
i

)
.

i. Expand the product (x1 + y1)(x2 + y2)(x3 + y3).
Solution:

(x1 + y1)(x2 + y2)(x3 + y3) = x1x2x3 + x1x2y3 + x1y2x3 +
y1x2x3 + x1y2y3 + y1x2y3 + y1y2x3 + y1y2y3.

ii. What do you get when you substitute x for each xi and y for
each yi?
Solution: When you substitute x for each xi and y for each
yi, you get (x + y)3 = x3 + 3x2y + 3xy2 + y3.

iii. Now imagine expanding

(x1 + y1)(x2 + y2) · · · (xn + yn).
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Once you apply the commutative law to the individual terms
you get, you will have a sum of terms of the form

xk1xk2 · · ·xki
· yj1yj2 · · · yjn−i .

What is the set {k1, k2, . . . , ki} ∪ {j1, j2, . . . , jn−i}?
Solution: {k1, k2, . . . , ki}∪{j1, j2, . . . , jn−i} = {1, 2, . . . , n}.

iv. In how many ways can you choose the set {k1, k2, . . . , ki}?
Solution: You can choose the set {k1, k2, . . . ki} in

(n
i

)
ways.

v. Once you have chosen this set, how many choices do you have
for {j1, j2, . . . , jn−i}?
Solution: Once you have chosen the set of ks, there is just
one way to choose the set of js.

vi. If you substitute x for each xi and y for each yi, how many
terms of the form xiyn−i will you have in the expanded prod-
uct

(x1 + y1)(x2 + y2) · · · (xn + yn) = (x + y)n?

Solution: If you substitute x for xi and substitute y for yi,
you will get

(n
i

)
terms of the form xiyn−i.

vii. How many terms of the form xn−iyi will you have?
Solution: You will also get

(n
i

)
terms of the form xn−iyi.

(b) Explain how you have just proved your conjecture from Prob-
lem 53. The theorem you have proved is called the Binomial
Theorem.
Solution: We have proved that the coefficient of xiyn−i in (x+
y)n is

(n
i

)
, or equivalently that the coefficient of xn−iyi in (x+y)n

is
(n

i

)
.

55. What is
∑10

i=1

(10
i

)
3i?

Solution:
∑10

i=1

(10
i

)
3i =

∑10
i=0

(10
i

)
3i−

(10
0

)
30 = (1+3)10−1 = 410−1

56. What is
(n
0

)
−
(n
1

)
+
(n
2

)
− · · · ±

(n
n

)
if n is an integer bigger than zero?

Solution: The sum is 0 because it is (−1 + 1)n.

•57. Explain why
k∑

i=0

(
m

i

)(
n

k − i

)
=

(
m + n

k

)
.

Find two different explanations.
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Solution: When we expand both sides of

(x + y)m(x + y)n = (x + y)m+n

by the binomial theorem we get
∑k

i=0

(m
i

)( n
k−i

)
as the coefficient of

xm+n−kyk on the left hand side and
(m+n

k

)
on the right hand side.

For a second explanation, to choose k elements out of the union of
an m-element set and a disjoint n-element set, choose some number
i ≤ m of them from the m-element set and the remaining k− i of them
from the n-element set. The sum on the left hand side of the equation
simply sums the number of such choices over all possible i, and the
binomial coefficient on the right hand side of the equation says we will
end up choosing k elements from among our m + n elements.

58. From the symmetry of the binomial coefficients, it is not too hard to see
that when n is an odd number, the number of subsets of {1, 2, . . . , n}
of odd size equals the number of subsets of {1, 2, . . . , n} of even size.
Is it true that when n is even the number of subsets of {1, 2, . . . , n} of
even size equals the number of subsets of odd size? Why or why not?

Solution: It is true, because if n > 0, when you expand (1− 1)n by
the binomial theorem, you get an alternating sum of binomial coeffi-
cients equal to 0, and so the sum of the binomial coefficients

(n
i

)
with

i even must equal the sum of the binomial coefficients
(n

i

)
with i odd.

59. What is
∑n

i=0 i
(n

i

)
? (Hint: think about how you might use calculus.)

Solution:
∑n

i=0

(n
i

)
xi = (1 + x)n. Taking derivatives of both sides

gives us
∑n

i=0 i
(n

i

)
xi−1 = n(1 + x)n−1. Now substitute 1 for x and you

get
∑n

i=0 i
(n

i

)
= n2n−1.

Notice how the proof you gave of the binomial theorem was a counting
argument. It is interesting that an apparently algebraic theorem that tells
us how to expand a power of a binomial is proved by an argument that
amounts to counting the individual terms of the expansion. Part of the
reason that combinatorial mathematics turns out to be so useful is that
counting arguments often underlie important results of algebra. As the
algebra becomes more sophisticated, so do the families of objects we have to
count, but nonetheless we can develop a great deal of algebra on the basis
of counting.
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1.3.3 The pigeonhole principle

◦60. American coins are all marked with the year in which they were made.
How many coins do you need to have in your hand to guarantee that
on two (at least) of them, the date has the same last digit? (When
we say “to guarantee that on two (at least) of them,...” we mean that
you can find two with the same last digit. You might be able to find
three with that last digit, or you might be able to find one pair with
the last digit 1 and one pair with the last digit 9, or any combination
of equal last digits, as long as there is at least one pair with the same
last digit.)

Solution: Since there are ten possible last digits, you need at least
11 coins, and with 11 coins, at least two last digits must be the same.

There are many ways in which you might explain your answer to Problem
60. For example, you can partition the coins according to the last digit of
their date; that is, you put all the coins with a given last digit in a block
together, and put no other coins in that block; repeating until all coins are
in some block. Then you have a partition of your set of coins. If no two
coins have the same last digit, then each block has exactly one coin. Since
there are only ten digits, there are at most ten blocks and so by the sum
principle there are at most ten coins. In fact with ten coins it is possible
to have no two with the same last digit, but with 11 coins some block must
have at least two coins in order for the sum of the sizes of at most ten blocks
to be 11. This is one explanation of why we need 11 coins in Problem 60.
This kind of situation arises often in combinatorial situations, and so rather
than always using the sum principle to explain our reasoning, we enunciate
another principle which we can think of as yet another variant of the sum
principle. The pigeonhole principle states that

If we partition a set with more than n elements into n parts,
then at least one part has more than one element.

The pigeonhole principle gets its name from the idea of a grid of little boxes
that might be used, for example, to sort mail, or as mailboxes for a group
of people in an office. The boxes in such grids are sometimes called pigeon-
holes in analogy with stacks of boxes used to house homing pigeons when
homing pigeons were used to carry messages. People will sometimes state
the principle in a more colorful way as “if we put more than n pigeons into
n pigeonholes, then some pigeonhole has more than one pigeon.”
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61. Show that if we have a function from a set of size n to a set of size less
than n, then f is not one-to-one.

Solution: Let T be the set of size less than n, and S be the set of
size n. Let Bj = {i|f(i) = j} for each j in T . Then the nonempty sets
among the Bjs form a partition of S and the number of blocks is less
than the size of S. Therefore by the pigeonhole principle, there is at
least one block with at least two elements, so there are two elements
i1 and i2 such that f(i1) = f(i2).

•62. Show that if S and T are finite sets of the same size, then a function
f from S to T is one-to-one if and only if it is onto.

Solution: First suppose that f is a one-to-one function from S to T ,
sets which have the same size. Let Bj = {i|f(i) = j} for each j in T .
If f is not onto, then the number of nonempty sets Bj is smaller than
the number of elements of T and thus is smaller than the size of S.
The nonempty sets Bj are a partition of S. But then by the pigeonhole
principle, some nonempty Bj has two or more elements, contradicting
the assumption that f is one-to-one. Therefore if f is one-to-one, then
it is onto. Now suppose that f is an onto function from S to T , sets
of the same size. Again let Bj = {i|f(i) = j} for each j in T . The
size of the union of the sets Bj is, by the sum principle, the sum of
their sizes. Since f is onto, each Bj has at least one element. Since
the number of sets Bj is the number of elements of S, if one of those
sets has more than one element, the the size of their union is more
than the size of S, which is a contradiction since they are subsets of
S. Therefore each set Bj has exactly one element and therefore f is
one-to-one.

·63. There is a generalized pigeonhole principle which says that if we parti-
tion a set with more than kn elements into n blocks, then at least one
block has at least k + 1 elements. Prove the generalized pigeonhole
principle.

Solution: Suppose we partition a set S of more than kn elements
into n blocks. If each block has at most k elements, the by the sum
principle the size of S is at most kn. But this is a contradiction, so
some block has at least k + 1 elements.

64. All the powers of five end in a five, and all the powers of two are even.
Show that for some integer n, if you take the first n powers of a prime
other than two or five, one must have “01” as the last two digits.
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Solution: If we take 40 powers of such a prime, either one will end
in “01” or some two, say pi and pj with i > j must have the same
last two digits by the pigeon hole principle. Then pi − pj = 100k for
some integer k. Thus pj(pi−j −1) must be a multiple of 100, and since
neither 2 nor 5 divide p, pi−j − 1 = 100k′ for some integer k′. Then
pi−j = 100k′ + 1, so the last two digits of pi−j must be “01.”

·65. Show that in a set of six people, there is a set of at least three people
who all know each other, or a set of at least three people none of whom
know each other. (We assume that if person 1 knows person 2, then
person 2 knows person 1.)

Solution: By the generalized pigeonhole principle, person 1 either
knows at least three people or doesn’t know at least three people.
Suppose person 1 knows three people. Then either two of these people
know each other, giving us, with person 1, three mutual acquaintances,
or no two of these people know each other, giving us three mutual
strangers. On the other hand if there are three people person 1 does
not know, then either two of these people don’t know each other, giving
us, with person 1, three mutual strangers, or all three of these people
know each other, giving us three mutual acquaintances.

·66. Draw five circles labeled Al, Sue, Don, Pam, and Jo. Find a way to
draw red and green lines between people so that every pair of people is
joined by a line and there is neither a triangle consisting entirely of red
lines or a triangle consisting of green lines. What does Problem 65 tell
you about the possibility of doing this with six people’s names? What
does this problem say about the conclusion of Problem 65 holding
when there are five people in our set rather than six?

Solution: In the figure that follows, we use solid lines for red and
dashed lines for green. Clearly there is no solid triangle and no dashed
triangle.

Al Sue

Don

Pam

Jo
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Problem 65 says you can’t do this with six people’s names. This
problem says that the conclusion of Problem 65 does not hold when
you have five people.

1.3.4 Ramsey Numbers

Problems 65 and 66 together show that six is the smallest number R with
the property that if we have R people in a room, then there is either a set
of (at least) three mutual acquaintances or a set of (at least) three mutual
strangers. Another way to say the same thing is to say that six is the smallest
number so that no matter how we connect six points in the plane (no three
on a line) with red and green lines, we can find either a red triangle or a
green triangle. There is a name for this property. The Ramsey Number
R(m,n) is the smallest number R so that if we have R people in a room,
then there is a set of at least m mutual acquaintances or at least n mutual
strangers. There is also a geometric description of Ramsey Numbers; it uses
the idea of a complete graph on R vertices. A complete graph on R vertices
consists of R points in the plane, together with line segments (or curves)
connecting each two of the R vertices.4 The points are called vertices and
the line segments are called edges. In Figure 1.8 we show three different
ways to draw a complete graph on four vertices. We use Kn to stand for a
complete graph on n vertices.

Figure 1.8: Three ways to draw a complete graph on four vertices

Our geometric description of R(3, 3) may be translated into the language
of graph theory (which is the subject that includes complete graphs) by
saying R(3, 3) is the smallest number R so that if we color the edges of
a KR with two colors, then we can find in our picture a K3 all of whose
edges have the same color. The graph theory description of R(m,n) is that

4As you may have guessed, a complete graph is a special case of something called a
graph. The word graph will be defined in Section 2.3.1.
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R(m,n) is the smallest number R so that if we color the edges of a KR with
red and green, then we can find in our picture either a Km all of whose edges
are red or a Kn all of whose edges are green. Because we could have said our
colors in the opposite order, we may conclude that R(m,n) = R(n, m). In
particular R(n, n) is the smallest number R such that if we color the edges
of a KR with two colors, then our picture contains a Kn all of whose edges
have the same color.

◦67. Since R(3, 3) = 6, an uneducated guess might be that R(4, 4) = 8.
Show that this is not the case.

Solution: In the graph

each vertex has three dashed lines emanating from it, and there are
no dashed lines connecting any of the three vertices adjacent to it by
dashed lines. Each vertex has four solid lines emanating from it, and
no three of the four vertices adjacent to it by solid lines are all adjacent
by solid lines. Thus there is no solid line K4 and there is no dashed
line K4.

·68. Show that among ten people, there are either four mutual acquain-
tances or three mutual strangers. What does this say about R(4, 3)?

Solution: Take a person, say person 1. If person has six acquain-
tances, then by Problem 65 among them there are either three mutual
strangers, in which case we are done, or three mutual acquaintances.
These three acquaintances, together with person 1 form a set of 4 mu-
tual acquaintances in which case we are again done. Thus we may
assume Person 1 has at most 5 acquaintances, and so has four non-
acquaintances. Now either all four of these people are acquainted, in
which case we are done, or else two of them are not acquainted. Then
these two people, together with person 1 make three mutual nonac-
quaintances. Therefore in every possible case, we have either four
mutual acquaintances or three mutual strangers. This means that
R(4, 3) ≤ 10.
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·69. Show that among an odd number of people there is at least one person
who is an acquaintance of an even number of people and therefore also
a stranger to an even number of people.

Solution: Suppose we add, for each person, the number of people
with whom he or she is acquainted. Then we get twice the number of
acquaintance edges in the graph of acquaintance and non-acquaintance
relationships. Thus the sum must be even. But if each person among
an odd number of people were acquainted with an odd number of
people, then the sum would be odd. Since this is a contradiction,
among an odd number of people, there must be at least one who is
acquainted with an even number of people. Since the number of people
different from this person is even, the number of people with whom
this person is not acquainted is also even.

·70. Find a way to color the edges of a K8 with red and green so that there
is no red K4 and no green K3.

Solution: In the graph

there is no K3 whose edges are dashed, and no K4 whose edges are
solid. By symmetry, to verify this you need only look at vertex 1 and
vertices connected to it by either dashed lines or by solid lines.

·71. Find R(4, 3).

Solution: R(4, 3) = 9. In Problem 70 we showed that R(4, 3) is more
than 8. So we must show that if we have nine people, we either have 4
mutual acquaintances or three mutual strangers. By Problem 69 there
is at least one person (say person A) who is acquainted with an even
number of people. If person A is acquainted with six or more people,
then among these six people, there are either three mutual acquain-
tances or three mutual strangers. If there are three mutual strangers,
we are done; if there are three mutual acquaintances, they, together
with Person A are four mutual acquaintances. Thus we may assume
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Person A is acquainted with at most four people. Thus person A is a
stranger to at least four people. If two of these people are strangers,
then they, together with person A form three mutual strangers and we
are done. Otherwise all of these people know each other and we have
at least four mutual acquaintances, and so in every possible situation,
we have either four mutual acquaintances or three mutual strangers.

As of this writing, relatively few Ramsey Numbers are known. R(3, n)
is known for n < 10, R(4, 4) = 18, and R(5, 4) = R(4, 5) = 25.

1.4 Supplementary Chapter Problems

1. Remember that we can write n as a sum of n ones. How many plus
signs do we use? In how many ways may we write n as a sum of a list
of k positive numbers? Such a list is called a composition of n into k
parts.

Solution: We use n − 1 plus signs. Write down such a sum and
choose k − 1 of the plus signs. Then each string of ones and plusses
between two chosen plus signs, before the first chosen plus sign or after
the last chosen one corresponds to a part of a composition of n. Thus
the number of compositions of n with k parts is the number of ways
to choose the k − 1 places, which is

(n−1
k−1

)
.

2. In Problem 1 we defined a composition of n into k parts. What is the
total number of compositions of n (into any number of parts)?

Solution: The total number of compositions is the number of ways
to choose a subset of the plus signs which is 2n−1.

·3. Write down a list of all 16 zero-one sequences of length four starting
with 0000 in such a way that each entry differs from the previous one
by changing just one digit. This is called a Gray Code. That is, a
Gray Code for 0-1 sequences of length n is a list of the sequences so
that each entry differs from the previous one in exactly one place. Can
you describe how to get a Gray Code for 0-1 sequences of length five
from the one you found for sequences of length 4? Can you describe
how to prove that there is a Gray code for sequences of length n?

Solution: (One of many) 0000, 0001, 0011, 0010, 0110, 0111, 0101,
0100, 1100, 1101, 1111, 1110, 1010, 1011, 1001, 1000. To get a code for
sequences of length 5, put a zero at the end of each of the sequences we
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have. Follow that revised sequence by 10001, and write the remainder
of the original sequence in reverse order with a 1 at the end of each
term. (Don’t reverse the individual length four sequences, just the
sequence of sequences!) If we do this with a Gray Code for sequences
of length n, we get a Gray code for sequences of length n + 1. Thus
we can get a Gray code for sequences of any length we wish. In the
terminology of Chapter 2, we just described the inductive step of an
inductive proof that Gray Codes exist for sequences of any length.

4. Use the idea of a Gray Code from Problem 3 to prove bijectively that
the number of even-sized subsets of an n-element set equals the number
of odd-sized subsets of an n-element set.

Solution: Each sequence in the Gray Code is the characteristic func-
tion of a set, and the number of elements of the set is the number of
ones in the sequence. Since each sequence differs in just one place
from the preceding one, the sequences alternate between having an
even number of ones and an odd number of ones. Since the first se-
quence is all zeros and there are 2n sequences, the last one has an
odd number of zeros. Thus the map that takes each sequence except
the last to the next one, and takes the last to the first is a bijection
between the characteristic functions of sets with an even number of
elements and sets with an odd number of elements.

5. A list of parentheses is said to be balanced if there are the same number
of left parentheses as right, and as we count from left to right we
always find at least as many left parentheses as right parentheses. For
example, (((()()))()) is balanced and ((()) and (()()))(() are not. How
many balanced lists of n left and n right parentheses are there?

Solution: The number is the Catalan Number: we get a bijection
between balanced lists of parentheses and Catalan paths by sending
each left parenthesis to an upstep and each right parenthesis to a down-
step. The condition that there are always as many left parentheses as
right ensures we never go below the x axis.

∗6. Suppose we plan to put six distinct computers in a network as shown in
Figure 1.9. The lines show which computers can communicate directly
with which others. Consider two ways of assigning computers to the
nodes of the network different if there are two computers that commu-
nicate directly in one assignment and that don’t communicate directly
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in the other. In how many different ways can we assign computers to
the network?

Figure 1.9: A computer network.

Solution: We consider two assignments of computers to be equiva-
lent if in both assignments, each computer communicates directly with
exactly the same computers. This partitions the set of all 6! computer
assignments into blocks of 48 computer assignments each. Thus we
have 720/48 = 15 ways to assign the computers to the network.

7. In a circular ice cream dish we are going to put four scoops of ice cream
of four distinct flavors chosen from among twelve flavors. Assuming
we place four scoops of the same size as if they were at the corners
of a square, and recognizing that moving the dish doesn’t change the
way in which we have put the ice cream into the dish, in how many
ways may we choose the ice cream and put it into the dish?

Solution: Each ice cream arrangement is equivalent to three others,
the ones we get by rotating the dish. This divides the arrangements
of four flavors of ice cream into blocks of size 4. Thus we may arrange
the ice cream we have chosen in the dish in 4!/4 = 6 ways. We may
choose the ice cream in

(12
4

)
= 495 ways, and so we may choose it and

put it into the dish in 2970 ways.

8. In as many ways as you can, show that
(n
k

)(n−k
m

)
=
(n
m

)(n−m
k

)
.

Solution: You can prove this by plugging in the formula for
(n
k

)
on

both sides and cancelling stuff until you get the same thing on both
sides.

However, a much more interesting proof is that the left hand side
counts the number of ways to choose a k-element set from an n-element
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set and then choose an m-element set from what remains. The right
hand side counts the number of ways to first choose an m-element
subset from the n-element set and then choose a k-element subset
from what remains. Thus in both cases you are counting the number
of ways to choose an ordered pair consisting of an m-element subset
and a disjoint k-element subset from an n-element set.

You can also base a proof on the observation that (x + y + z)n =∑n
k=0

(n
k

)
(x + y)kzn−k and (x + y + z)n =

∑n
m=0

(n
m

)
xm(y + z)n−m

and asking for the coefficient of xmyn−m−kzk. You do have to use
the binomial theorem with an eye to the result you are looking for,
however.

9. A tennis club has 4n members. To specify a doubles match, we choose
two teams of two people. In how many ways may we arrange the
members into doubles matches so that each player is in one doubles
match? In how many ways may we do it if we specify in addition who
serves first on each team?

Solution: We now have many methods for solving this problem. Per-
haps the easiest is to list all 4n people and take them in groups of four
for doubles matches, with the first two in a group of four as one team
and the second two as another team. We note that interchanging the
n blocks of 4 does not change the matches, nor does interchanging
the two people on a team nor interchanging the two teams. Thus we
have (4n)!/n!23n ways to arrange the matches. If we are to say who
serves first on each team, we might as well say it is the first of the two
listed, so now we have (4n)!/n!2n ways to arrange the matches. It is
an excellent exercise to look for more solutions.

10. A town has n streetlights running along the north side of Main Street.
The poles on which they are mounted need to be painted so that they
do not rust. In how many ways may they be painted with red, white,
blue, and green if an even number of them are to be painted green?

Solution: We can think of first choosing the set of even size of poles
to be painted green, and the painting the remaining poles red, white,
and blue. We may do this in

∑bn/2c
k=0

( n
2k

)
3n−2k ways.

∗11. We have n identical ping-pong balls. In how many ways may we paint
them red, white, blue, and green?

Solution: We can line up the identical ping-pong balls and break
them into four groups, those of each color, by inserting dividers. If we
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want to paint at least one in each color, we can choose three of the
spaces between the balls in which to insert dividers, so we can paint
them in

(n−1
3

)
ways. But the problem didn’t require us to use each

color, so we can put two dividers adjacent to each other. Thus there
are n+1 places where we can put the first divider (putting it before all
the balls means we use no red, and putting it after all of them means we
use no green. Now there are n+2 places where we can put the second
divider, including before or after the first, and n + 3 places where we
can put the third divider. However, if we interchange two dividers we
still paint the balls before the first divider red, those between then next
two white, and so on. Thus 3! = 6 of these arrangements of balls and
dividers correspond to the same paint job, so the number of ways to
paint the balls is (n+1)(n+2)(n+3)

6 =
(n+3

3

)
. This suggests that another

way to think of the problem is to consider n + 3 slots in a row, and
fill n of them with balls and 3 of them with dividers; since the balls
are identical and the dividers might as well be identical, the number
of ways to do this is the number of ways to choose the slots that get
dividers.

∗12. We have n identical ping-pong balls. In how many ways may we paint
them red, white, blue, and green if we use green paint on an even
number of them?

Solution: We first decide how many balls to paint green, then paint
the remainder with the other three colors as in Problem 11. This gives
us

bn/2c∑
k=0

(
n− 2k + 2

2

)

ways to paint the balls.
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Chapter 2

Applications of Induction
and Recursion in
Combinatorics and Graph
Theory

2.1 Some Examples of Mathematical Induction

If you are unfamiliar with the Principle of Mathematical Induction, you
should read Appendix B (a portion of which is repeated here).

2.1.1 Mathematical induction

The principle of mathematical induction states that

In order to prove a statement about an integer n, if we can

1. Prove the statement when n = b, for some fixed integer b,
and

2. Show that the truth of the statement for n = k − 1 implies
the truth of the statement for n = k whenever k > b,

then we can conclude the statement is true for all integers n ≥ b.

As an example, let us give yet another proof that a set with n elements
has 2n subsets. This proof uses essentially the the same bijections we used
in proving the Pascal Equation. The statement we wish to prove is the
statement that “A set of size n has 2n subsets.”

53
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Our statement is true when n = 0, because a set of size 0 is the
empty set and the empty set has 1 = 20 subsets. (This step of
our proof is called a base step.)

Now suppose that k > 0 and every set with k − 1 elements has
2k−1 subsets. Suppose S = {a1, a2, . . . ak} is a set with k ele-
ments. We partition the subsets of S into two blocks. Block B1

consists of the subsets that do not contain an and block B2 con-
sists of the subsets that do contain an. Each set in B1 is a subset
of {a1, a2, . . . ak−1}, and each subset of {a1, a2, . . . ak−1} is in B1.
Thus B1 is the set of all subsets of {a1, a2, . . . ak−1}. Therefore
by our assumption in the first sentence of this paragraph, the
size of B1 is 2k−1. Consider the function from B2 to B1 which
takes a subset of S including ak and removes ak from it. This
function is defined on B2, because every set in B2 contains ak.
This function is onto, because if T is a set in B1, then T ∪ {ak}
is a set in B2 which the function sends to T . This function is
one-to-one because if V and W are two different sets in B2, then
removing ak from them gives two different sets in B1. Thus we
have a bijection between B1 and B2, so B1 and B2 have the
same size. Therefore by the sum principle the size of B1 ∪B2 is
2k−1 + 2k−1 = 2k. Therefore S has 2k subsets. This shows that
if a set of size k− 1 has 2k−1 subsets, then a set of size k has 2k

subsets. Therefore by the principle of mathematical induction,
a set of size n has 2n subsets for every nonnegative integer n.

The first sentence of the last paragraph is called the inductive hypothesis.
In an inductive proof we always make an inductive hypothesis as part of
proving that the truth of our statement when n = k− 1 implies the truth of
our statement when n = k. The last paragraph itself is called the inductive
step of our proof. In an inductive step we derive the statement for n =
k from the statement for n = k − 1, thus proving that the truth of our
statement when n = k − 1 implies the truth of our statement when n = k.
The last sentence in the last paragraph is called the inductive conclusion.
All inductive proofs should have a base step, an inductive hypothesis, an
inductive step, and an inductive conclusion.

There are a couple details worth noticing. First, in this problem, our
base step was the case n = 0, or in other words, we had b = 0. However,
in other proofs, b could be any integer, positive, negative, or 0. Second, our
proof that the truth of our statement for n = k− 1 implies the truth of our
statement for n = k required that k be at least 1, so that there would be an
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element ak we could take away in order to describe our bijection. However,
condition (2) of the principle of mathematical induction only requires that
we be able to prove the implication for k > 0, so we were allowed to assume
k > 0.

Strong Mathematical Induction

One way of looking at the principle of mathematical induction is that it
tells us that if we know the “first” case of a theorem and we can derive each
other case of the theorem from a smaller case, then the theorem is true in all
cases. However, the particular way in which we stated the theorem is rather
restrictive in that it requires us to derive each case from the immediately
preceding case. This restriction is not necessary, and removing it leads us to
a more general statement of the principal of mathematical induction which
people often call the strong principle of mathematical induction. It
states:

In order to prove a statement about an integer n if we can

1. Prove our statement when n = b, and

2. Prove that the statements we get with n = b, n = b + 1,
. . .n = k − 1 imply the statement with n = k,

then our statement is true for all integers n ≥ b.

You will find some explicit examples of the use of the strong principle of
mathematical induction in Appendix B and will find some uses for it in this
chapter.

2.1.2 Binomial Coefficients and the Binomial Theorem

•72. When we studied the Pascal Equation and subsets in Chapter 1, it may
have appeared that there is no connection between the Pascal relation(n
k

)
=
(n−1
k−1

)
+
(n−1

k

)
and the formula

(n
k

)
= n!

k!(n−k)! . Of course you
probably realize you can prove the Pascal relation by substituting the
values the formula gives you into the right-hand side of the equation
and simplifying to give you the left hand side. In fact, from the Pascal
Relation and the facts that

(n
0

)
= 1 and

(n
n

)
= 1, you can actually

prove the formula for
(n
k

)
by induction on n. Do so.

Solution: We wish to prove that
(n

i

)
= n!

i!(n−i)! . We note that since(n
0

)
= 1 and

(n
n

)
= 1 are in agreement with this formula, we only have
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to consider the cases in which 0 < i < n, which by the way, requires
that n ≥ 2. We will prove that our formula holds by induction on
n for n ≥ 2. If n = 2, the only i we need to consider is i = 1, and
we know that

(2
1

)
= 2, the number of one-element subsets of a two-

element set. But 2!
1!(2−1)! is 2 also, so our formula holds when n = 2.

Now suppose our formula holds when n = k − 1, so that for every i
with 0 < i < n− 1,

(k−1
i

)
= (k−1)!

i!(k−1−i)! . Then by the Pascal Equation(
k

i

)
=

(
k − 1
i− 1

)
+

(
k − 1

i

)

=
(k − 1)!

(i− 1)!(k − 1− i + 1)!
+

(k − 1)!
i!(k − 1− i)!

=
(k − 1)!i + (k − 1)!(k − i)

i!(k − i)!
=

k!
i!(k − i)!

.

Thus the truth of our formula for n = k−1 implies its truth for n = k.
Therefore by the principle of mathematical induction, our formula is
true for all integers n ≥ 2. We have already seen is is true when i = 0
or i = 1, so it is true for all nonnegative n and all numbers i with
0 ≤ i ≤ n.

73. Use the fact that (x + y)n = (x + y)(x + y)n−1 to give an inductive
proof of the binomial theorem.

Solution: We prove the binomial theorem by induction on n. When
n = 0, (x + y)n = (x + y)0 = 1 =

∑0
i=0

(n
i

)
x0−iyi since that last

summation consists of the one term
(0
0

)
x0y0.

Now suppose that when n = k − 1, (x + y)n =
∑n

i=0

(n
i

)
xn−iyi. This

gives us

(x + y)k = (x + y)(x + y)k−1 = (x + y)
k−1∑
i=0

(
k − 1

i

)
xk−1−iyi

=
k−1∑
i=0

(
k − 1

i

)
xk−iyi +

k−1∑
i=0

(
k − 1

i

)
xk−1−iyi+1

=
k−1∑
i=0

(
k − 1

i

)
xk−iyi +

k∑
i=1

(
k − 1
i− 1

)
xk−iyi

= xk +

(
k−1∑
i=1

(
k − 1

i

)
xk−iyi +

(
k − 1
i− 1

)
xk−iyi

)
+ yk
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= xk +

(
k−1∑
i=1

(
k

i

)
xk−iyi

)
+ yk =

k∑
i=0

(
k

i

)
xk−iyi.

Thus the truth of the binomial theorem for n = k − 1 implies its
truth for n = k. Then by the principle of mathematical induction, the
binomial theorem must be true for all integers n ≥ 0.

74. Suppose that f is a function defined on the nonnegative integers such
that f(0) = 3 and f(n) = 2f(n − 1). Find a formula for f(n) and
prove your formula is correct.

Solution: f(n) = 3 · 2n. We prove our formula is correct by in-
duction. When n = 0 our formula gives f(0) = 3, which is what we
were given. Now suppose that when n = k − 1, f(n) = 3 · 2n. Then
f(k) = 2 · f(k − 1) = 2 · 3 · 2k−1 = 3 · 2k. Therefore the truth of our
formula when n = k − 1 implies its truth when n = k and so by the
principle of mathematical induction, f(n) = 3 · 2n for all nonnegative
integers n.

+ 75. Prove the conjecture in Problem 13b for an arbitrary positive integer
m without appealing to the general product principle.

Solution: In Problem 13b we proved that that the conjecture follows
from the general product principle. Now we prove by induction on m
that there are nm functions from [m] to [n]. When m = 0 there is one
function (the so-called ”empty function” from [m] to [n]). Now assume
inductively that when m = k − 1 there are nk−1 functions from [m]
to [n]. For each value i between 1 and n there is a bijection between
the functions from [k − 1] to [n] and the functions f from k to n with
f(k) = i. Thus the set of all functions from [k] to [n] is a union of n
sets of size nk−1 and so by the ordinary product principle this set has
size nk. Thus by the principle of mathematical induction, the number
of functions from m to n is mn for all nonnegative integers m.

2.1.3 Inductive definition

You may have seen n! described by the two equations 0! = 1 and n! =
n(n − 1)! for n > 0. By the principle of mathematical induction we know
that this pair of equations defines n! for all nonnegative numbers n. For
this reason we call such a definition an inductive definition. An inductive
definition is sometimes called a recursive definition. Often we can get very
easy proofs of useful facts by using inductive definitions.
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76. An inductive definition of an for nonnegative n is given by a0 = 1 and
an = aan−1. (Notice the similarity to the inductive definition of n!.)
We remarked above that inductive definitions often give us easy proofs
of useful facts. Here we apply this inductive definition to prove two
useful facts about exponents that you have been using almost since
you learned the meaning of exponents.

(a) Use this definition to prove the rule of exponents am+n = aman

for nonnegative m and n.
Solution: We use induction on n to prove this. When n = 0,
the formula gives us am+0 = ama0 = am · 1 = am, so the rule of
exponents holds when n = 0. Now assume it holds when n = k−1
so that am+k−1 = amak−1. Then, starting and ending with our
inductive definition, we may write

am+n = aam+n−1 = aamak−1 = am · a · ak−1 = amak.

Thus the truth of our law for n = k − 1 implies its truth for
n = k. Therefore, by the principle of mathematical induction,
am+n = aman for all nonnegative integers n.

(b) Use this definition to prove the rule of exponents amn = (am)n.
Solution: We will use induction on n and part (a) of this prob-
lem to prove that amn = (am)n. First, when n = 0 the left and
right hand sides of the equation are both 1, so amn = (am)n holds
when n = 0. Now assume that am(k−1) = (am)k−1. This may be
rewritten as amk−m = (am)k−1. Multiply both sides by am and
apply part (a) of the problem and then the inductive definition
(with am replacing a) to get

amk−mam = (am)k−1am

amk = (am)k−1am

amk = (am)k.

Thus the truth of our formula when n = k − 1 implies its truth
when n = k. Therefore by the principle of mathematical induc-
tion, the formula is true for all nonnegative integers n.

+ 77. Suppose that f is a function on the nonnegative integers such that
f(0) = 0 and f(n) = n + f(n − 1). Prove that f(n) = n(n + 1)/2.
Notice that this gives a third proof that 1 + 2 + · · ·+ n = n(n + 1)/2,
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because this sum satisfies the two conditions for f . (The sum has no
terms and is thus 0 when n = 0.)

Solution: We prove the formula for f by induction on n. If n = 0,
then n(n + 1)/2 = 0 which is what we were given. Now assume that
f(k − 1) = (k − 1)k/2. Then f(k) = k + f(k − 1) = k + (k − 1)k/2 =
(k2 + 2k − k)/2 = k(k + 1)/2. Therefore the truth of the formula for
n = k − 1 implies its truth for n = k, and thus by the principle of
mathematical induction, the formula for f holds for all nonnegative
integers n.

78. Give an inductive definition of the summation notation
∑n

i=1 ai. Use
it and the distributive law b(a + c) = ba + bc to prove the distributive
law

b
n∑

i=1

ai =
n∑

i=1

bai.

Solution: We define
∑1

i=1 ai = a1 and for n > 1,
∑n

i=1 ai =(∑n−1
i=1 ai

)
+ an. When n = 1, b

∑1
i=1 ai = ba1 by the base step of our

inductive definition. Assume that k > 1 and b
∑k−1

i=1 ai =
∑k−1

i=1 bai.
Now we can write

b
k∑

i=1

ai =b

[(
k−1∑
i=1

ai

)
+ ak

]
=

(
b

k−1∑
i=1

ai

)
+bak =

(
k−1∑
i=1

bai

)
+bak =

k∑
i=1

bai,

where the last step is justified by the inductive step of our inductive
definition with ai replaced by bai. Thus the truth of our statement for
k−1 implies its truth for i = k, and therefore by the principle of math-
ematical induction, for all positive integers n, b

∑n
i=1 ai =

∑n
i=1 bai.

2.1.4 Proving the general product principle (Optional)

We stated the sum principle as

If we have a partition of a finite set S, then the size of S is the
sum of the sizes of the blocks of the partition.

In fact, the simplest form of the sum principle says that the size of the sum
of two disjoint (finite) sets is the sum of their sizes.

79. Prove the sum principle we stated for partitions of a set from the
simplest form of the sum principle.
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Solution: We prove by induction on n that the size of the union of
n disjoint sets is the sum of their sizes. We assume that the size of the
union of two disjoint sets is the sum of their sizes. Now assume k > 2
and the size of the union of k−1 disjoint sets is the sum of their sizes.
Then we may write

| ∪k
i=1 Si| = |

(
∪k−1

i=1 Si

)
∪ Sk| =

(
k−1∑
i=1

|Si|
)

+ |Sk| =
k∑

i=1

|Si|.

Thus whenever the size of the union of k − 1 disjoint sets is the sum
of their sizes, then the size of a union of k disjoint sets is the sum of
their sizes. Thus by the principle of mathematical induction, the size
of the union of n disjoint sets is the sum of their sizes for all n > 1.
The statement holds trivially when n = 1 as well.

We stated the partition form of the product principle as

If we have a partition of a finite set S into m blocks, each
of size n, then S has size mn.

In Problem 11 we gave a more general form of the product principle which
can be stated as

If we make a sequence of m choices for which

• there are k1 possible first choices, and

• for each way of making the first i − 1 choices, there are ki

ways to make the ith choice,

then we may make our sequence of choices in k1 · k2 · · · · · km =∏m
i=1 ki ways.

In Problem 14 we stated the general product principle as follows.

Let S be a set of functions f from [n] to some set X. Suppose
that

• there are k1 choices for f(1), and

• for each choice of f(1), f(2), . . . f(i − 1), there are ki

choices for f(i).

Then the number of functions in the set S is k1k2 · · · kn.
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You may use either way of stating the general product principle in the
following Problem.

+ 80. Prove the general form of the product principle from the partition form
of the product principle.

Solution: We prove by induction that if S is a set of functions de-
fined on [m] such that

• there are k1 choices for f(1) and

• when 2 ≤ i ≤ m, for each choice of f(1), f(2), . . . f(i− 1), there
are ki choices for f(i),

then there are
∏m

i=1 ki functions in S. When m = 1, the product is k1

and there are k1 functions in S. Now assume inductively that when
S′ is a set of functions defined on [m− 1] such that

• there are k1 choices for f(1) and

• when 2 ≤ i ≤ m − 1, for each choice of f(1), f(2), . . . f(i − 1),
there are ki choices for f(i),

then there are
∏m−1

i=1 ki functions in S′. Now partition S into k1 sets
Sj , where Sj is the set of functions f in S with f(n) = yj for each of
the kn values yj that are possible for f(1). Thus S is a union of kn sets
Sj each of size

∏m−1
i=1 ki (by the inductive hypothesis), and so by the

product principle for unions of sets, S has size
∏m

i=1 ki. Therefore, by
the principle of mathematical induction, we have proved the general
product principle.

2.1.5 Double Induction and Ramsey Numbers

In Section 1.3.4 we gave two different descriptions of the Ramsey number
R(m,n). However, if you look carefully, you will see that we never showed
that Ramsey numbers actually exist; we merely described what they were
and showed that R(3, 3) and R(3, 4) exist by computing them directly. As
long as we can show that there is some number R such that when there are
R people together, there are either m mutual acquaintances or n mutual
strangers, this shows that the Ramsey Number R(m, n) exists, because it
is the smallest such R. Mathematical induction allows us to show that one
such R is

(m+n−2
m−1

)
. The question is, what should we induct on, m or n? In

other words, do we use the fact that with
(m+n−3

m−2

)
people in a room there

are at least m−1 mutual acquaintances or n mutual strangers, or do we use
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the fact that with at least
(m+n−3

n−2

)
people in a room there are at least m

mutual acquaintances or at least n− 1 mutual strangers? It turns out that
we use both. Thus we want to be able to simultaneously induct on m and
n. One way to do that is to use yet another variation on the principle of
mathematical induction, the Principle of Double Mathematical Induction.
This principle (which can be derived from one of our earlier ones) states
that

In order to prove a statement about integers m and n, if we
can

1. Prove the statement when m = a and n = b, for fixed
integers a and b

2. Prove the statement when m = a and n > b and when
m > a and n = b (for the same fixed integers a and b),

3. Show that the truth of the statement for m = j and
n = k − 1 (with j ≥ a and k > j) and the truth of the
statement for m = j − 1 and n = k (with j > a and
k ≥ b) imply the truth of the statement for m = j and
n = k,

then we can conclude the statement is true for all pairs of
integers m ≥ a and n ≥ b.

There is a strong version of double induction, and it is actually easier
to state. The principle of strong double mathematical induction says the
following.

In order to prove a statement about integers m and n, if we
can

1. Prove the statement when m = a and n = b, for fixed
integers a and b

2. Show that the truth of the statement for values of m
and n with a + b ≤ m + n < k implies the truth of the
statement for m + n = k,

then we can conclude that the statement is true for all pairs
of integers m ≥ a and n ≥ b.
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·81. Prove that R(m, n) exists by proving that if there are
(m+n−2

m−1

)
people

in a room, then there are either at least m mutual acquaintances or
at least n mutual strangers.

Solution: We use double induction on m and n to prove this for
m, n ≥ 2. Note first that R(m, 2) = m =

(m+2−2
m−1

)
and R(2, n) = n =(2+n−2

1

)
. (In words, if there are m people in a room, then either all

m people know each other or there are two mutual nonacquaintances,
and if there are n people in a room, then either there are two people
who know each other or they are all mutual strangers.) Note that we
have covered both steps 1 and 2 of a double induction proof now. Now
assume that whenever there are

(m+n−3
m−1

)
people in a room there are

either at least m mutual acquaintances or n−1 mutual strangers, and
that whenever there are at least

(m+n−3
m−2

)
people in a room there are

either at least m−1 mutual acquaintances or n mutual strangers. Sup-
pose that we have

(m+n−2
m−1

)
people in a room. Choose a person, say P .

Then since
(m+n−2

m−1

)
=
(m−n−3

m−1

)
+
(m+n−3

m−2

)
, person P is, by the gener-

alized pigeonhole principle, either acquainted with
(m+n−3

m−2

)
people or

unacquainted with
(m+n−3

m−1

)
people. In the first case, among the people

with whom P is acquainted, either m− 1 are mutual acquaintances or
n are mutual strangers. If m are mutual strangers, we are done, while
if m− 1 are mutual acquaintances, these m− 1 people, together with
person P , are m mutual acquaintances, in which case we are done as
well. In the second case, among the

(m+n−3
m−1

)
people with whom person

P is unacquainted, there are either m mutual acquaintances, in which
case we are done, or there are n − 1 mutual strangers. In this event,
these n− 1 mutual strangers, along with person P make up n mutual
strangers. Thus in every case, if we know that with

(m+n−3
m−2

)
people

in a room there are either m − 1 mutual acquaintances or n mutual
strangers, and we know that with

(m+n−3
m−1

)
people in a room there are

either m mutual acquaintances or n− 1 mutual strangers, we can con-
clude that with

(m+n−2
m−1

)
people in a room there are either m mutual

acquaintances or n mutual strangers. Therefore by the principle of
double mathematical induction we know that for all m and n greater
than or equal to 2, if there are

(m+n−2
m−1

)
people in a room, then there

are either m mutual acquaintances of n mutual strangers. This shows
that R(m, n) exists and is no more than

(m+n−2
m−1

)
.

·82. Prove that R(m,n) ≤ R(m− 1, n) + R(m,n− 1).

Solution: If there are R(m− 1, n) + R(m,n− 1) people in a room,
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choose one person, say person P . By the generalized pigeonhole prin-
ciple, there are either R(m− 1, n) people with whom P is acquainted
or R(m,n − 1) people with whom person P is unacquainted. In the
first case, among the people with whom person P is acquainted, there
are either n mutual strangers, in which case we are done, or there are
m− 1 people with whom person P is acquainted. These m− 1 people
and person P form m people who are mutually acquainted, and so
we have m mutual acquaintances. On the other hand, if P is unac-
quainted with R(m,n− 1) people, then among these people, there are
either m mutually acquainted people, in which case we are done, or
among these people there are m − 1 mutually unacquainted people,
and these m − 1 people together with P make m mutual strangers.
Thus in every case, if there are R(m− 1, n) + R(m,n− 1) people in a
room, there are either at least m mutual acquaintances or at least n
mutual strangers. Therefore R(m,n) ≤ R(m− 1, n) + R(m,n− 1).

·83. (a) What does the equation in Problem 82 tell us about R(4, 4)?
Solution: R(4, 4) ≤ R(3, 4) + R(4, 3) = 9 + 9 = 18.

∗(b) Consider 17 people arranged in a circle such that each person is
acquainted with the first, second, fourth, and eighth person to
the right and the first, second, fourth, and eighth person to the
left. Can you find a set of four mutual acquaintances? Can you
find a set of four mutual strangers?
Solution: You cannot find either. If there were a set of four
mutual acquaintances, you could assume by symmetry that it
includes person 1, and two people from among those one, two,
four, and eight places to the right. Thus you can assume your
set of four acquaintances contains person 1 and two from among
persons 2, 3, 5, and 9. However, persons 2 and 5, 2 and 9 and 3
and 9 are not acquainted. Thus three of the mutually acquainted
people are either persons 1, 2, and 3, persons 1, 5, and 9 or
persons 1, 3, and 5. However, person 5 is not acquainted with
the person one, two, or eight places to the left of person 1, so
if person 5 is in the set of mutual acquaintances, then person
14 must be as well. However, person 3 and person 9 are not
acquainted with person 14. Thus our set must contain persons 1,
2, and 3. However, person 3 is not acquainted with the person
one, two, four, or eight persons to the left of person 1, so there
is no set of four mutual acquaintances. A similar argument holds
for nonacquaintances.
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(c) What is R(4, 4)?

Solution: 18.

84. (Optional) Prove the inequality of Problem 81 by induction on m+n.

Solution: We want to prove that if m ≥ 2 and n ≥ 2, then when
there are

(m+n−2
m−1

)
people in a room, there are either m mutual ac-

quaintances or n mutual strangers. If m + n = 4, then m = 2 and
n = 2, and if there are

(2+2−2
1

)
= 2 people in a room, there are either

two who know each other or two who don’t.

Now assume that when m + n = k − 1, it is the case that if there
are

(m+n−2
m−1

)
people in a room, then there are either m mutual ac-

quaintances or n mutual strangers. Suppose that m′ + n′ = k and
there are

(m′+n′−2
m′−1

)
people in a room. If n′ = 2, then we know that

with
(m′+2−2

m′−1

)
= m′ people in a room, there are either m′ mutual ac-

quaintances or two mutual strangers, and similarly if m′ = 2 there
are either two mutual acquaintances or n mutual strangers among(m′+n′−2

m−1

)
people. Thus we may assume that both m′ and n′ are

greater than two. Since
(m′+n′−2

m−1

)
=
((m′−1)+n−2

m′−2

)
+
(m+(n−1)−2

m−1

)
, if

there are
(m′+n′−2

m′−1

)
people in a room, then a given person, say person

P , is either acquainted with
((m′−1)+n′−2

m′−1

)
of them (call this case 1) or

is a stranger with
(m′+(n−1)−2

m−1

)
of them (call this case 2). Notice that

m′−1+n′ = k−1 and m′+n′−1 = k−1. Thus in case 1, our inductive
hypothesis tells us that either m′ − 1 of person P ’s acquaintances are
mutually acquainted, in which case they and person P form m′ mu-
tual acquaintances, or n′ of P ’s acquaintances are mutual strangers,
in which case we have n′ mutual strangers. Similarly in case 2 we have
either m′ mutual acquaintances or n′ mutual strangers. Thus by the
principle of mathematical induction, for all values of m + n greater
than or equal to 4, if we have

(m+n−2
m−1

)
people in a room, then we have

either m mutual acquaintances or n mutual strangers, so that R(m,n)
exists and is no more than

(m+n−2
m−1

)
.

85. Use Stirling’s approximation (Problem 46) to convert the upper bound
for R(n, n) that you get from Problem 81 to a multiple of a power of
an integer.

Solution: R(n, n) ≤
(n+n−2

m−1

)
= (2n−2)!

(n−1)!2
. For n sufficiently large, this
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is approximately √
2π(2n− 2)(2n− 2)2n−2/e2n−2√

2π(n− 1)(n− 1)n−1
√

2π(n− 1)(n− 1)n−1/en−1en−1

=
22n−2(n− 1)2n−2√
π(n− 1)(n− 1)2n−2

=
1√

π(n− 1)
22n−2

2.1.6 A bit of asymptotic combinatorics

Problem 85 gives us an upper bound on R(n, n). A very clever technique due
to Paul Erdös, called the “probabilistic method,” will give a lower bound.
Since both bounds are exponential in n, they show that R(n, n) grows ex-
ponentially as n gets large. An analysis of what happens to a function of
n as n gets large is usually called an asymptotic analysis. The probabilistic
method, at least in its simpler forms, can be expressed in terms of aver-
ages, so one does not need to know the language of probability in order to
understand it. We will apply it to Ramsey numbers in the next problem.
Combined with the result of Problem 85, this problem will give us that√

2
n

< R(n, n) < 22n−2, so that we know that the Ramsey number R(n, n)
grows exponentially with n.

86. Suppose we have two numbers n and m. We consider all possible ways
to color the edges of the complete graph Km with two colors, say red
and blue. For each coloring, we look at each n-element subset N of
the vertex set M of Km. Then N together with the edges of Km

connecting vertices in N forms a complete graph on n vertices. This
graph, which we denote by KN , has its edges colored by the original
coloring of the edges of Km.

(a) Why is it that, if there is no subset N ⊆ M so that all the edges
of KN are colored the same color for any coloring of the edges of
Km, then R(n, n) > m?
Solution: Another way to say there is no such subset is to say
that it is not possible to find a Kn all of whose edges are red or
a Kn all of whose edges are blue. This means that R(n, n) > n.

(b) To apply the probabilistic method, we are going to compute the
average, over all colorings of Km, of the number of sets N ⊆ M
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with |N | = n such that KN does have all its edges the same color.
Explain why it is that if the average is less than 1, then for some
coloring there is no set N such that KN has all its edges colored
the same color. Why does this mean that R(n, n) > m?
Solution: If the average of n nonnegative integers is less than
one, they cannot all be one or more, so one has to be zero. Thus
in this context there must be some coloring that has no set N so
that KN has all its edges colored the same color.

(c) We call a KN monochromatic for a coloring c of Km if the color
c(e) assigned to edge e is the same for every edge e of KN . Let us
define mono(c,N) to be 1 if N is monochromatic for c and to be
0 otherwise. Find a formula for the average number of monochro-
matic KN s over all colorings of Km that involves a double sum
first over all edge colorings c of Km and then over all n-element
subsets N ⊆ M of mono(c,N).
Solution:

1

2
(m

2 )
∑

c:c is a coloring of Km

∑
N :N⊆M, |N |=n

mono(c,N).

(d) Show that your formula for the average reduces to 2
(m

n

)
· 2−(n

2)

Solution:

1

2
(m

2 )
∑

c:c is a coloring of Km

∑
N :N⊆M, |N |=n

mono(c,N)

=
1

2
(m

2 )
∑

N :N⊆M, |N |=n

∑
c:c is a coloring of Km

mono(c,N)

= 2−(m
2 )

∑
N :N⊆M, |N |=n

2 · 2(m
2 )−(n

2)

= 2

(
m

n

)
2−(n

2)

(e) Explain why R(n, n) > m if
(m

n

)
≤ 2(n

2)−1.
Solution: R(n, n) > m if the average above is less than 1. Thus
R(n, n) > m if 2

(m
2

)
2−(n

2) < 1, which is equivalent to
(m

n

)
<

2(n
2)−1.
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∗(f) Explain why R(n, n) >
n
√

n!2(n
2)−1.

Solution:
(m

n

)
< 2(n

2)−1 is the same as mn

n! < 2(n
2)−1. And

since mn < mn, the inequality mn

n! < 2(n
2)−1 holds if the in-

equality mn

n! ≤ 2(n
2)−1 holds. And this last inequality holds if

m ≤
n
√

n!2(n
2)−1 holds. Thus R(n, n) > m for any m such that

m ≤
n
√

n!2(n
2)−1, which implies that R(n, n) >

n
√

n!2(n
2)−1.

(g) By using Stirling’s formula, show that if n is large enough, then
R(n, n) >

√
2n =

√
2

n
. (Here large enough means large enough

for Stirling’s formula to be reasonably accurate.)
Solution: Using Stirling’s approximation to n! we get

R(n, n) >
n

√
nn

en

√
2πn2

n2−n−2
2 =

n

e
2

n2−n−2
2n 2n

√
2πn > 2n/2 =

√
2

n
.

2.2 Recurrence Relations

87. How is the number of subsets of an n-element set related to the number
of subsets of an (n− 1)-element set? Prove that you are correct.

Solution: Suppose that our n-element set is N = {a1, a2, . . . , an}.
Then a subset of N either contains an or it doesn’t. In our discussion
of the Pascal recurrence, we showed that the number of k-element
subsets of N that contain an is the same as the number of (k − 1)-
element subsets of N − {an}. The bijection we used to prove this
consists of taking an away from a set containing an. Thus the number
of subsets of N containing an is the same as the number of subsets of
the (n−1)-element set N −{an}. But the subsets of N not containing
an are exactly the same as the subsets of N − {an}. Thus we can
partition the subsets of N into two blocks, each of which has size
equal to the number of subsets of N − {an}. Therefore, by the sum
principle, the number of subsets of N is twice the number of subsets
of N − {an}.

88. Explain why it is that the number of bijections from an n-element set
to an n-element set is equal to n times the number of bijections from
an (n − 1)-element subset to an (n − 1)-element set. What does this
have to do with Problem 27?
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Solution: To specify a bijection f from an n-element set {a1, a2, . . . an}
to an n-element set, we have n choices for f(a1), and then bn−1 choices
for how to define f from the elements {a2, a3, . . . , an} to the remaining
n − 1 elements of our range. By the product principle this gives us
bn = nbn−1 for the number bn of bijections from an n-element set to
an n-element set.

We can summarize these observations as follows. If sn stands for the number
of subsets of an n-element set, then

sn = 2sn−1, (2.1)

and if bn stands for the number of bijections from an n-element set to an
n-element set, then

bn = nbn−1. (2.2)

Equations 2.1 and 2.2 are examples of recurrence equations or recurrence
relations. A recurrence relation or simply a recurrence is an equation
that expresses the nth term of a sequence an in terms of values of ai for
i < n. Thus Equations 2.1 and 2.2 are examples of recurrences.

2.2.1 Examples of recurrence relations

Other examples of recurrences are

an = an−1 + 7, (2.3)

an = 3an−1 + 2n, (2.4)

an = an−1 + 3an−2, and (2.5)

an = a1an−1 + a2an−2 + · · ·+ an−1a1. (2.6)

A solution to a recurrence relation is a sequence that satisfies the recurrence
relation. Thus a solution to Recurrence 2.1 is the sequence given by sn = 2n.
Note that sn = 17 · 2n and sn = −13 · 2n are also solutions to Recurrence
2.1. What this shows is that a recurrence can have infinitely many solutions.
In a given problem, there is generally one solution that is of interest to us.
For example, if we are interested in the number of subsets of a set, then the
solution to Recurrence 2.1 that we care about is sn = 2n. Notice this is the
only solution we have mentioned that satisfies s0 = 1.
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89. Show that there is only one solution to Recurrence 2.1 that satisfies
s0 = 1.

Solution: We prove by induction on n that there is one and only
one value sn that satisfies both sn = 2sn−1 for n > 0 and s0 = 1.
First, there is clearly one and only one value s0 that satisfies s0 = 1.
Now assume that k > 0 and there is one and only one value sk−1 that
satisfies the two equations. Then sk = 2sk−1 is the one and only one
value that satisfies the two equations. Therefore by the principle of
mathematical induction, for all nonnegative integers n there is one and
only one value sn that satisfies the equations s0 = 1 and sk = 2sk−1

for all k > 0. (Note that since we were making a statement about sn

for all nonnegative integers n it was not appropriate to use n as the
dummy variable in the recursive equation sk = 2sk−1.)

90. A first-order recurrence relation is one which expresses an in terms of
an−1 and other functions of n, but which does not include any of the
terms ai for i < n− 1 in the equation.

(a) Which of the recurrences 2.1 through 2.6 are first order recur-
rences?
Solution: The recurrences 2.1, 2.2, 2.3, and 2.4 are all exam-
ples of first order recurrences. The recurrences 2.5 and 2.6 are
not.

(b) Show that there is one and only one sequence an that is defined
for every nonnegative integer n, satisfies a given first order recur-
rence, and satisfies a0 = a for some fixed constant a.
Solution: A first order recurrence will give an in terms of an−1,
that is, there will be a function f such that an = f(an−1) for
all n > 0. We prove by induction that there is one and only
one solution to a first order recurrence that satisfies a0 = a for
some fixed constant a. First, there is one and only one value
for a0. Now suppose that when n = k − 1, there is one and
only one value possible for an−1. Then ak is uniquely determined
by ak = f(ak−1). Thus the truth of the statement that ak−1 is
uniquely determined by the equations a0 = a and an = f(an−1)
implies the truth of the statement that ak is determined uniquely
by the equations a0 = a and an = f(an−1). Therefore by the
principle of mathematical induction, ak is uniquely determined
by the equations a0 = a and an = f(an−1) for all nonnegative
integers k.
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Figure 2.1: The Towers of Hanoi Puzzle

91. The “Towers of Hanoi” puzzle has three rods rising from a rectangular
base with n rings of different sizes stacked in decreasing order of size
on one rod. A legal move consists of moving a ring from one rod to
another so that it does not land on top of a smaller ring. If mn is the
number of moves required to move all the rings from the initial rod to
another rod that you choose, give a recurrence for mn.

Solution: We can solve the puzzle in one step if there is one ring,
so m1 = 1. If n > 0 and we want to move all the rings from the initial
rod to rod 3, then first we solve the problem of moving all but the
bottom ring to rod 2; this takes mn−1 steps, then we move the bottom
ring to rod 3, then we solve the problem of moving all the remaining
rings from rod 2 to rod 3. Thus we have mn = 2mn−1 + 1.

92. We draw n mutually intersecting circles in the plane so that each
one crosses each other one exactly twice and no three intersect in
the same point. (As examples, think of Venn diagrams with two or
three mutually intersecting sets.) Find a recurrence for the number
rn of regions into which the plane is divided by n circles. (One circle
divides the plane into two regions, the inside and the outside.) Find
the number of regions with n circles. For what values of n can you
draw a Venn diagram showing all the possible intersections of n sets
using circles to represent each of the sets?

Solution: One circle defines two regions, the inside and outside.
When we draw a second circle that intersects the first, we can start at
one of the intersection points and go inside the first circle, cutting its
region into two pieces, and then when we leave it we cut the outside
region into two pieces. This suggests the general pattern. If we have
drawn n − 1 circles and start a new one, each time we enter a circle,
we start dividing a region into two pieces. Each time we leave a circle,
we also start dividing a region into two pieces. Thus if we have rn

regions with n circles, to get the number of regions, we note that in
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going from n − 1 circles to n circles, we start with rn−1 regions, and
divide 2(n−1) of them in half, so we get 2n−2 new regions. This gives
us rn = rn−1 + 2(n − 1). Notice that by substitution of the formula
rn−1 = rn−2 + 2(n − 2), we get rn = rn−2 + 2(n − 2) + 2(n − 1), and
would guess that rn = rn−3 +2(n−3)+2(n−2)+2(n−1). This leads
to the conjecture

rn = r1 + 2 · 1 + 2 · 2 + · · ·+ 2 · (n− 1) = r1 + 2
n−1∑
i=1

i = 2 + n(n− 1).

We can prove this formula by induction. When n = 1 we have 2+1 · 0
regions. Assuming that n− 1 circles give us 2+ (n− 1)(n− 2) regions,
for n circles we have 2 + (n − 1)(n − 2) + 2(n − 1) = 2 + n(n − 1)
regions. Thus the correctness of our formula for n − 1 circles implies
its correctness when we have n circles, so for all positive integers n, we
get 2+n(n− 1) regions determined by n mutually intersecting circles.
Two circles cannot touch more than twice, and if we let some of our
n circles touch just once, or not at all, that would reduce the number
of regions we would get. Similarly, allowing a circle to go through the
intersection point of two other circles could only reduce the number of
regions. So with n circles we could never have more than 2 + n(n− 1)
regions. In particular with 4 circles we get just 14 regions, rather than
the 16 that would be required in a Venn diagram for four sets. We
could prove, again by induction, that 2 + n(n− 1) < 2n for all n > 3,
so it is not possible to draw a Venn diagram using circles to illustrate
the intersections of four or more sets.

2.2.2 Arithmetic Series (optional)

93. A child puts away two dollars from her allowance each week. If she
starts with twenty dollars, give a recurrence for the amount an of
money she has after n weeks and find out how much money she has
at the end of n weeks.

Solution: an = an−1 + 2. Then by substitution an = an−2 + 2 + 2,
and so we conjecture that an = 20 + 2n. Since she adds two dollars
to her savings each week for n weeks, she has added 2n dollars to her
original 20, which proves the formula. We could have used induction
to prove it as well.

94. A sequence that satisfies a recurrence of the form an = an−1 + c is
called an arithmetic progression. Find a formula in terms of the initial
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value a0 and the common difference c for the term an in an arithmetic
progression and prove you are right.

Solution: an = ao + cn. The formula is valid with n = 0, and if
an−1 = a0 + c(n− 1), then an = a0 + c(n− 1)+ c = a0 + cn. Therefore
the fact that an−1 = a0 + can−1 implies the fact that an = a0 + cn.
Therefore by the principle of mathematical induction, an = a0 + cn
for all nonnegative integers n.

95. A person who is earning $50,000 per year gets a raise of $3000 a year
for n years in a row. Find a recurrence for the amount an of money
the person earns over n+1 years. What is the total amount of money
that the person earns over a period of n + 1 years? (In n + 1 years,
there are n raises.)

Solution: By Problem 94 we saw that if bn is the salary in year
n, then bn = 50, 000 + 3000n. If an is the total amount earned over
the period of from year 0 through the end of year n, a period of
n + 1 years, then an = an−1 + bn = an−1 + 50, 000 + 3000n. Further,
an =

∑n
i=0 bi =

∑n
i=0 50, 000 + 3000i = 50, 000(n + 1) + 3000

∑n
i=0 i =

50, 000(n + 1) + 1500(n(n + 1).

96. An arithmetic series is a sequence sn equal to the sum of the terms
a0 through an of an arithmetic progression. Find a recurrence for the
sum sn of an arithmetic progression with initial value a0 and common
difference c (using the language of Problem 94). Find a formula for
general term sn of an arithmetic series.

Solution: sn =
∑n

i=0 a0 + ci = (n + 1)a0 + c
∑n

i=0 i = (n + 1)a0 +
cn(n + 1)/2.

2.2.3 First order linear recurrences

Recurrences such as those in Equations 2.1 through 2.5 are called linear
recurrences, as are the recurrences of Problems 91 and 92. A linear recur-
rence is one in which an is expressed as a sum of functions of n times values
of (some of the terms) ai for i < n plus (perhaps) another function (called
the driving function) of n. A linear equation is called homogeneous if the
driving function is zero (or, in other words, there is no driving function).
It is called a constant coefficient linear recurrence if the functions that are
multiplied by the ai terms are all constants (but the driving function need
not be constant).
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97. Classify the recurrences in Equations 2.1 through 2.5 and Problems 91
and 92 according to whether or not they are constant coefficient, and
whether or not they are homogeneous.

Solution: Recurrence 2.1 is first order, linear, constant coefficient,
and homogeneous. Recurrence 2.2 is first order, linear, and homoge-
neous, but not constant coefficient. Recurrence 2.3 is first order, linear,
constant coefficient but not homogeneous. Recurrence 2.4 is first or-
der, linear, constant coefficient but not homogeneous. Recurrence 2.5
is not first order (it is second order), is linear, constant coefficient and
homogeneous. The recurrence of Problem 91 is first order, linear, and
constant coefficient, and that of Problem 92 is first order, linear, and
constant coefficient.

•98. As you can see from Problem 97 some interesting sequences satisfy
first order linear recurrences, including many that have constant co-
efficients, have constant driving term, or are homogeneous. Find a
formula in terms of b, d, a0 and n for the general term an of a se-
quence that satisfies a constant coefficient first order linear recurrence
an = ban−1 + d and prove you are correct. If your formula involves a
summation, try to replace the summation by a more compact expres-
sion.

Solution: Note that by the formula, an−1 = ban−2 +d. Substituting
this into the original equation for an gives an = b2an−2 + bd + d.
Repeating this kind of substitution gives us an = b3an−3 +b2d+bd+d.
This suggests that an = a0b

n +
∑n−1

i=0 dbi. We would guess the same
formula by writing out the first few values of ai, namely, a0, a0b + d,
a0b

2 + db + d, a0b
3 + b2d + bd + d, and so on. We prove our general

formula by induction on n. It is clearly true when n = 0 as there are
no terms in the sum and b0 = 1. If we assume the formula is true
when n = k − 1, we may write

ak = bak−1 + d

= b

(
a0b

k−1 +
k−2∑
i=0

dbi

)
+ d

= ba0b
k−1 + b

k−2∑
i=0

dbi + d

= a0b
k +

k−1∑
i=0

dbi
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Thus the truth of our formula for n = k− 1 implies its truth for n = k
and therefore by the principle of mathematical induction, it is true for
all nonnegative integers n.

We can give a more compact expression for the sum
∑n−1

i=0 dbi =
d
∑n−1

i=0 bi. Recall from algebra that (1 + x)(1− x) = 1− x2, (1 + x +
x2)(1−x) = 1−x3, and in general (1+x+x2+· · ·xn−1))(1−x) = 1−xn.
If you do not recall this formula, you can prove it by induction, or ob-
serve that

(1 + x + x2 + · · ·xn−1)(1− x)
= (1 + x + x2 + · · ·xn−1) · 1− (1 + x + x2 + · · ·xn−1) · x
= 1 + x + x2 + · · ·xn−1 − (x + x2 + · · ·+ xn) = 1− xn.

Dividing the first and last terms by 1− x gives us

n−1∑
i=1

xi =
1− xn

1− x
.

Using this in our formula for an gives us an = aob
n + d1−bn

1−b . This is
valid except in the case b = 1 (in our computation with x above, we
would be dividing by 0.) If b = 1 we get an = a0 + nd for the sum.

2.2.4 Geometric Series

A sequence that satisfies a recurrence of the form an = ban−1 is called
a geometric progression. Thus the sequence satisfying Equation 2.1, the
recurrence for the number of subsets of an n-element set, is an example of
a geometric progression. From your solution to Problem 98, a geometric
progression has the form an = a0b

n. In your solution to Problem 98 you
may have had to deal with the sum of a geometric progression in just slightly
different notation, namely

∑n−1
i=0 dbi. A sum of this form is called a (finite)

geometric series.

99. Do this problem only if your final answer (so far) to Problem 98 con-
tained the sum

∑n−1
i=0 dbi.

(a) Expand (1 − x)(1 + x). Expand (1 − x)(1 + x + x2). Expand
(1− x)(1 + x + x2 + x3).
Solution: (1−x)(1+x) = 1−x2. (1−x)(1+x+x2) = 1−x3.
(1− x)(1 + x + x2 + x3) = 1− x4.
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(b) What do you expect (1 − b)
∑n−1

i=0 dbi to be? What formula for∑n−1
i=0 dbi does this give you? Prove that you are correct.

Solution: We expect (1− b)
∑n−1

i=0 dbi to be d(1− bn). If b 6= 1,
this gives us

∑n−1
i=0 dbi = d1−bn

1−b . We can prove this by induction
on n. If n = 0 we get 0 for 1−bn

1−b , and also for the sum
∑−1

i=0 dbi,
since that sum has no terms. Assuming the formula holds when
n = k − 1, we may write

k−1∑
i=0

dbi

=
k−2∑
i=0

dbi + dbk−1

= d
1− bk−1

1− b
+ dbk−1

=
d− dbk−1 + dbk−1 − dbk

1− b
= d

1− bk

1− b
.

Since the truth of the formula for n = k − 1 implies its truth for
n = k, by the principle of mathematical induction the formula is
true for all nonnegative integers n. If b = 1 we get the formula∑n−1

i=0 dbi = dn.

In Problem 98 and perhaps 99 you proved an important theorem. While
the theorem does not have a name, the formula it states is called the sum
of a finite geometric series.

Theorem 2 If b 6= 1 and an = ban−1 + d, then an = a0b
n + d

1− bn

1− b
. If

b = 1, then an = a0 + nd.

Corollary 1 If b 6= 1, then
n−1∑
i=0

bi =
1− bn

1− b
. If b = 1,

n−1∑
i=0

bi = n.

2.3 Graphs and Trees

2.3.1 Undirected graphs

In Section 1.3.4 we introduced the idea of a directed graph. Graphs consist
of vertices and edges. We describe vertices and edges in much the same
way as we describe points and lines in geometry: we don’t really say what
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vertices and edges are, but we say what they do. We just don’t have a
complicated axiom system the way we do in geometry. A graph consists of
a set V called a vertex set and a set E called an edge set. Each member of
V is called a vertex and each member of E is called an edge. Associated with
each edge are two (not necessarily different) vertices called its endpoints. We
draw pictures of graphs by drawing points to represent the vertices and line
segments (curved if we choose) whose endpoints are at vertices to represent
the edges. In Figure 2.2 we show three pictures of graphs. Each grey circle

Figure 2.2: Three different graphs
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in the figure represents a vertex; each line segment represents an edge. You
will note that we labelled the vertices; these labels are names we chose to
give the vertices. We can choose names or not as we please. The third graph
also shows that it is possible to have an edge that connects a vertex (like
the one labelled y) to itself or it is possible to have two or more edges (like
those between vertices v and y) between two vertices. The degree of a vertex
is the number of times it appears as the endpoint of edges; thus the degree
of y in the third graph in the figure is four.

◦100. In the graph on the left in Figure 2.2, what is the degree of each vertex?

Solution: The degree of vertex 1 is one, of vertex 2 is two, of vertex
3 is three, of vertex 4 is three, of vertex 5 is one, of vertex 6 is one, of
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vertex 7 is two, of vertex 8 is one.

◦101. For each graph in Figure 2.2 is the number of vertices of odd degree
even or odd?

Solution: In all three cases it is even.

·102. The sum of the degrees of the vertices of a (finite) graph is related in
a natural way to the number of edges.

(a) What is the relationship?
Solution: The sum of the degrees of the vertices is twice the
number of edges.

(b) Find a proof that what you say is correct that uses induction on
the number of edges.
Solution: If a graph has no edges, then the sum of the degrees
of the vertices is 0, which is twice the number of edges. Now
suppose that whenever a graph has n − 1 edges, the sum of the
degrees of the vertices is twice the number of edges. Let G be a
graph with n edges, and delete an edge from G to get G′. The
the sum of the degrees of G′ is 2(n − 1), and adding the edge
back into G′ to get G either increases the degrees of exactly two
vertices by one each or increases the degree of one vertex by 2.
Thus the sum of the degrees of the vertices of G is 2n, which is
twice the number of edges. Thus by the principle of mathematical
induction, for all nonnegative integers n, if a graph has n edges,
then the sum of the degrees of the vertices is twice the number
of edges.

(c) Find a proof that what you say is correct which uses induction
on the number of vertices.

(d) Find a proof that what you say is correct that does not use in-
duction.
Solution: The sum of the degrees of the vertices is the sum
over all edges of the number of times that edge touches a vertex,
which is twice the number of edges.

·103. What can you say about the number of vertices of odd degree in a
graph?

Solution: The number of vertices of odd degree must be even, be-
cause otherwise the sum of the degrees of the vertices would be odd.
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2.3.2 Walks and paths in graphs

A walk in a graph is an alternating sequence v0e1v1 . . . eivi of vertices and
edges such that edge ei connects vertices vi−1 and vi. A graph is called
connected if, for any pair of vertices, there is a walk starting at one and
ending at the other.

104. Which of the graphs in Figure 2.2 is connected?

Solution: The first two are connected; the third is not.

◦105. A path in a graph is a walk with no repeated vertices. Find the longest
path you can in the third graph of Figure 2.2.

Solution: The path from y to v to x to w is a typical longest path.
There are quite a few others. Notice you have two choices for the edge
to use to get from y to v.

◦106. A cycle in a graph is a walk (with at least one edge) whose first and
last vertex are equal but which has no other repeated vertices or edges.
Which graphs in Figure 2.2 have cycles? What is the largest number
of edges in a cycle in the second graph in Figure 2.2? What is the
smallest number of edges in a cycle in the third graph in Figure 2.2?

Solution: The second and third graphs have cycles. The largest
number of edges in a cycle in the second graph is six; the smallest
number of edges in a cycle in the third graph is one.

◦107. A connected graph with no cycles is called a tree. Which graphs, if
any, in Figure 2.2 are trees?

Solution: The first graph is a tree.

2.3.3 Counting vertices, edges, and paths in trees

·108. Draw some trees and on the basis of your examples, make a conjecture
about the relationship between the number of vertices and edges in a
tree. Prove your conjecture.

Solution: The number of edges of a tree is one less than the number
of vertices. We prove this by strong induction on the number of edges.
First, if a tree has no edges, it can have only one vertex (otherwise
it is not connected). Thus the number of edges is one less than the
number of vertices. Now suppose that if a tree T has fewer than n
edges, the number of edges is one less than the number of vertices.
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Choose an edge e with endpoints x and y in the tree and remove it.
The resulting graph is not connected, for if it were, the path remaining
between the endpoints of e, together with e, would form a cycle. If we
add an edge to the resulting graph, it can reduce the number of con-
nected components by at most one, because it joins vertices in at most
two connected components. In particular, since adding e reduces the
number of connected components to one, the graph we got by deleting
e must have exactly two connected components. Therefore when we
remove e, the graph that remains consists of two trees, because neither
connected component can have a cycle, for then T would have a cycle.
Each of these trees has fewer edges than the original tree, so if they
have m1 and m2 vertices respectively, they have, by the inductive hy-
pothesis, m1−1 and m2−1 edges respectively. But together they have
all the vertices of the original tree, so the original tree has m1 + m2

vertices, and has m1 − 1 + m2 − 1 + 1 = m1 + m2 − 1 edges, the edges
of each of the two smaller trees as well as the edge e. Therefore the
number of edges of the original tree is one less than the number of
vertices. Therefore by the strong principle of mathematical induction,
the number of edges of a tree is one less than the number of vertices.

·109. What is the minimum number of vertices of degree one in a finite tree?
What is it if the number of vertices is bigger than one? Prove that
you are correct. See if you can find (and give) more than one proof.

Solution: The minimum is zero, which happens with a tree with one
vertex. If the tree has more than one vertex, the minimum number
of vertices of degree one is two. To prove this, we prove that every
tree with two or more vertices has at least two vertices of degree two.
Note that a tree with two vertices has exactly two vertices of degree
2. Now take a tree with more than two vertices. Remove an edge e
without removing its endpoints. As in the solution to Problem 108
this gives two trees. We may assume inductively that each has at least
two vertices of degree 1, or else is a single vertex. When we put e back
in, it connects one vertex in one tree to one in the other. If both these
vertices have degree 1 in their trees, there will be at least one vertex of
degree 1 remaining in each tree, so there will be at least two vertices
of degree 1 in the tree we get. If exactly one of these vertices is a tree
with one vertex after the removal of e, when we connect it to the other
tree, we will increase the degree of at most one vertex of degree 1 and
will create a new vertex of degree 1, so the tree that results still has
at least two vertices of degree 1. Therefore by the strong principle of
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mathematical induction, every tree with more than two vertices has at
least two vertices of degree 1. Since a two-vertex tree has two vertices
of degree 1, the minimum number of vertices of degree 1 in a tree with
two or more vertices is two. (In fact a path with n vertices is a tree
and it has exactly two vertices of degree one also.)

Alternately, the number of edges in a n vertex tree is n−1, and so the
sum of the degrees of the vertices is 2n− 2. If we have more than one
vertex, we can have no vertices of degree zero, and if all or all but one
vertex had degree at least two, the sum of the degrees would have to
be more than 2n− 2.

·110. In a tree on any number of vertices, given two vertices, how many
paths can you find between them? Prove that you are correct.

Solution: Exactly one. Suppose there were two distinct paths P1

and P2 from x to y. As they leave x, they might leave on the same
edge or on different edges. However, since they are different, there
must be some first vertex x′ on both paths so that when leave x′ (as
we go from x to y), they leave on different edges. Then since they
must both enter y, there must be some first vertex y′, following x′

on both paths as we go from x to y, such that the two paths enter
y′ on two different edges. Then the portion of path 1 from x′ to y′

followed by the portion of path 2 from y′ to x′ will be a cycle. This
is impossible in a tree, so the supposition that there were two distinct
paths is impossible.

111. How many trees are there on the vertex set {1, 2}? On the vertex
set {1, 2, 3}? When we label the vertices of our tree, we consider the
tree which has edges between vertices 1 and 2 and between vertices 2
and 3 different from the tree that has edges between vertices 1 and 3
and between 2 and 3. See Figure 2.3. How many (labelled) trees are

Figure 2.3: The three labelled trees on three vertices
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there on four vertices? How many (labelled) trees are there with five
vertices? You don’t have a lot of data to guess from, but try to guess a
formula for the number of labelled trees with vertex set {1, 2, · · · , n}.
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Solution: There is one labelled tree on two vertices. We know there
are three labelled trees on three vertices, and they all are paths. The
difference among them is which vertex is the central vertex on the
path. On four vertices a tree either has a vertex of degree 3 (there are
four such trees) or it is a path, in which case there are six choices for
the two vertices of degree 2, and for each choice of these two vertices,
there are two different ways to attach the remaining vertices to them
as vertices of degree 1. Thus there are 12 + 4 = 16 trees on four
vertices. On five vertices, we either have a vertex of degree 4 (there
are five such trees), or we have a vertex of degree three which must
be adjacent to a vertex of degree two in order to have five vertices.
There are 5 · 4 = 20 ways to choose these two vertices; then there are
three more choices we can make for the degree one vertex attached to
the degree 2 vertex. Thus we have 60 trees with a vertex of degree
three. If we have neither a vertex of degree four nor a vertex of degree
three, then the tree is a path. We have

(5
2

)
= 10 ways to choose the

two vertices of degree one, and then there are 3! = 6 ways to arrange
the remaining vertices along the path, so we have 60 paths. Thus we
have 125 trees on five vertices. These computations suggest there are
nn−2 labelled trees on n vertices.

We are now going to introduce a method to prove the formula you
guessed. Given a tree with two or more vertices, labelled with positive
integers, we define a sequence b1, b2, . . . of integers inductively as follows:
If the tree has two vertices, the sequence consists of one entry, namely the
label of the vertex with the larger label. Otherwise, let a1 be the lowest
numbered vertex of degree 1 in the tree. Let b1 be the label of the unique
vertex in the tree adjacent to a1 and write down b1. For example, in the
first graph in Figure 2.2, a1 is 1 and b1 is 2. Given a1 through ai−1, let ai

be the lowest numbered vertex of degree 1 in the tree you get by deleting
a1 through ai−1 and let bi be the unique vertex in this new tree adjacent to
ai. For example, in the first graph in Figure 2.2, a2 = 2 and b2 = 3. Then
a3 = 5 and b3 = 4. We use b to stand for the sequence of bis we get in this
way. In the tree (the first graph) in Figure 2.2, the sequence b is 2344378.
(If you are unfamiliar with inductive (recursive) definition, you might want
to write down some other labelled trees on eight vertices and construct the
sequence of bis.)

112. (a) How long will the sequence of bis be if it is computed from a tree
with n vertices (labelled with 1 through n)?
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Solution: On a tree with n vertices, the sequence b will have
length n− 1.

(b) What can you say about the last member of the sequence of bis?
Solution: The last member of the sequence b will be n. To see
why, note that vertex n can not be in the sequence a, because
the tree that remains after we delete an ai will have at least two
vertices of degree 1, so the one of smaller degree will be ai+1.
Thus we never delete the vertex n from the tree. Therefore when
we choose the last b, we have vertex n and one other vertex, so
the other vertex is our a-vertex and n is the vertex adjacent to
it.

(c) Can you tell from the sequence of bis what a1 is?
Solution: a1 will be the smallest number that is not in the
sequence of b’s.

(d) Find a bijection between labelled trees and something you can
“count” that will tell you how many labelled trees there are on n
labelled vertices.
Solution: Once we know a1, we know one edge of the tree,
namely the edge between a1 and b1. In general, when we know
ai, this will tell us that the edge form ai to bi is in the tree. The
vertex a2 will be the smallest number different from a1 not in
the sequence b2 through bn−1. In general, ai will be the small-
est vertex different from a1 through ai−1 not in the sequence bi

through bn−1, which gives us all n − 1 edges of the tree (edge i
goes from ai to bi). Thus there is a bijection between trees and
the sequences b1 through bn−1. But since bn−1 = n, there is also
a bijection between trees and the sequences b1 through bn−2. But
given a sequence of numbers c1, c2, . . . , cn−2, cn−1, all between 1
and n and with cn−1 = n, there is always a smallest number a1

not in the sequence, and given a1, a2, . . . ai−1, there is always a
smallest number not in the sequence ci through cn−1 and different
from the ais already chosen, so we can construct the edges from
ai to ci. Further, if we start with the edge from an−1 to cn−1 and
work backwards, we will always have a connected graph and will
always be adding a vertex of degree 1 to it, so we will have no
cycles. Therefore we will get a tree. Thus we have a bijection
between labelled trees on n vertices and sequences of length n−2
consisting of members of [n]. There are nn−2 such sequences, and
thus nn−2 labelled trees on n vertices.
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The sequence b1, b2, . . . , bn−2 in Problem 112 is called a Prüfer coding
or Prüfer code for the tree. Thus the Prüfer code for the tree of Figure
2.2 is 234437. Notice that we do not include the term bn−1 in the Prüfer
code because we know it is n. There is a good bit of interesting information
encoded into the Prüfer code for a tree.

113. What can you say about the vertices of degree one from thePrüfer
code for a tree labeled with the integers from 1 to n?

Solution: They are exactly the numbers between 1 and n not listed
in the Prüfer code to the tree.

114. What can you say about the Prüfer code for a tree with exactly two
vertices of degree 1 (and perhaps some vertices with other degrees as
well)? Does this characterize such trees?

Solution: It consists of n − 2 distinct numbers between 1 and n.
Any such Prüfer code is the code of a tree with exactly two vertices of
degree one.

115. What can you determine about the degree of the vertex labelled i from
the Prüfer code of the tree?

Solution: The degree of a vertex in a tree is one more than the
number of times the vertex appears in the Prüfer code of the tree.

116. What is the number of (labelled) trees on n vertices with three vertices
of degree 1? (Assume they are labelled with the integers 1 through
n.) This problem will appear again in the next chapter after some
material that will make it easier.

Solution: There are
(n
3

)
ways to choose the three vertices of degree

one. Each of the other n− 3 vertices must appear in the Prüfer Code,
so exactly one must appear twice. We have n − 3 ways to choose
that one vertex and

(n−2
2

)(n−4
1

)(n−5
1

)
· · ·
(1
1

)
= (n−2)!

2! ways to choose
which of the n− 2 places to use for which vertices in the Prüfer code.
Thus there are

(n
3

)
(n−3) (n−2)!

2 = n!(n−2)(n−3)
12 labelled trees with three

vertices of degree one.

2.3.4 Spanning trees

Many of the applications of trees arise from trying to find an efficient way to
connect all the vertices of a graph. For example, in a telephone network, at
any given time we have a certain number of wires (or microwave channels,
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or cellular channels) available for use. These wires or channels go from a
specific place to a specific place. Thus the wires or channels may be thought
of as edges of a graph and the places the wires connect may be thought of
as vertices of that graph. A tree whose edges are some of the edges of a
graph G and whose vertices are all of the vertices of the graph G is called a
spanning tree of G. A spanning tree for a telephone network will give us
a way to route calls between any two vertices in the network. In Figure 2.4
we show a graph and all its spanning trees.

Figure 2.4: A graph and all its spanning trees.

117. Show that every connected graph has a spanning tree. It is possible
to find a proof that starts with the graph and works “down” towards
the spanning tree and to find a proof that starts with just the vertices
and works “up” towards the spanning tree. Can you find both kinds
of proof?

Solution: Here are three proofs:

Start with a connected graph, and if you can find a cycle, remove one
edge of that cycle. Repeat this process until you get a tree. You will
get a tree, because removing an edge of a cycle reduces the number
of cycles but leaves the graph connected. This tree will be a spanning
tree of the original graph.

Start with the original vertex set and no edges for a graph H. Go
through the edges of the original graph G one at a time, and if you
can add an edge of G to the graph H without creating a cycle, do
so. Otherwise discard the edge and go on to the next one. This will
give you a graph H with no cycles, and if it were not connected, there
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would be an edge in G between two vertices not yet connected in H.
(If there weren’t, the graph you just constructed would be connected.)
Thus you get a spanning tree.

Start with vertex 1 and no edges as a graph H. Take an edge from
it to another vertex. Add that edge and vertex to H. Now take an
edge from one of the vertices you currently have to yet another vertex
of the original graph. Add that vertex and edge to H. Repeat this
process until you can find no such edge. You will get a tree because
each edge you add connects a vertex of degree 1 to a tree you have
already constructed. Since the original graph is connected, there must
always be an edge from the current set of vertices you are considering
to something not in that set.

2.3.5 Minimum cost spanning trees

Our motivation for talking about spanning trees was the idea of finding a
minimum number of edges we need to connect all the edges of a communi-
cation network together. In many cases edges of a communication network
come with costs associated with them. For example, one cell-phone opera-
tor charges another one when a customer of the first uses an antenna of the
other. Suppose a company has offices in a number of cities and wants to
put together a communication network connecting its various locations with
high-speed computer communications, but to do so at minimum cost. Then
it wants to take a graph whose vertices are the cities in which it has offices
and whose edges represent possible communications lines between the cities.
Of course there will not necessarily be lines between each pair of cities, and
the company will not want to pay for a line connecting city i and city j if it
can already connect them indirectly by using other lines it has chosen. Thus
it will want to choose a spanning tree of minimum cost among all spanning
trees of the communications graph. For reasons of this application, if we
have a graph with numbers assigned to its edges, the sum of the numbers
on the edges of a spanning tree of G will be called the cost of the spanning
tree.

118. Describe a method (or better, two methods different in at least one
aspect) for finding a spanning tree of minimum cost in a graph whose
edges are labelled with costs, the cost on an edge being the cost for
including that edge in a spanning tree. Prove that your method(s)
work.

Solution: Start with a vertex, number it vertex 1, and choose the
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least costly edge leaving it. Number the new vertex 2. Given your
current set of vertices and edges, choose the least costly edge leaving
that set, and if your set has i − 1 vertices, label the new vertex i.
You will always have a tree as you go along since you are adding a
vertex of degree 1 to a tree you already have. You will get a spanning
tree because the graph you start with is connected. If your tree did
not have the lowest cost among all spanning trees, there would be
some smallest i such that there is an edge from vertex i in a least cost
spanning tree that is not in your tree. Since we chose the least i, the
edge we just chose from vertex i goes to a higher-numbered vertex.
Thus you could have chosen that edge as you were constructing your
tree, so there cannot be a tree of lower total cost than the one you
chose.

Alternatively, start with the vertex set of the graph and no edges.
Choose an edge of least cost. Repeat the following until it cannot be
repeated. Given the set of edges you have so far, choose an edge of least
cost among all edges that do not form a cycle with edges you already
have. The graph you get will have no cycles, and it will have to be
connected, because otherwise there would be an edge in the original
graph that connects two vertices in the graph you just constructed.
Thus you will have a tree. Suppose there is another tree with lower
total cost. Choose such a tree with as many edges as common with
your tree as possible. Then there is some edge e of this tree of lowest
cost among all edges connecting two vertices that are not connected
by an edge in your tree. Suppose the cost of this edge is c. Since
these vertices are connected by some path in your tree, when you were
considering edges of cost c, these two vertices were already connected
by a path in your tree. There must be some edge f on that path not
in the least cost tree. The edge f was already in your tree while you
were considering edges of cost c, so its cost is no more than c. Adding
f to the tree of least cost gives a cycle. All edges on that cycle that
are not in your tree have cost at least c by our choice of e. But since
f was from your tree, there must be some edge g of the cycle that is
in the least cost tree that but not in your tree. Removing g from the
least cost tree and adding f cannot increase the cost of the tree, but
it gives a tree that has one more edge in common with your tree. This
contradicts the choice of the least cost tree, so there must have been
no tree of lower total cost than the one you constructed.
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The method you used in Problem 118 is called a greedy method, because
each time you made a choice of an edge, you chose the least costly edge
available to you.

2.3.6 The deletion/contraction recurrence for spanning trees

There are two operations on graphs that we can apply to get a recurrence
(though a more general kind than those we have studied for sequences) which
will let us compute the number of spanning trees of a graph. The operations
each apply to an edge e of a graph G. The first is called deletion; we delete
the edge e from the graph by removing it from the edge set. Figure 2.5
shows how we can delete edges from a graph to get a spanning tree.

Figure 2.5: Deleting two appropriate edges from this graph gives a spanning
tree.

The second operation is called contraction. Contractions of three differ-

Figure 2.6: The results of contracting three different edges in a graph.
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ent edges in the same graph are shown in Figure 2.6. Intuitively, we contract
an edge by shrinking it in length until its endpoints coincide; we let the rest
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of the graph “go along for the ride.” To be more precise, we contract the
edge e with endpoints v and w as follows:

1. remove all edges having either v or w or both as an endpoint from the
edge set,

2. remove v and w from the vertex set,

3. add a new vertex E to the vertex set,

4. add an edge from E to each remaining vertex that used to be an
endpoint of an edge whose other endpoint was v or w, and add an
edge from E to E for any edge other than e whose endpoints were in
the set {v, w}.

We use G−e (read as G minus e) to stand for the result of deleting e from G,
and we use G/e (read as G contract e) to stand for the result of contracting
e from G.

·119. (a) How do the number of spanning trees of G not containing the
edge e and the number of spanning trees of G containing e relate
to the number of spanning trees of G− e and G/e?
Solution: The number of spanning trees of G−e is the number
of spanning trees of G not containing e. The number of spanning
trees of G/e is the number of spanning trees of G containing e.

(b) Use #(G) to stand for the number of spanning trees of G (so
that, for example, #(G/e) stands for the number of spanning
trees of G/e). Find an expression for #(G) in terms of #(G/e)
and #(G− e). This expression is called the deletion-contraction
recurrence.
Solution: The number of spanning trees of G not containing e
is the number of spanning trees of G−e. The number of spanning
trees of G containing the edge e is the number of spanning trees
of G/e. Therefore #(G) = #(G− e) + #(G/e).

(c) Use the recurrence of the previous part to compute the number
of spanning trees of the graph in Figure 2.7.
Solution: Applying the formula twice to G gives

#(G) = #(G− {1, 2} − {2, 3}) + #((G− {1, 2})/{2, 3})
+ #((G/{1, 2})− {2, 3}) + #(G/{1, 2}/{2, 3}).

We now show the four graphs on the right hand side of the equa-
tion.
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Figure 2.7: A graph.
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G - {1,2} - {2,3} G - {1,2}/{2,3} G/{1,2} - {2,3} G/{1,2}/{2,3

We could now convert each of these graphs to trees with multiple
edges by deleting and contracting one more edge, say edge {1, 5},
which would make the analysis easier but the picture twice as
big. Since we can easily count spanning trees of a triangle, we
can also stop here, noting that the first graph has three spanning
trees, the second has six, the third has five, and the fourth has
seven, so the total number of spanning trees is 3+6+5+7 = 21.

2.3.7 Shortest paths in graphs

Suppose that a company has a main office in one city and regional offices
in other cities. Most of the communication in the company is between the
main office and the regional offices, so the company wants to find a spanning
tree that minimizes not the total cost of all the edges, but rather the cost
of communication between the main office and each of the regional offices.
It is not clear that such a spanning tree even exists. This problem is a
special case of the following. We have a connected graph with nonnegative
numbers assigned to its edges. (In this situation these numbers are often
called weights.) The (weighted) length of a path in the graph is the sum
of the weights of its edges. The distance between two vertices is the least
(weighted) length of any path between the two vertices. Given a vertex v,
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we would like to know the distance between v and each other vertex, and
we would like to know if there is a spanning tree in G such that the length
of the path in the spanning tree from v to each vertex x is the distance from
v to x in G.

120. Show that the following algorithm (known as Dijkstra’s algorithm)
applied to a weighted graph whose vertices are labelled 1 to n gives,
for each i, the distance from vertex 1 to i as d(i).

(a) Let d(1) = 0. Let d(i) = ∞ for all other i. Let v(1)=1. Let
v(j) = 0 for all other j. For each i and j, let w(i, j) be the
minimum weight of an edge between i and j, or ∞ if there are
no such edges. Let k = 1. Let t = 1.

(b) For each i, if d(i) > d(k) + w(k, i) let d(i) = d(k) + w(k, i).

(c) Among those i with v(i) = 0, choose one with d(i) a minimum,
and let k = i. Increase t by 1. Let v(i) = 1.

(d) Repeat the previous two steps until t = n.

Solution: We prove that the distance from vertex 1 of a vertex i
with v(i) = 1 is d(i). We use induction on the number t of vertices
with v(i) = 1. If t = 1, then d(1) = 0 is the distance from vertex 1 to
vertex 1. Now when t = s−1, we have vertices i1, i2, . . . is−1 such that
v(ip) = 1. Suppose inductively that d(ip) is the distance from vertex
ip to vertex 1 for p = 1, 2, . . . , s− 1. When t = s, we choose a vertex i
with d(i) a minimum. Suppose u1, u2, . . . , ur is the sequence of vertices
of a shortest (least total weight) path from vertex u1 = 1 to vertex
ur = i and that the length (total weight) of this path is less than d(i).
Suppose that some vertex up has v(up) = 0, and choose the smallest
p such that this is so. Then d(up−1) is the distance from vertex 1 to
vertex up−1, and d(up−1) + w(up−1, up) is less than d(i) because the
length of the path from u1 to ur is less than d(i). Then we would not
have chosen the vertex i after all, but rather the vertex up, which is a
contradiction, so all the vertices up with p < r must have v(up) = 1,
and, by our inductive hypothesis, d(up) must be the distance from
vertex 1 to vertex up for p < r. Thus when we were computing d(i),
we would have found that d(i) ≤ d(ur−1)+w(ur−1, i). Thus d(i) must
be the distance from vertex 1 to vertex i after all. Therefore the fact
that Dijkstra’s algorithm works when t = s − 1 implies that it works
when t = s, so that, by the principle of mathematical induction, it
works for all nonnegative integers t.
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121. Is there a spanning tree such that the distance from vertex 1 to vertex
i given by the algorithm in Problem 120 is the distance from vertex 1
to vertex i in the tree (using the same weights on the edges, of course)?

Solution: Yes, when we choose the i with d(i) a minimum, before
we change k to i, we add an edge from vertex k to vertex i to the edge
set of a graph on the vertex set [n]. We get a tree each time we do
this step, because we are adding a vertex of degree 1 to a smaller tree.
We essentially proved in the solution to Problem 120 that the path
from vertex 1 to vertex i in this tree has length (total weight) d(i).
Using the same approach we could prove it directly by induction on
the number of vertices in our tree.
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2.4 Supplementary Problems

1. Use the inductive definition of an to prove that (ab)n = anbn for all
nonnegative integers n.

Solution: If n = 0 we get (ab)0 = 1 and a0b0 = 1. Assume in-
ductively that (ab)n−1 = an−1bn−1. Then by the inductive definition,
inductive hypothesis, and commutative law,

(ab)n = (ab)n−1ab = an−1bn−1ab = an−1abn−1b = anbn.

Thus the fact that (ab)n−1 = an−1bn−1 implies the fact that (ab)n =
anbn. Therefore by the principle of mathematical induction, (ab)n =
anbn for all nonnegative integers n.

2. Give an inductive definition of
n⋃

i=1

Si and use it and the two set dis-

tributive law to prove the distributive law A ∩
n⋃

i=1

Si =
n⋃

i=1

A ∩ Si.

Solution: We define
1⋃

i=1

Si = Si and
n⋃

i=1

Si =
n−1⋃
i=1

Si ∪ Sn. Then

A ∩
1⋃

i=1

Si = A ∩ S1 =
1⋃

i=1

A ∩ Si.

Assume that n > 1 and A ∩
n−1⋃
i=1

=
n−1⋃
i=1

A ∩ Si. Now

A ∩
n⋃

i=1

Si = A ∩
(

n−1⋃
i=1

Si ∪ Sn

)
=

(
A ∩

n−1⋃
i=1

Si

)
∪ (A ∩ Sn)

=

(
n−1⋃
i=1

A ∩ Si

)
∪ (A ∩ Sn) =

n⋃
i=1

A ∩ Si.

Thus the truth of the distributive law for distributing an intersection
over a union of n− 1 sets implies its truth for distributing an intersec-
tion over a union of n sets. Therefore by the principle of mathematical

induction, the distributive law A∩
n⋃

i=1

Si =
n⋃

i=1

A∩Si holds for all pos-

itive integers n.
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3. A hydrocarbon molecule is a molecule whose only atoms are either
carbon atoms or hydrogen atoms. In a simple molecular model of a
hydrocarbon, a carbon atom will bond to exactly four other atoms
and hydrogen atom will bond to exactly one other atom. Such a
model is shown in Figure 2.8. We represent a hydrocarbon compound

Figure 2.8: A model of a butane molecule
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H H

H H H
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H

with a graph whose vertices are labelled with C’s and H’s so that
each C vertex has degree four and each H vertex has degree one. A
hydrocarbon is called an “alkane” if the graph is a tree. Common
examples are methane (natural gas), butane (one version of which is
shown in Figure 2.8), propane, hexane (ordinary gasoline), octane (to
make gasoline burn more slowly), etc.

(a) How many vertices are labelled H in the graph of an alkane with
exactly n vertices labelled C?
Solution: We have n vertices of degree four, and so if we have
m vertices of degree 1, we get 4n + m = 2(m + n − 1) from the
fact that the sum of the degrees of the vertices must be twice the
number of edges. Thus we have m = 2n + 2 hydrogen atoms.

(b) An alkane is called butane if it has four carbon atoms. Why do
we say one version of butane is shown in Figure 2.8?
Solution: There is another tree with four carbon atoms, some-
times called isobutane, as follows.

C CC

C

H H

H

H

H

H H

H

HH
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4. (a) Give a recurrence for the number of ways to divide 2n people
into sets of two for tennis games. (Don’t worry about who serves
first.)
Solution: t2n = (2n− 1)t2n−2.

(b) Give a recurrence for the number of ways to divide 2n people into
sets of two for tennis games and to determine who serves first.)
Solution: t2n = 2(2n− 1)t2n−2.

5. Give a recurrence for the number of ways to divide 4n people into sets
of four for games of bridge. (Don’t worry about how they sit around
the bridge table or who is the first dealer.)

Solution: b4n =
(4n−1

3

)
b4n−4.

6. Use induction to prove your result in Supplementary Problem 2 at the
end of Chapter 1.

Solution: A composition of n is an ordered list of positive numbers
that adds to n. We wish to show that there are 2n−1 compositions
of n. There is one composition of the number 1, and 21−1 = 1. Now
assume inductively that there are 2n−2 compositions of the number
n− 1. From a composition of n − 1, we can get a composition of n
either by making a new last part of size 1, or by adding one to the last
part. Clearly these two operations give different partitions of n; what
is not so clear is that they give all partitions of n, but they do: Either
the last part of a partition of n is 1, in which case it comes from the
first kind of operation, or it is larger than one, in which case it comes
from the second operation. Thus the number of compositions of n is
twice the number of compositions of n− 1, and so is 2 · 2n−2 = 2n−1.
Therefore the statement that there are 2n−2 compositions of n − 1
implies the statement that there are 2n−1 compositions of n. Thus by
the principle of mathematical induction, there are 2n−1 compositions
of n for every positive integer n.

7. Give an inductive definition of the product notation
n∏

i=1

ai.

Solution:
1∏

i=1

ai = a1, and
n∏

i=1

ai =

(
n−1∏
i=1

ai

)
· an.

8. Using the fact that (ab)k = akbk, use your inductive definition of
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product notation in Problem 7 to prove that

(
n∏

i=1

ai

)k

=
n∏

i=1

ak
i .

Solution: When n = 1 we get

(
1∏

i=1

ai

)k

= ak
i =

1∏
i=1

ak
i . Now assume

inductively that

(
m−1∏
i=1

ai

)k

=
m−1∏
i=1

ak
i . Then we may write

(
m∏

i=1

ai

)k

=

((
m−1∏
i=1

ai

)
· am

)k

=

(
m−1∏
i=1

ak
i

)
· ak

m =
m∏

i=1

ak
i .

Thus the correctness of the formula for n = m−1 implies its correctness
for n = m. Therefore by the principle of mathematical induction, the
formula holds for all positive integers n.

∗9. How many labelled trees on n vertices have exactly four vertices of
degree 1? (This problem also appears in the next chapter since some
ideas in that chapter make it more straightforward.)

Solution: The vertices of degree 1 are the vertices that do not
appear in the Prüfer code for the tree. So we first choose four ver-
tices out of n in

(n
4

)
ways to be our vertices of degree 1, and then

we use the remaining n − 4 vertices to fill in our list of n − 2 ver-
tices, using each of the n − 4 at least once. Thus we either use one
of them 3 times and the rest once, or two of them twice and the rest
once. There are n− 4 ways to choose the one we use three times and(n−2

3

)(n−5
1

)(n−6
1

)
· · ·
(1
1

)
= (n−2)!

3! ways to label the n−2 places with the
chosen vertices. There are

(n−4
2

)
ways to choose the two vertices we

would use twice, and
(n−2

2

)(n−4
2

)(n−6
1

)(n−7
1

)
· · ·
(1
1

)
/2 = (n−2)!

2!2! ways to
assign the chosen vertices to the n−2 places in the Prüfer Code. Thus
we have (

n

4

)(
(n− 4)

(n− 2)!
3!

+
(n− 4)(n− 5)

2
(n− 2)!

4

)
=

n!
24

(n− 2)3
(

1
6

+
n− 5

8

)
= n!(n− 2)(n− 3)(n− 4)(3n− 11)/576

possible Prüfer codes and therefore the same number of labelled trees.
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∗10. The degree sequence of a graph is a list of the degrees of the ver-
tices in nonincreasing order. For example the degree sequence of the
first graph in Figure 2.4 is (4, 3, 2, 2, 1). For a graph with vertices
labelled 1 through n, the ordered degree sequence of the graph is the
sequence d1, d2, . . . dn in which di is the degree of vertex i. For ex-
ample the ordered degree sequence of the first graph in Figure 2.2 is
(1, 2, 3, 3, 1, 1, 2, 1).

(a) How many labelled trees are there on n vertices with ordered
degree sequence d1, d2, . . . dn? (This problem appears again in
the next chapter since some ideas in that chapter make it more
straightforward.)
Solution: We are given that di is the degree of vertex i. The
number of times i appears in the Prüfer code of a tree is one less
than the degree of i, so vertex i appears di − 1 times. Thus the
sum of the di − 1 should be 2n − 2 − n = n − 2. Of the n − 2
places in the Prüfer code, we want to label d1−1 of them with 1,
d2− 1 of them with 2 and in general di− 1 of them with i. There
are(

n− 2
d1 − 1

)(
n− 2− (d1 − 1)

d2 − 1

)(
n− 2− (d1 − 1 + d2 − 1)

d3 − 1

)
· · ·
(

dn − 1
dn − 1

)

ways to do this, so the number of trees in which vertex i has
degree di is (n−2)!

(d1−1)!(d2−1)!···(dn−1)!

∗(b) How many labelled trees are there on n vertices with with the
degree sequence in which the degree d appears id times?
Solution: Now we modify the solution of the previous part by
observing that to count all graphs with a given degree sequence,
the actual vertices which have the given degrees is irrelevant, so
we must multiply the result of the easier problem by the num-
ber of ways to assign the degrees to the vertices. To assign the
degrees, we can list the vertices in n! ways, choose the first i1 of
these vertices to have degree 1, the next i2 to have degree 2, and
so on. But the order in which we list the vertices of a given degree
is irrelevant. Thus the number of ways to assign the degrees is

n!
i1!i2!···in! . Once the degrees are assigned, there are (n−2)!∏n

d=1
(d−1)!id

,

by translating our easier result. Thus the total number of trees
with the degree sequence in which there are id vertices of degree
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d is
n!(n− 2)!∏n

j=1 ij !(j − 1)!ij .



Chapter 3

Distribution Problems

3.1 The Idea of a Distribution

Many of the problems we solved in Chapter 1 may be thought of as problems
of distributing objects (such as pieces of fruit or ping-pong balls) to recipi-
ents (such as children). Some of the ways of viewing counting problems as
distribution problems are somewhat indirect. For example, in Problem 37
you probably noticed that the number of ways to pass out k ping-pong balls
to n children so that no child gets more than one is the number of ways that
we may choose a k-element subset of an n-element set. We think of the chil-
dren as recipients and objects we are distributing as the identical ping-pong
balls, distributed so that each recipient gets at most one ball. Those children
who receive an object are in our set. It is helpful to have more than one
way to think of solutions to problems. In the case of distribution problems,
another popular model for distributions is to think of putting balls in boxes
rather than distributing objects to recipients. Passing out identical objects
is modeled by putting identical balls into boxes. Passing out distinct objects
is modeled by putting distinct balls into boxes.

3.1.1 The twenty-fold way

When we are passing out objects to recipients, we may think of the objects
as being either identical or distinct. We may also think of the recipients as
being either identical (as in the case of putting fruit into plastic bags in the
grocery store) or distinct (as in the case of passing fruit out to children).
We may restrict the distributions to those that give at least one object to
each recipient, or those that give exactly one object to each recipient, or
those that give at most one object to each recipient, or we may have no

99
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Table 3.1: An incomplete table of the number of ways to distribute k objects
to n recipients, with restrictions on how the objects are received

The Twenty-fold Way: A Table of Distribution Problems

k objects and conditions n recipients and mathematical model for distribution
on how they are received Distinct Identical

1. Distinct nk ?
no conditions functions set partitions (≤ n parts)

2. Distinct nk 1 if k ≤ n; 0 otherwise
Each gets at most one k-element permutations

3. Distinct ? ?
Each gets at least one onto functions set partitions (n parts)

4. Distinct k! = n! 1 if k = n; 0 otherwise
Each gets exactly one bijections

5. Distinct, order matters ? ?
? ?

6. Distinct, order matters ? ?
Each gets at least one ? ?

7. Identical ? ?
no conditions ? ?

8. Identical
(

n
k

)
1 if k ≤ n; 0 otherwise

Each gets at most one subsets

9. Identical ? ?
Each gets at least one ? ?

10. Identical 1 if k = n; 0 otherwise 1 if k = n; 0 otherwise
Each gets exactly one

such restrictions. If the objects are distinct, it may be that the order in
which the objects are received is relevant (think about putting books onto
the shelves in a bookcase) or that the order in which the objects are received
is irrelevant (think about dropping a handful of candy into a child’s trick or
treat bag). If we ignore the possibility that the order in which objects are
received matters, we have created 2 · 2 · 4 = 16 distribution problems. In the
cases where a recipient can receive more than one distinct object, we also
have four more problems when the order objects are received matters. Thus
we have 20 possible distribution problems.

We describe these problems in Table 3.1. Since there are twenty possible
distribution problems, we call the table the “Twenty-fold Way,” adapting
terminology suggested by Joel Spencer for a more restricted class of distribu-
tion problems. In the first column of the table we state whether the objects
are distinct (like people) or identical (like ping-pong balls) and then give any
conditions on how the objects may be received. The conditions we consider
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are whether each recipient gets at most one object, whether each recipient
gets at least one object, whether each recipient gets exactly one object, and
whether the order in which the objects are received matters. In the second
column we give the solution to the problem and the name of the mathe-
matical model for this kind of distribution problem when the recipients are
distinct, and in the third column we give the same information when the
recipients are identical. We use question marks as the answers to problems
we have not yet solved and models we have not yet studied. We give explicit
answers to problems we solved in Chapter 1 and problems whose answers are
immediate. The goal of this chapter is to develop methods that will allow
us to fill in the table with formulas or at least quantities we know how to
compute, and we will give a completed table at the end of the chapter. We
will now justify the answers that are not question marks and replace some
question marks with answers as we cover relevant material.

If we pass out k distinct objects (say pieces of fruit) to n distinct recipi-
ents (say children), we are saying for each object to which recipient it goes.
Thus we are defining a function from the set of objects to the recipients. We
saw the following theorem in Problem 13b.

Theorem 3 There are nk functions from a k-element set to an n-element
set.

We proved it in one way in Problem 13b and in another way in Problem 75.
If we pass out k distinct objects (say pieces of fruit) to n indistinguishable
recipients (say identical paper bags) then we are dividing the objects up
into disjoint sets; that is, we are forming a partition of the objects into some
number, certainly no more than the number k of objects, of parts. Later in
this chapter (and again in the next chapter) we shall discuss how to compute
the number of partitions of a k-element set into n parts. This explains the
entries in row one of our table.

If we pass out k distinct objects to n recipients so that each gets at
most one, we still determine a function, but the function must be one-to-
one. The number of one-to-one functions from a k-element set to an n
element set is the same as the number of one-to-one functions from the
set [k] = {1, 2, . . . , k} to an n-element set. In Problem 20 we proved the
following theorem.

Theorem 4 If 0 ≤ k ≤ n, then the number of k-element permutations of
an n-element set is

nk = n(n− 1) · · · (n− k + 1) = n!/(n− k)!.
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If k > n there are no one-to-one functions from a k element set to an n
element set, so we define nk to be zero in this case. Notice that this is what
the indicated product in the middle term of our formula gives us. If we are
supposed to distribute k distinct objects to n identical recipients so that
each gets at most one, we cannot do so if k > n, so there are 0 ways to do
so. On the other hand, if k ≤ n, then it doesn’t matter which recipient gets
which object, so there is only one way to do so. This explains the entries in
row two of our table.

If we distribute k distinct objects to n distinct recipients so that each
recipient gets at least one, then we are counting functions again, but this
time functions from a k-element set onto an n-element set. At present we do
not know how to compute the number of such functions, but we will discuss
how to do so later in this chapter and in the next chapter. If we distribute k
identical objects to n recipients, we are again simply partitioning the objects,
but the condition that each recipient gets at least one means that we are
partitioning the objects into exactly n blocks. Again, we will discuss how to
compute the number of ways of partitioning a set of k objects into n blocks
later in this chapter. This explains the entries in row three of our table.

If we pass out k distinct objects to n recipients so that each gets exactly
one, then k = n and the function that our distribution gives us is a bijection.
The number of bijections from an n-element set to an n-element set is n!
by Theorem 4. If we pass out k distinct objects to n identical recipients so
that each gets exactly 1, then in this case it doesn’t matter which recipient
gets which object, so the number of ways to do so is 1 if k = n. If k 6= n,
then the number of such distributions is zero. This explains the entries in
row four of our table.

We now jump to row eight of our table. We saw in Problem 37 that
the number of ways to pass out k identical ping-pong balls to n children is
simply the number of k-element subsets of an n-element set. In Problem
39d we proved the following theorem.

Theorem 5 If 0 ≤ k ≤ n, the number of k-element subsets of an n-element
set is given by (

n

k

)
=

nk

k!
=

n!
k!(n− k)!

.

We define
(n
k

)
to be 0 if k > n, because then there are no k-element subsets

of an n-element set. Notice that this is what the middle term of the formula
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in the theorem gives us. This explains the entries of row 8 of our table. For
now we jump over row 9.

In row 10 of our table, if we are passing out k identical objects to n
recipients so that each gets exactly one, it doesn’t matter whether the re-
cipients are identical or not; there is only one way to pass out the objects
if k = n and otherwise it is impossible to make the distribution, so there
are no ways of distributing the objects. This explains the entries of row 10
of our table. Several other rows of our table can be computed using the
methods of Chapter 1.

3.1.2 Ordered functions

•122. Suppose we wish to place k distinct books onto the shelves of a book-
case with n shelves. For simplicity, assume for now that all of the
books would fit on any of the shelves. Also, let’s imagine that once we
are done putting books on the shelves, we push the books on a shelf
as far to the left as we can, so that we are only thinking about how
the books sit relative to each other, not about the exact places where
we put the books. Since the books are distinct, we can think of the
first book, the second book and so on.

(a) How many places are there where we can place the first book?
Solution: There are n places where we can place the first book.

(b) When we place the second book, if we decide to place it on the
shelf that already has a book, does it matter if we place it to the
left or right of the book that is already there?
Solution: Yes.

(c) How many places are there where we can place the second book?
Solution: Once we have placed it, there are n+1 places where
we can place the second book, because on the shelf that has one
book, we could put the second book to the left or to the right of
the book already there.
Solution: O nce we have i−1 books placed, if we want to place
book i on a shelf that already has some books, is sliding it in to
the left of all the books already there different from placing it
to the right of all the books already there or between two books
already there?
Solution: All of these are different.
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(d) In how many ways may we place the ith book into the bookcase?
Solution: Once we have i−1 books on the shelves the ith book
could go on any shelf to the left of all books there, if any, giving
us n places, or it could go to the immediate right of any book
already there, giving us another i − 1 places. Thus there are
n + i− 1 places where we could place book i.

(e) In how many ways may we place all the books?
Solution: From the previous parts, we can see by the product
principle that the number of ways to place all the books is

k∏
i=1

(n + i− 1).

123. Suppose we wish to place the books in Problem 122e (satisfying the
assumptions we made there) so that each shelf gets at least one book.
Now in how many ways may we place the books?

Solution: Choose n books from the k books in
(k
n

)
ways, and assign

them to the n places shelves in n! ways, giving us k!/(k − n)! ways to
put a book on each shelf. Now leaving these books at the far left of
each shelf, place the remaining books in

k−n∏
i=1

(n + i− 1) =
(n + (k − n)− 1)!

(n− 1)!
=

(k − 1)!
(n− 1)!

ways. Thus we have

k!(k − 1)!
(k − n)!(n− 1)!

= k!

(
k − 1
n− 1

)

ways to place the books. Of course the right hand side of that equation
cries out for a combinatorial explanation. Here it is. Imagine lining
up the k books in a row. Then there are k−1 places in between them.
Choose n − 1 of these places, and slide a piece of paper in there as a
divider. Now put the books before the first divider on shelf one, and
the books after divider i on shelf i + 1. This gives an arrangement of
the books on the shelves so that every shelf has a book!

The assignment of which books go to which shelves of a bookcase is simply
a function from the books to the shelves. But a function doesn’t determine
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which book sits to the left of which others on the shelf, and this information
is part of how the books are arranged on the shelves. In other words, the
order in which the shelves receive their books matters. Our function must
thus assign an ordered list of books to each shelf. We will call such a function
an ordered function. More precisely, an ordered function from a set S to
a set T is a function that assigns an (ordered) list of elements of S to some,
but not necessarily all, elements of T in such a way that each element of S
appears on one and only one of the lists.1 (Notice that although it is not the
usual definition of a function from S to T , a function can be described as
an assignment of subsets of S to some, but not necessarily all, elements of
T so that each element of S is in one and only one of these subsets.) Thus
the number of ways to place the books into the bookcase is the entry in the
middle column of row 5 of our table. If in addition we require each shelf to
get at least one book, we are discussing the entry in the middle column of
row 6 of our table. An ordered onto function is one which assigns a list to
each element of T .

In Problem 122e you showed that the number of ordered functions from

a k-element set to an n-element set is
k∏

i=1

(n + i − 1). This product occurs

frequently enough that it has a name; it is called the kth rising factorial
power of n and is denoted by nk. It is read as “n to the k rising.” (This
notation is due to Don Knuth, who also suggested the notation for falling
factorial powers.) We can summarize with a theorem that adds two more
formulas for the number of ordered functions.

Theorem 6 The number of ordered functions from a k-element set to an
n-element set is

nk =
k∏

i=1

(n + i− 1) =
(n + k − 1)!

(n− 1)!
= (n + k − 1)k.

Ordered functions explain the entries in the middle column of rows 5
and 6 of our table of distribution problems.

3.1.3 Multisets

In the middle column of row 7 of our table, we are asking for the number
of ways to distribute k identical objects (say ping-pong balls) to n distinct
recipients (say children).

1The phrase ordered function is not a standard one, because there is as yet no standard
name for the result of an ordered distribution problem.
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•124. In how many ways may we distribute k identical books on the shelves
of a bookcase with n shelves, assuming that any shelf can hold all the
books?

Solution: We saw that we could arrange k distinct books on n
shelves in

∏k
i=1(n + i − 1) ways. We partition these arrangements

into blocks by putting two arrangements in the same block if we can
get one from the other by permuting the books among themselves.
Then the number of blocks is the number of ways to place identical
books on the shelves. However, there are k! arrangements per block,
so there are∏k

i=1(n + i− 1)
k!

= (n + k − 1)k =

(
n + k − 1

k

)
ways to arrange identical books.

•125. A multiset chosen from a set S may be thought of as a subset with
repeated elements allowed. To determine a multiset we must say how
many times (including, perhaps, zero) each member of S appears in
the multiset. The number of times an element appears is called its
multiplicity. For example if we choose three identical red marbles, six
identical blue marbles and four identical green marbles, from a bag of
red, blue, green, white and yellow marbles then the multiplicity of a
red marble in our multiset is three, while the multiplicity of a yellow
marble is zero. The size of a multiset is sum of the multiplicities of
its elements. For example if we choose three identical red marbles, six
identical blue marbles and four identical green marbles, then the size
of our multiset of marbles is 13. What is the number of multisets of
size k that can be chosen from an n-element set?

Solution: There is a bijection between arrangements of identical
books on n shelves and multisets chosen from an n-element set: the
multiplicity of element i is the number of books on shelf i. Thus we
have

(n+k−1
k

)
ways to choose a k-element multiset from an n-element

set by Problem 124.

126. Your answer in the previous problem should be expressible as a bi-
nomial coefficient. Since a binomial coefficient counts subsets, find a
bijection between subsets of something and multisets chosen from a
set S.

Solution: We will show a bijection between ways of choosing n− 1
things out of n + k − 1 things and multisets. Namely, take n + k − 1
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objects and line them up in a row. Choose n − 1 of them. Now let
the multiplicity of element 1 of our multiset be the number of objects
before the first object we chose. If 1 < i < n, let the multiplicity of
element i of our multiset be the number of objects between the i−1th
object we choose and the ith object we choose. Let the multiplicity
of the nth element of our multiset be the number of objects after the
last one we choose. Another way to say the essentially same thing
is to make a list of n + k − 1 blank spaces. We choose k of them
in which we put ones and n − 1 of them in which we put plus signs.
Then the multiplicity of element 1 is the number of ones before the
first plus sign, the multiplicity of element n is the number of ones after
the last plus sign and if 1 < i < n, the multiplicity of element i is the
number of ones between the (i− 1)th plus sign and the ith plus sign.
Notice that we could have two plus signs in a row if some element has
multiplicity 0.

127. How many solutions are there in nonnegative integers to the equation
x1 + x2 + · · ·+ xm = r, where m and r are constants?

Solution: We can think of xi as the multiplicity of element i of a
multiset chosen from among m things. The total number of elements
of the multiset will be r. Thus we have

(m+r−1
r

)
solutions.

128. In how many ways can we distribute k identical objects to n distinct
recipients so that each recipient gets at least m?

Solution: First give each recipient m objects. This leaves k − mn
identical objects to be distributed among n recipients, so we may do
this in the number of ways to choose a (k−mn)-element multiset from
n things. This is

(n+k−mn+1
k−mn

)
, or

(k−(m−1)n+1
n+1

)
.

Multisets explain the entry in the middle column of row 7 of our table
of distribution problems.

3.1.4 Compositions of integers

·129. In how many ways may we put k identical books onto n shelves if each
shelf must get at least one book?

Solution: In problem 123 we showed that with k distinct books we
could place the books in k!

(k−1
n−1

)
ways. We can partition these ar-

rangements of distinct books into blocks, where each block consists
of all arrangements that we get just by permuting the books among
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themselves. Thus each block has k! arrangements in it, and each ar-
rangement corresponds to an arrangement of identical books. Thus
there are

(k−1
n−1

)
ways to arrange identical books. Alternatively, as in

Problem 128, we could put one book on each shelf and then distribute
the remaining k − n books in

(n+k−1−n
k−n

)
=
(k−1
n−1

)
ways, using the for-

mula from Problem 124. We could also line up the k identical books in
a row and then insert dividers into n−1 of the k−1 places in between
the books. Those before the first divider go on the first shelf, between
the first and second on the second shelf, and so on until those after
the last divider go onto the nth shelf.

·130. A composition of the integer k into n parts is a list of n positive
integers that add to k. How many compositions are there of an integer
k into n parts?

Solution: There is a bijection between compositions of k into n parts
and arrangements of k identical books on n shelves so that each shelf
gets a book. Namely, the number of books on shelf i is the ith element
of the list. Thus the number of compositions of k into n parts is

(k−1
n−1

)
.

131. Your answer in Problem 130 can be expressed as a binomial coefficient.
This means it should be possible to interpret a composition as a subset
of some set. Find a bijection between compositions of k into n parts
and certain subsets of some set. Explain explicitly how to get the
composition from the subset and the subset from the composition.

Solution: If we line up k identical books, there are k − 1 places in
between two books. If we choose n−1 of these places and slip dividers
into those places, then we have a first clump of books, a second clump
of books, and so on. The ith element of our list is the number of books
in the ith clump. Clearly using books is irrelevant; we could line up
any k identical objects and make the same argument. Our bijection
is between compositions and n− 1-element subsets of the set of k − 1
spaces between our objects.

·132. Explain the connection between compositions of k into n parts and
the problem of distributing k identical objects to n recipients so that
each recipient gets at least one.

Solution: Since the recipients are distinct, we can think of them as
a first recipient, a second, and so on. Given a composition of k into n
parts, let the ith element of the list be the number of objects given to
recipient number i.
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The sequence of problems you just completed should explain the entry
in the middle column of row 9 of our table of distribution problems.

3.1.5 Broken permutations and Lah numbers

·133. In how many ways may we stack k distinct books into n identical boxes
so that there is a stack in every box?

Solution: We can make a list of the k distinct books in k! ways.
Then we have to choose n− 1 of the k − 1 places between the lists as
the places where we will break the list. However, the order in which
we list the boxes is irrelevant, so we have equivalence classes of n!
arrangements for each way of putting the books into boxes. Thus we
can put the books in boxes in k!

(k−1
n−1

)
/n! ways.

Alternately, we can take the number of ways to put k books onto n
bookshelves so that each shelf gets at least one, and then divide by the
number of shelves factorial. That gives us k!

(k−1
n−1

)
/n! ways to arrange

the books.

We can think of stacking books into identical boxes as partitioning the
books and then ordering the blocks of the partition. This turns out not to be
a useful computational way of visualizing the problem because the number
of ways to order the books in the various stacks depends on the sizes of the
stacks and not just the number of stacks. However, instead of dividing a
set up into non-overlapping parts, we may think of dividing a permutation
(thought of as a list) of our k objects up into n ordered blocks. We will say
that a set of ordered lists of elements of a set S is a broken permutation
of S if each element of S is in one and only one of these lists.2 The number of
broken permutations of a k-element set with n blocks is denoted by L(k, n).
The number L(k, n) is called a Lah Number (this is standard) and, from our
solution to Problem 133, is equal to k!

(k−1
n−1

)
/n!.

The Lah numbers are the solution to the question “In how many ways
may we distribute k distinct objects to n identical recipients if order matters
and each recipient must get at least one?” Thus they give the entry in row 6
and column 3 of our table. The entry in row 5 and column 3 of our table will
be the number of broken permutations with less than or equal to n parts.
Thus it is a sum of Lah numbers.

We have seen that ordered functions and broken permutations explain
the entries in rows 5 and 6 of our table.

2The phrase broken permutation is not standard, because there is no standard name
for the solution to this kind of distribution problem.
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In the next two sections we will give ways of computing the remaining
entries.

3.2 Partitions and Stirling Numbers

We have seen how the number of partitions of a set of k objects into n blocks
corresponds to the distribution of k distinct objects to n identical recipients.
While there is a formula that we shall eventually learn for this number, it
requires more machinery than we now have available. However there is a
good method for computing this number that is similar to Pascal’s equation.
Now that we have studied recurrences in one variable, we will point out that
Pascal’s equation is in fact a recurrence in two variables; that is, it lets us
compute

(n
k

)
in terms of values of

(m
i

)
in which either m < n or i < k or

both. It was the fact that we had such a recurrence and knew
(n
0

)
and

(n
n

)
that let us create Pascal’s triangle.

3.2.1 Stirling Numbers of the second kind

We use the notation S(k, n) to stand for the number of partitions of a k
element set with n blocks. For historical reasons, S(k, n) is called a Stirling
Number of the second kind.

•134. In a partition of the set [k], the number k is either in a block by itself,
or it is not. How does the number of partitions of [k] with n parts in
which k is in a block with other elements of [k] compare to the number
of partitions of [k − 1] into n blocks? Find a two-variable recurrence
for S(k, n), valid for k and n larger than one.

Solution: The number of partitions of [k] into n parts in which k is
in a block with other elements of [k] is equal n times the number of
partitions of [k − 1] into n blocks, because k could be in any of the n
parts, and since it is in a block with other elements of [k−1], removing
it leaves a partition of [k− 1] into n blocks. The number of partitions
of [k] into n blocks in which k is in a block by itself is the number
of partitions of [k] into n − 1 blocks, because you can get any such
partition by deleting the block containing k from a partition of [k] in
which k is in a block by itself. Thus S(k, n) = S(k−1, n−1)+nS(k−
1, n).

135. What is S(k, 1)? What is S(k, k)? Create a table of values of S(k, n)
for k between 1 and 5 and n between 1 and k. This table is sometimes
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called Stirling’s Triangle (of the second kind). How would you define
S(k, 0) and S(0, n)? (Note that the previous question includes S(0, 0).)
How would you define S(k, n) for n > k? Now for what values of k
and n is your two variable recurrence valid?

Solution: S(k, 1) = 1 and S(k, k) = 1. We give a table of values
of (k, n) for k and n between 0 and 5, a bit more than the problem
initially asked for.

k\n 0 1 2 3 4 5 6
0 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
2 0 1 1 0 0 0 0
3 0 1 3 1 0 0 0
4 0 1 7 6 1 0 0
5 0 1 15 25 10 1 0

As you see in the table, we define S(0, 0) = 1, and S(0, n) or S(k, 0)
to be 0 otherwise. This makes sense because for n > 0 there is no
partition of an empty set into n parts, and for k > 0 there is no
partition of a k-element set into no parts, but saying there is one
partition of the empty set into no parts allows us to use our recurrence
to compute S(1, 1). Similarly, for n > k there is no way to partition a
k element set into n nonempty blocks, giving us S(k, n) = 0 if n > k.
This makes our recurrence valid for all nonnegative values of k and n.

136. Extend Stirling’s triangle enough to allow you to answer the following
question and answer it. (Don’t fill in the rows all the way; the work
becomes quite tedious if you do. Only fill in what you need to answer
this question.) A caterer is preparing three bag lunches for hikers.
The caterer has nine different sandwiches. In how many ways can
these nine sandwiches be distributed into three identical lunch bags so
that each bag gets at least one?

Solution: We need S(9, 3). Thus we need to extend our table for
four more rows, but only out to the column labeled 3. These rows are
6,0,1,31,90; 7,0,1,63,301, 8,0,1,127,966; 9,0,1,255,3025. Thus there are
3025 ways to distribute the sandwiches into the lunch bags. If you
work backwards from S(9, 3), you will see we don’t need the first thee
entries of row 9, the first two entries of row 8 and the first entry of
row 7 (which is zero anyhow).
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137. The question in Problem 136 naturally suggests a more realistic ques-
tion; in how many ways may the caterer distribute the nine sandwiches
into three identical bags so that each bag gets exactly three? Answer
this question.

Solution:
(9
3

)(6
3

)(3
3

)
/3!. First we choose three sandwiches for bag 1,

then three for bag 2, and put the remainder in bag 3. However, it
doesn’t matter which bags the sandwiches are in so we have counted
each partition 3! times.

·138. What is S(k, k − 1)?

Solution: If a partition has k − 1 parts, then one part has two
elements, so once we choose those two elements from the k elements,
we are done. Therefore S(k, k − 1) =

(k
2

)
.

•139. In how many ways can we partition k (distinct) items into n blocks so
that we have ki blocks of size i for each i? (Notice that

∑k
i=1 ki = n

and
∑k

i=1 iki = k.) The sequence k1, k2, . . . , kn is called the type vector
of the partition.

Solution: n!∏n

i=1
(i!)kiki!

. We can make a list in n! ways, and then

break it into first k1 blocks of size 1, then k2 blocks of size 2, k3 blocks
of size 3 up to kn blocks of size n. But then we realize that we get the
same partition if we permute the i! elements of a block of size i and
we get the same partition if we permute the ki blocks of size i so we
apply the quotient principle.

+ 140. Describe how to compute S(n, k) in terms of quantities given by the
formula you found in Problem 139.

Solution: We can find S(n, k) by summing n!∏n

i=1
(i!)kiki!

over all type

vectors (k1, k2, . . . , kn) such that k1 + k2 + · · ·+ kn = k.

141. Find a recurrence for the Lah numbers L(k, n) similar to the one in
Problem 134.

Solution: L(k, n) is the number of broken permutations of a k-
element set into n parts. Either k is in an ordered block by itself
or it is not. If it is, it can go after any of the k − 1 other elements, or
it can go at the beginning of any of the n blocks. If it is not, deleting
it gives a broken permutation of a k− 1-element set into n− 1 blocks.
Thus L(k, n) = L(k − 1, n− 1) + (n + k − 1)L(k, n).
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·142. (Relevant in Appendix C.) The total number of partitions of a k-
element set is denoted by B(k) and is called the k-th Bell number.
Thus B(1) = 1 and B(2) = 2.

(a) Show, by explicitly exhibiting the partitions, that B(3) = 5.
Solution: The five partitions of [3] are the sets {{1}, {2}, {3}},
{{1, 2}, {3}}, {{1, 3}, {2}}, {{1}, {2, 3}}, and {{1, 2, 3}}.

(b) Find a recurrence that expresses B(k) in terms of B(n) for n < k
and prove your formula correct in as many ways as you can.
Solution: If we delete the block containing k, we get a partition
of a subset of [k − 1]. Thus B(k) is the sum over all subsets of
[k − 1] of the number of partitions of that subset. This gives us
B(k) =

∑k−1
n=0

(k−1
n

)
B(n).

Alternatively, we can show by the same sort of argument that
S(k, n) =

∑k−1
i=0

(k−1
i

)
S(i, n−1) and then use the fact that B(k) =∑k

n=0 S(k, n) to get the recurrence for B(k).

(c) Find B(k) for k = 4, 5, 6.
Solution:

B(4) =

(
3
0

)
B0+

(
3
1

)
B1+

(
3
2

)
B2+

(
3
3

)
B3 = 1+3+3·2+5 = 15

B(5) =
4∑

n=0

(
4
n

)
Bn = 1 + 4 + 6 · 2 + 4 · 5 + 15 = 52

B(6) =
5∑

n=0

(
5
n

)
Bn = 1 + 5 + 10 · 2 + 10 · 5 + 5 · 15 + 52 = 203

3.2.2 Stirling Numbers and onto functions

◦143. Given a function f from a k-element set K to an n-element set, we
can define a partition of K by putting x and y in the same block of
the partition if and only if f(x) = f(y). How many blocks does the
partition have if f is onto? How is the number of functions from a
k-element set onto an n-element set related to a Stirling number? Be
as precise in your answer as you can.

Solution: If f is onto, the number of blocks of the partition is n.
The number of onto functions from a k-element set onto an n-element
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set is S(k, n)n!, because we have a one-to-one function from the blocks
to the n-element set.

144. How many labeled trees on n vertices have exactly 3 vertices of degree
one? Note that this problem has appeared before in Chapter 2.

Solution: There are
(n
3

)
ways to choose the three vertices of degree

1. The remaining n − 3 vertices must appear in the Prüfer code for
the tree. We can think of the Prüfer code as a function from the
n − 2 places of the code onto the n − 2 remaining vertices, so that
there are S(n− 2, n− 3)(n− 3)! possible Prüfer codes. Thus we have(n
3

)(n−2
2

)
(n− 3)! = n!(n− 2)(n− 3)/12 labeled trees on n vertices.

•145. Each function from a k-element set K to an n-element set N is a
function from K onto some subset of N . If J is a subset of N of size j,
you know how to compute the number of functions that map onto J in
terms of Stirling numbers. Suppose you add the number of functions
mapping onto J over all possible subsets J of N . What simple value
should this sum equal? Write the equation this gives you.

Solution: The sum should equal the number of functions, nk. Thus
we get

∑n
j=0

(n
j

)
S(k, j)j! = nk. By using the fact that

(n
j

)
= nj/j!,

this may be rewritten as
∑n

j=0 njS(k, j) = nk.

◦146. In how many ways can the sandwiches of Problem 136 be placed into
three distinct bags so that each bag gets at least one?

Solution: S(9, 3) · 3! = 55, 980.

◦147. In how many ways can the sandwiches of Problem 137 be placed into
distinct bags so that each bag gets exactly three?

Solution: Choose three sandwiches for bag one in
(9
3

)
ways, three

for bag two in
(6
3

)
ways and put the remainder in bag 3. This gives us(9

3

)(6
3

)
= 9!

3!3!3! = 1680 ways.

The 9!
3!3!3! suggests another solution. We can line up the sandwiches

in 9! ways. We take the first three for bag one, the second three for
bag two and the last three for bag 3. The order of the sandwiches
in the bag does not matter though, so each there are 3!3!3! listings
corresponding to each way of putting sandwiches in bags, giving us

9!
3!3!3! ways to put the sandwiches in bags.

•148. In how many ways may we label the elements of a k element set with n
distinct labels (numbered 1 through n) so that label i is used ji times?
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( If we think of the labels as y1, y2, . . . , yn, then we can rephrase this
question as follows. How many functions are there from a k-element
set K to a set N = {y1, y2, . . . yn} so that each yi is the image of ji

elements of K?) This number is called a multinomial coefficient and
denoted by (

k

j1, j2, . . . , jn

)
.

Solution: If the jis don’t add to k, it is zero. Otherwise,
( k

j1,j2,...,jn

)
=

k!
j1!j2!···jn! . We get this either as the product of binomial coefficients(

k

j1

)(
k − j1

j2

)(
k − j1 − j2

j3

)
· · ·
(

jn

jn

)
,

or more elegantly, by lining up the elements of the domain in k! ways,
taking the first j1 elements to y1, the next j2 elements to y2 and
so on. However the order of the ji elements that go to yi is irrele-
vant, so j1!j2! · · · jn! lists all correspond to the same function, giving
us k!

j1!j2!,···jn! functions.

149. Explain how to compute the number of functions from a k-element set
K to an n-element set N by using multinomial coefficients.

Solution: Add the multinomial coefficients
( k
j1,j2,...,jn

)
over all pos-

sible nonnegative values of the jis that add to k. To see why, let
N = {y1, y2, . . . , yn} and apply the definition of multinomial coeffi-
cients.

150. Explain how to compute the number of functions from a k-element set
K onto an n-element set N by using multinomial coefficients.

Solution: Add the multinomial coefficients
( k
j1,j2,...,jn

)
in which each

ji is positive. To see why, let N = {y1, y2, . . . , yn} and note that we
are counting functions that send at least one element of K to each
element yi.

•151. What do multinomial coefficients have to do with expanding the kth
power of a multinomial x1 + x2 + · · · + xn? This result is called the
multinomial theorem.

Solution: When we use the distributive law to multiply out (x1 +
x2 + · · · + xn)k, we will get a sum of a bunch of terms of the form
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xi1
1 xi2

2 · · ·xin
n where i1 + i2 + · · · + in = k. The terms with a given

sequence i1, i2, . . . , in of exponents will arise from choosing, as we ap-
ply the distributive law over and over again, x1 from i1 of the fac-
tors, x2 from i2 of the factors, and so on. Thus the number of terms
xi1

1 xi2
2 · · ·xin

n will be the number of ways to label i1 of the factors with
a 1, i2 of the factors with a 2, . . . , and in of the factors with an n.
The number of ways to do this is a multinomial coefficient, as we now
explain. This labeling gives us a function from [k] to [n] as follows.
If factor i is labeled j we let f(i) = j. Further each function f from
[k] to [n] gives us that maps ij elements of [k] to j will give us such a
labeling. Thus the coefficient of xi1

1 xi2
2 · · ·xin

n will be the multinomial
coefficient

( k
i1,i2,...,in

)
.

3.2.3 Stirling Numbers and bases for polynomials

·152. (a) Find a way to express nk in terms of nj for appropriate values j.
You may use Stirling numbers if they help you.
Solution: In Problem 145, we saw that

∑n
j=0

(n
j

)
S(k, j)j! = nk.

Using the relationship between binomial coefficients and falling
factorials, we may rewrite this as

∑n
j=0 njS(k, j) = nk. This

expresses nk in terms of nj .

(b) Notice that xj makes sense for a numerical variable x (that could
range over the rational numbers, the real numbers, or even the
complex numbers instead of only the nonnegative integers, as we
are implicitly assuming n does), just as xj does. Find a way to ex-
press the power xk in terms of the polynomials xj for appropriate
values of j and explain why your formula is correct.
Solution: To be precise, we define xj to be x(x − 1) · · · (x −
j + 1). At first glance it looks like we could express xj in terms
of powers of x by simply substituting x for n in the equation∑n

j=0 njS(k, j) = nk. However this gives us
∑x

j=0 xjS(k, j) = xk,
and we have never defined what we mean by a sum whose upper
limit is a variable x. Thus we need to examine the equation∑n

j=0 njS(k, j) = nk to see if we can replace the n that is the
upper limit of the sum with something else. Notice that S(k, j) =
0 when j > k. This means that if k ≤ j, then

∑n
j=0 njS(k, j) =∑k

j=0 njS(k, j). Notice also that nj = n(n − 1) · · · (n − j + 1) is
zero when j > n because one of its factors is zero then. This
implies that if k > j, then

∑n
j=0 njS(k, j) =

∑k
j=0 njS(k, j).
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Therefore, regardless of the relative size of k and n, we have that∑n
j=0 njS(k, j) =

∑k
j=0 njS(k, j). Therefore

k∑
j=0

njS(k, j) = nk. (∗)

It makes sense to write the polynomial
∑k

j=0 xjS(k, j); this is
simply a polynomial of degree k in the variable x. The expres-
sion

∑k
j=0 xjS(k, j) − xk is also a polynomial in x, but it might

not be of degree k since we are subtracting a degree k term from
a degree k polynomial. In fact for every positive integer value n
of x, this polynomial is zero. That is,

∑k
j=0 njS(k, j) − nk = 0,

which is just a restatement of the Equation marked (∗). But it is
a fact of algebra that the number of solutions of a nontrivial poly-
nomial equation is no more than the degree of the polynomial.
Since the polynomial equation

∑k
j=0 xjS(k, j)− xk has infinitely

many different solutions, it must be a trivial equation; that is,∑k
j=0 xjS(k, j) − xk must be zero for every real (and even every

complex) number x. Thus
∑k

j=0 xjS(k, j) = xk, and we have
expressed xk in terms of xj for j ≤ k.

You showed in Problem 152b how to get each power of x in terms of the
falling factorial powers xj . Therefore every polynomial in x is expressible
in terms of a sum of numerical multiples of falling factorial powers. Using
the language of linear algebra, we say that the ordinary powers of x and the
falling factorial powers of x each form a basis for the “space” of polynomials,
and that the numbers S(k, n) are “change of basis coefficients.” If you are
not familiar with linear algebra, a basis for the space of polynomials3 is a
set of polynomials such that each polynomial, whether in that set or not,
can be expressed in one and only one way as a sum of numerical multiples
of polynomials in the set.

◦153. Show that every power of x + 1 is expressible as a sum of numerical
multiples of powers of x. Now show that every power of x (and thus
every polynomial in x) is a sum of numerical multiples (some of which
could be negative) of powers of x + 1. This means that the powers of
x + 1 are a basis for the space of polynomials as well. Describe the
change of basis coefficients that we use to express the binomial powers

3The space of polynomials is just another name for the set of all polynomials.
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(x+1)n in terms of the ordinary xj explicitly. Find the change of basis
coefficients we use to express the ordinary powers xn in terms of the
binomial powers (x + 1)k.

Solution: We know that

(x + 1)n =
n∑

i=0

(
n

i

)
xi (3.1)

from the binomial theorem. (In the way we stated the binomial the-
orem, instead of

(n
i

)
xi we would have gotten

(n
i

)
xn−i. There are two

ways to fix this. One is to observe that the coefficient of xi in that
expansion is

( n
n−i

)
, which equals

(n
i

)
. The other is to observe that when

we expand (1 + x)n according to the binomial theorem we get exactly
what we wrote on the right hand side in Equation 3.1.) Therefore
every power of x + 1 is expressible in terms of powers of x.

How do we express powers of x in terms of powers of x + 1? Some
experimentation would help us guess how to do so; however there is a
really nice trick that also isn’t hard to see. Namely, we can write

xn = (x + 1− 1)n = [(x + 1)− 1]n =
n∑

i=0

(
n

i

)
(x + 1)n−i(−1)i

=
n∑

i=0

(
n

i

)
(x + 1)i(−1)n−i

This means that every power of x is expressible in terms of powers
of x + 1 and the change of basis coefficients to express powers of x
in terms of powers of x + 1 are (−1)n−i

(n
i

)
, while the change of basis

coefficients used to express powers of x+1 in terms of powers of x are(n
i

)
.

·154. By multiplication, we can see that every falling factorial polynomial
can be expressed as a sum of numerical multiples of powers of x.
In symbols, this means that there are numbers s(k, n) (notice that
this s is lower case, not upper case) such that we may write xk =∑k

n=0 s(k, n)xn. These numbers s(k, n) are called Stirling Numbers of
the first kind. By thinking algebraically about what the formula

xk = xk−1(x− k + 1) (3.2)

means, we can find a recurrence for Stirling numbers of the first kind
that gives us another triangular array of numbers called Stirling’s tri-
angle of the first kind. Explain why Equation 3.2 is true and use it to
derive a recurrence for s(k, n) in terms of s(k−1, n−1) and s(k−1, n).
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Solution: Equation 3.2 is effectively the inductive step of an induc-
tive definition of xk. With this equation we can write

k∑
n=0

s(k, n)xn = xk = xk−1(x− k + 1)

=

(
k−1∑
n=0

s(k − 1, n)xn

)
(x− k + 1)

=
k−1∑
n=0

s(k − 1, n)xn+1 −
k−1∑
n=0

(k − 1)s(k − 1, n)xn

=
k∑

n=1

s(k − 1, n− 1)xn −
k−1∑
n=0

(k − 1)s(k − 1, n)xn.

Equating the coefficients of xn in the first and last line of this equation,
we get s(k, n) = s(k − 1, n − 1) − (k − 1)s(k − 1, n), for n between 1
and k − 1.

155. Write down the rows of Stirling’s triangle of the first kind for k = 0
to 6.

Solution:

k\n 0 1 2 3 4 5 6
0 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
2 0 -1 1 0 0 0 0
3 0 2 -3 1 0 0 0
4 0 -6 11 -6 1 0 0
5 0 24 -50 35 -10 1 0
6 0 -120 274 -225 85 -15 1

By definition, the Stirling numbers of the first kind are also change of
basis coefficients. The Stirling numbers of the first and second kind are
change of basis coefficients from the falling factorial powers of x to the
ordinary factorial powers, and vice versa.

156. Explain why every rising factorial polynomial xk can be expressed as
a sum of multiples of the falling factorial polynomials xn. Let b(k, n)
stand for the change of basis coefficients that allow us to express xk

in terms of the falling factorial polynomials xn; that is, define b(k, n)
by the equations

xk =
k∑

n=0

b(k, n)xn.
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(a) Find a recurrence for b(k, n).
Solution:

k∑
n=0

b(k, n)xn = xk = xk−1(x + k − 1)

=

(
k−1∑
n=0

b(k − 1, n)xn

)
(x + k − 1)

=
k−1∑
n=0

b(k − 1, n)xn(x + k − 1)

=
k−1∑
n=0

b(k − 1, n)xn(x− n + n + k − 1)

=
k−1∑
n=0

b(k − 1, n)xn+1 + (n + k − 1)b(k − 1, n)xn

=
k∑

n=1

b(k − 1, n− 1)xn +
k−1∑
n=0

(n + k − 1)b(k − 1, n)xn

Thus if n is not 0 or k, we equate the coefficient of xn in the first
line and last line to get

b(k, n) = b(k − 1, n− 1) + (n + k − 1)b(k − 1, n).

The trick of subtracting n and adding n in the middle of the
computation was the result of wanting to mimic the way in which
we increased the power on x in the solution to Problem 154.

(b) Find a formula for b(k, n) and prove the correctness of what you
say in as many ways as you can.
Solution: We will answer the next part of the problem here!
The recurrence for b(k, n) is exactly the same as the recurrence
for L(k, n). Further, b(0, 0) = 1 = L(0, 0), b(0, n) = 0 = L(0, n)
for n > 0, and b(k, k) = L(k, k) = 1. Thus b(k, n) and L(k, n)
are identical. This and the formula from Problem 133 gives one
proof that b(k, n) = k!

(k−1
n−1

)
/n!.

A second proof that the change of basis coefficients are Lah num-
bers goes as follows. nk counts the number of ordered functions
from a k-element set to an n-element set. One way to determine
such an ordered function is to take a broken permutation of the
k-element set into n or fewer parts, and then take a one-to-one
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function from the parts to the n-element set. More informally we
assign the parts of the broken permutation to distinct elements
of the n-element set. If the broken permutation has i parts, the
number of ways to do this assignment is the number of i-element
permutations of an n-element set, ni. Thus nk =

∑n
i=0 L(k, i)ni.

However we can change the upper limit of the sum to k because
L(k, i) is zero when i > k and ni is zero when i > n. Now we
change n to x because we have a polynomial equality which is
valid for infinitely many of the values of the variable. This gives
us xk =

∑k
i=0 L(k, i)xi. Thus b(k, i) = L(k, i).

(c) Is b(k, n) the same as any of the other families of numbers (bino-
mial coefficients, Bell numbers, Stirling numbers, Lah numbers,
etc.) we have studied?
Solution: As we said in our solution to the previous part, b(k, n)
is the Lah number L(k, n).

(d) Say as much as you can (but say it precisely) about the change
of basis coefficients for expressing xk in terms of xn.
Solution: There are several ways of finding this relationship,
but the most concise way is to observe that (−x)k = (−1)kxk and
(−x)k = (−1)kxk. This lets us write

(−x)k =
k∑

n=0

b(k, n)(−x)n

(−1)kxk =
k∑

n=0

(−1)nb(k, n)xn

xk =
k∑

n=0

(−1)n−kb(k, n)xn.

Therefore the change of basis coefficients are (−1)n−kb(k, n).

3.3 Partitions of Integers

We have now completed all our distribution problems except for those in
which both the objects and the recipients are identical. For example, we
might be putting identical apples into identical paper bags. In this case all
that matters is how many bags get one apple (how many recipients get one
object), how many get two, how many get three, and so on. Thus for each
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bag we have a number, and the multiset of numbers of apples in the various
bags is what determines our distribution of apples into identical bags. A
multiset of positive integers that add to n is called a partition of n. Thus
the partitions of 3 are 1+1+1, 1+2 (which is the same as 2+1) and 3. The
number of partitions of k is denoted by P (k); in computing the partitions
of 3 we showed that P (3) = 3. It is traditional to use Greek letters like λ
(the Greek letter λ is pronounced LAMB duh) to stand for partitions; we
might write λ = 1, 1, 1, γ = 2, 1 and τ = 3 to stand for the three partitions
of three. We also write λ = 13 as a shorthand for λ = 1, 1, 1, and we write
λ a 3 as a shorthand for “λ is a partition of three.”

◦157. Find all partitions of 4 and find all partitions of 5, thereby computing
P (4) and P (5).

Solution: 4 = 1+1+1+1, 4 = 2+1+1, 4 = 2+1, 4 = 3+1, 4 = 4,
so that P (4) = 5. 5 = 1+1+1+1+1, 5 = 2+1+1+1, 5 = 2+2+1,
5 = 3 + 1 + 1, 5 = 3 + 2, 5 = 4 + 1, 5 = 5, so that P (5) = 7.

3.3.1 The number of partitions of k into n parts

A partition of the integer k into n parts is a multiset of n positive integers
that add to k. We use P (k, n) to denote the number of partitions of k into n
parts. Thus P (k, n) is the number of ways to distribute k identical objects
to n identical recipients so that each gets at least one.

◦158. Find P (6, 3) by finding all partitions of 6 into 3 parts. What does this
say about the number of ways to put six identical apples into three
identical bags so that each bag has at least one apple?

Solution: 6 = 4 + 1 + 1, 6 = 3 + 2 + 1, 6 = 2 + 2 + 2, so P (6, 3) = 3.
This says there are three ways to put six identical apples into three
identical bags so that each bag gets at least one apple.

3.3.2 Representations of partitions

◦159. How many solutions are there in the positive integers to the equation
x1 + x2 + x3 = 7 with x1 ≥ x2 ≥ x3?

Solution: This problem is asking for P (7, 3) and suggests an orga-
nized way to go about finding it: list the partitions starting with the
largest part and work down. 7 = 5+1+1, 7 = 4+2+1, 7 = 3+3+1,
7 = 3 + 2 + 2, and if we have three numbers that add to seven, one
must be larger than two, so there are four such solutions.
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160. Explain the relationship between partitions of k into n parts and lists
x1, x2,. . . , xn of positive integers that add to k with x1 ≥ x2 ≥ . . . ≥
xn. Such a representation of a partition is called a decreasing list
representation of the partition.

Solution: There is a bijection between partitions of k into n parts
and lists, in non-increasing order, of n positive integers that add to
k, because each multiset of numbers that adds to k can be listed in
non-increasing order in exactly one way.

◦161. Describe the relationship between partitions of k and lists or vectors
(x1, x2, . . . , xn) such that x1+2x2+ . . . kxk = k. Such a representation
of a partition is called a type vector representation of a partition, and
it is typical to leave the trailing zeros out of such a representation;
for example (2, 1) stands for the same partition as (2, 1, 0, 0). What is
the decreasing list representation for this partition, and what number
does it partition?

Solution: The type vector of a partition of k is a way of representing
the multiplicity function of the multiset of integers that adds to k.
Thus there is a bijection between type vectors and partitions. The
decreasing list representation of the partition with type vector (2, 1)
is 2,1,1. This is a partition of 4

162. How does the number of partitions of k relate to the number of parti-
tions of k + 1 whose smallest part is one?

Solution: They are equal, because if we take two different partitions
of k and increase the multiplicity of 1 in each (by one), they are still
different; also if we take two different partitions of k + 1 that have
parts of size one, and decrease the multiplicity of 1 in each (by one),
they are still different.

When we write a partition as λ = λ1, λ2, . . . , λn, it is customary to
write the list of λis as a decreasing list. When we have a type vector
(t1, t2, . . . , tm) for a partition, we write either λ = 1t12t2 · · ·mtm or λ =
mtm(m−1)tm−1 · · · 2t21t1 . Henceforth we will use the second of these. When
we write λ = λi1

1 λi2
2 · · ·λin

n , we will assume that λi > λi+1.

3.3.3 Ferrers and Young Diagrams and the conjugate of a
partition

The decreasing list representation of partitions leads us to a handy way to
visualize partitions. Given a decreasing list (λ1, λ2, . . . λn), we draw a figure
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made up of rows of dots that has λ1 equally spaced dots in the first row, λ2

equally spaced dots in the second row, starting out right below the beginning
of the first row and so on. Equivalently, instead of dots, we may use identical
squares, drawn so that a square touches each one to its immediate right or
immediately below it along an edge. See Figure 3.1 for examples. The figure
we draw with dots is called the Ferrers diagram of the partition; sometimes
the figure with squares is also called a Ferrers diagram; sometimes it is called
a Young diagram. At this stage it is irrelevant which name we choose and
which kind of figure we draw; in more advanced work the squares are handy
because we can put things like numbers or variables into them. From now
on we will use squares and call the diagrams Young diagrams.

Figure 3.1: The Ferrers and Young diagrams of the partition (5,3,3,2)

•163. Draw the Young diagram of the partition (4,4,3,1,1). Describe the
geometric relationship between the Young diagram of (5,3,3,2) and
the Young diagram of (4,4,3,1,1).

Solution:

We get the Young diagram of (5, 3, 3, 2) by flipping the Young diagram
of (4, 4, 3, 1, 1) around a line that includes the diagonal of the upper
left box; if we think of the top left corner of the diagram as being at
the origin, we flip around the line y = −x.

•164. The partition (λ1, λ2, . . . , λn) is called the conjugate of the partition
(γ1, γ2, . . . , γm) if we obtain the Young diagram of one from the Young
diagram of the other by flipping one around the line with slope -1 that
extends the diagonal of the top left square. See Figure 3.2 for an
example. What is the conjugate of (4,4,3,1,1)? How is the largest part
of a partition related to the number of parts of its conjugate? What
does this tell you about the number of partitions of a positive integer
k with largest part m?
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Figure 3.2: The Ferrers diagram the partition (5,3,3,2) and its conjugate.

Solution: (5, 3, 3, 2). The largest part of a partition equals the num-
ber of parts of its conjugate. The number of partitions of k with largest
part m equals the number of partitions of k with m parts.

165. A partition is called self-conjugate if it is equal to its conjugate. Find a
relationship between the number of self-conjugate partitions of k and
the number of partitions of k into distinct odd parts.

Solution: The number of self-conjugate partitions of k equals the
number of partitions of k with distinct odd parts. Here is a geometric
description of a bijection from self-conjugate partitions of k to parti-
tions into distinct odd parts.

Take the top row and left column of squares of the Young diagram, and
make them into one row in a new diagram. (Only include the square
that is in both the row and column once.) Now take the remaining
squares in the next row and column and make a new row of the Young
diagram of the second partition with them. Continue this process with
succeeding rows and columns, not using any squares you have already
used. Because the first partition is self-conjugate, the diagram has the
same number of rows as columns and row i and column i have the
same length. Because row i and column i share one square, and we
only use that square once when we create a new row, each row we
create has odd length. Thus we get a partition with the same number
of squares, so it is a partition of k and each part is odd. The parts are
distinct because when we take off the squares of a row and column, we
reduce the number of squares in each row and column that remains.
Given a partition of k into distinct odd parts, we use the fact that
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each row has a unique middle element, and each is shorter than the
one above (by at least two squares) to reverse the process. Thus we
have a bijection.

166. Explain the relationship between the number of partitions of k into
even parts and the number of partitions of k into parts of even multi-
plicity, i.e. parts which are each used an even number of times as in
(3,3,3,3,2,2,1,1).

Solution: The number of partitions of k into even parts equals the
number of partitions of parts of even multiplicity, because if we take the
Young diagram of a partition of k into even parts and conjugate it, the
resulting diagram has columns of even length. Thus the difference in
heights of two successive columns is an even number, but this difference
is the multiplicity of one of the parts of the conjugate. Further the
height of the last column of a partition is the multiplicity of the first
part. Since the multiplicity of any part of a partition is either the
difference in height of two successive columns of the Young diagram
or the height of the last column, then each part of the conjugate has
even multiplicity. This bijection can be reversed, because if all the
differences in height of the columns are even and the height of the last
column is even, then when we conjugate this partition, the last row
will be an even length, and all differences in length of the rows will be
even, so all the parts of the resulting partition will be even.

167. Show that the number of partitions of k into four parts equals the
number of partitions of 3k into four parts of size at most k − 1 (or
3k− 4 into four parts of size at most k− 2 or 3k + 4 into four parts of
size at most k).

Solution: Think about putting the Young diagram of the partition
into the upper left corner of a rectangle that is k units wide and four
units high. Subdivide the rectangle into 4k squares of unit area. The
Young diagram covers k of these squares. The uncovered squares are
in rows of length r1 ≤ r2 ≤ r3 ≤ r4. Thus if we list these lengths
in the opposite order, we have a decreasing list representation of a
partition of 3k. Even r1 will have to be positive, because the first part
of the original partition will be at most k− 3. The part size will be at
most k − 1 because r4 must be less than k since the smallest part of
the original partition is at least 1. To get partitions of 3k + 4, use a
rectangle of width k+1, and to get partitions of 3k−4, use a rectangle
of width k − 1. Since the first row of the Young diagram has at most
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k−3 squares, we will still have four nonzero parts in the partition that
results.

168. The idea of conjugation of a partition could be defined without the
geometric interpretation of a Young diagram, but it would seem far
less natural without the geometric interpretation. Another idea that
seems much more natural in a geometric context is this. Suppose we
have a partition of k into n parts with largest part m. Then the Young
diagram of the partition can fit into a rectangle that is m or more units
wide (horizontally) and n or more units deep. Suppose we place the
Young diagram of our partition in the top left-hand corner of an m′

unit wide and n′ unit deep rectangle with m′ ≥ m and n′ ≥ n, as in
Figure 3.3.

Figure 3.3: To complement the partition (5,3,3,2) in a 6 by 5 rectangle:
enclose it in the rectangle, rotate, and cut out the original Young diagram.

(a) Why can we interpret the part of the rectangle not occupied by
our Young diagram, rotated in the plane, as the Young diagram of
another partition? This is called the complement of our partition
in the rectangle.
Solution: If we fill the rectangle with unit squares, those not in
the Young diagram of the original partition λ will fall into rows.
The lengths of the rows are nonnegative, and are nondecreasing
as we move down. Therefore, after we rotate through 180 degrees,
these same rows will be listed in the opposite order, lined up along
the left sides, and will have non-increasing length. Thus they will
be the Young diagram of a partition.

(b) What integer is being partitioned by the complement?
Solution: The integer being partitioned will be m′n′ − k.

(c) What conditions on m′ and n′ guarantee that the complement
has the same number of parts as the original one?
Solution: If m′ > m and n′ = n, then the two partitions will
have the same number of parts, because we will have a nonzero
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number of empty squares at the end of each row of the Young
diagram of λ. If m′ = m and n′−n is the multiplicity of the largest
part of λ, they will have the same number of parts. Otherwise,
their numbers of parts will differ.

(d) What conditions on m′ and n′ guarantee that the complement
has the same largest part as the original one?
Solution: If n′ > n and m = m′, then the two partitions will
have the same largest part. If n′ = n and m′ −m is the smallest
part of λ, then they will have the same largest part. Otherwise,
their largest parts will differ.

(e) Is it possible for the complement to have both the same number
of parts and the same largest part as the original one?
Solution: For the two partitions to have the same number of
parts, either m′ = m or n′ = n. If m′ = m and they have the
same largest part, then n′ > n. But this is consistent with n′−n
being the multiplicity of the largest part of λ. Thus they can have
the same number of parts and the same largest part if m′ = m
and n′−n is the multiplicity of the largest part of λ, or similarly
if n = n′ and m′ −m is the smallest part of λ.

(f) If we complement a partition in an m′ by n′ box and then com-
plement that partition in an m′ by n′ box again, do we get the
same partition that we started with?
Solution: If we complement a partition in an m′ by n′ box
and then complement that partition in the same rectangle, then
we get the original partition back.

169. Suppose we take a partition of k into n parts with largest part m,
complement it in the smallest rectangle it will fit into, complement
the result in the smallest rectangle it will fit into, and continue the
process until we get the partition 1 of one into one part. What can
you say about the partition with which we started?

Solution: Let us call the process of enclosing λ in the smallest rect-
angle possible and then forming the complement in that rectangle en-
complementation (this is short for enclosure and complementation and
is not a standard term—there is no standard term for this operation)
and call the result of it the encomplement of λ. The result of two en-
complementations on the Young diagram of a partition is to remove all
rows of maximum length and all columns of maximum length from the
Young diagram. Thus the description of the result of an even number
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2j of encomplementations is straightforward; we remove all the rows
of the j largest distinct lengths and all columns of the j largest dis-
tinct lengths. So if an even number of encomplementations brings us
to a partition with one block of size one, we should be able to describe
the original partition fairly easily. To deal with the result of an odd
number of encomplementations, we ask what happens if we encomple-
ment just once. If the complement of λ in the smallest rectangle in
which if fits has one square, then λ = λn1

1 λ1 − 1. Thus we are asking
for the partitions which, after an even number of encomplementations,
give us either the partition with one block or a partition of the form
λn1

1 (λ1 − 1). First we ask what kind of partition results in the second
one after two encomplementations. If we get λn1

1 (λ1 − 1) from two
encomplementations, the partition we started with had the form

λn0
0 (λ1 + λ2)n1(λ1 + λ2 − 1)λn2

2 .

If we get λn1
1 (λ1 − 1) from four encomplementations, then we started

with a partition of the form

λ
n−1

−1 (λ0 + λ3)n0(λ1 + λ2 + λ3)n1(λ1 + λ2 + λ3 − 1)(λ2 + λ3)n3λn3
3 .

From this pattern we see that a partition that results in λn1
1 (λ1 − 1)

after 2j encomplementations has the form

λ
n1−j

1−j λ
n2−j

2−j · · ·λn0
0 λ′1

n1(λ′1 − 1)λn2
2 · · ·λnj+1

j+1 , (3.3)

where λi > λi+1 and λ0 > λ′1 > λ2 + 1.

On the other hand, a partition λ that results in 1 after two encom-
plementations has the form λn0

0 (λ1 + 1)λn1
1 , and so a partition that

results in 1 after j encomplementations is of the form

λ
n1−j

1−j λ
n2−j

2−j · · ·λn0
0 (λ1 + 1)λn1

1 λn2
2 · · ·λnj

j , (3.4)

where λi > λi+1 and λ0 > λ1 + 1. Thus a partition results in a single
part of size 1 after some number of encomplementations if and only if
it has the form of Equation 3.3 or Equation 3.4.

170. Show that P (k, n) is at least 1
n!

(k−1
n−1

)
.

Solution: The number of compositions of k into n parts is
(k−1
n−1

)
.

We can divide the compositions into blocks, where two compositions
are in the same block if and only if one is a rearrangement of the other.
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Then the blocks correspond bijectively to partitions of k into n parts.
However we cannot compute the number of blocks by dividing by the
number of compositions per block since the number of compositions
per block ranges from 1 to n!. But then if we divide the number of
compositions by n! we will get a number less than the number of blocks
because n! times the number of blocks would be, by the sum principle,
greater than the number of partitions.

With the binomial coefficients, with Stirling numbers of the second kind,
and with the Lah numbers, we were able to find a recurrence by asking
what happens to our subset, partition, or broken permutation of a set S
of numbers if we remove the largest element of S. Thus it is natural to
look for a recurrence to count the number of partitions of k into n parts by
doing something similar. Unfortunately, since we are counting distributions
in which all the objects are identical, there is no way for us to identify a
largest element. However if we think geometrically, we can ask what we
could remove from a Young diagram to get a Young diagram. Two natural
ways to get a partition of a smaller integer from a partition of n would
be to remove the top row of the Young diagram of the partition and to
remove the left column of the Young diagram of the partition. These two
operations correspond to removing the largest part from the partition and
to subtracting 1 from each part of the partition respectively. Even though
they are symmetric with respect to conjugation, they aren’t symmetric with
respect to the number of parts. Thus one might be much more useful than
the other for finding a recurrence for the number of partitions of k into n
parts.

·171. In this problem we will study the two operations and see which one
seems more useful for getting a recurrence for P (k, n). Part of the
reason

(a) How many parts does the remaining partition have when we re-
move the largest part (more precisely, we reduce its multiplicity
by one) from a partition of k into n parts? (A geometric way
to describe this is that we remove the first row from the Young
diagram of the partition.) What can you say about the number
of parts of the remaining partition if we remove one from each
part?
Solution: Reducing the multiplicity of the largest part by one
reduces the number of parts by one. Removing 1 from each part
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reduces the number of parts by the multiplicity of the smallest
part, so it strictly reduces the number of parts, perhaps even to
one.

(b) If we remove the largest part from a partition, what can we say
about the integer that is being partitioned by the remaining parts
of the partition? If we remove one from each part of a partition of
k into n parts, what integer is being partitioned by the remaining
parts? (Another way to describe this is that we remove the first
column from the Young diagram of the partition.)
Solution: If we remove the largest part, the integer being par-
titioned is k minus the largest part. Thus it is a number less
than k and at least n−1. If we remove one from each part of the
partition, the integer being partitioned is k − n.

(c) The last two questions are designed to get you thinking about
how we can get a bijection between the set of partitions of k into
n parts and some other set of partitions that are partitions of a
smaller number. These questions describe two different strategies
for getting that set of partitions of a smaller number or of smaller
numbers. Each strategy leads to a bijection between partitions of
k into n parts and a set of partitions of a smaller number or num-
bers. For each strategy, use the answers to the last two questions
to find and describe this set of partitions into a smaller number
and a bijection between partitions of k into n parts and parti-
tions of the smaller integer or integers into appropriate numbers
of parts. (In one case the set of partitions and bijection are rel-
atively straightforward to describe and in the other case not so
easy.)
Solution: Removing the largest part of a partition of k into
n parts gives us a bijection between partitions of k into n parts
and and partitions of numbers k′ between n − 1 and k − 1 into
n− 1 parts of size at most k− k′. (To see that this is a bijection,
note that removing the largest part gives us such a partition,
and adjoining a part of size k − k′ to such a partition gives us a
partition of k with n parts.)
Removing one from each part of a partition of k into n parts
gives us a bijection between partitions of k into n parts and and
partitions k − n into n or fewer parts. (To see that this is a
bijection, note that removing one from each part of a partition
of k into n parts gives us such a partition, and, given such a
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partition, we get a partition of k into n parts by adding one to
each part and then creating enough parts of size 1 to have n
parts.)

(d) Find a recurrence (which need not have just two terms on the
right hand side) that describes how to compute P (k, n) in terms of
the number of partitions of smaller integers into a smaller number
of parts.
Solution: The second bijection is to the set of partitions of
k − 1 into n or fewer parts, and this makes the second bijection
sound easier to work with. We get P (k, n) =

∑n
i=1 P (k − n, i).

The proof is the bijection we already described; in particular a
partition of k−n into i parts corresponds to the partition of k we
get by adding one to each of the i parts and then creating n− i
parts of size one.

(e) What is P (k, 1) for a positive integer k?
Solution: P (k, 1) = 1.

(f) What is P (k, k) for a positive integer k?
Solution: P (k, k) = 1.

(g) Use your recurrence to compute a table with the values of P (k, n)
for values of k between 1 and 7.

Solution:

k\n 1 2 3 4 5 6 7
1 1 0 0 0 0 0 0
2 1 1 0 0 0 0 0
3 1 1 1 0 0 0 0
4 1 2 1 1 0 0 0
5 1 2 2 1 1 0 0
6 1 3 3 2 1 1 0
7 1 3 4 3 2 1 1

(h) What would you want to fill into row 0 and column 0 of your
table in order to make it consistent with your recurrence? What
does this say P (0, 0) should be? We usually define a sum with
no terms in it to be zero. Is that consistent with the way the
recurrence says we should define P (0, 0)?
Solution: We would want to have P (0, 0) = 1 and P (k, 0) =
P (0, n) = 0 for positive integer k or n. Since the sum of the empty
multiset of positive integers is zero, this gives us one partition of
the number zero, namely the empty multiset of positive integers.
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It is remarkable that there is no known formula for P (k, n), nor is there
one for P (k). This section is devoted to developing methods for computing
values of P (n, k) and finding properties of P (n, k) that we can prove even
without knowing a formula. Some future sections will attempt to develop
other methods.

We have seen that the number of partitions of k into n parts is equal
to the number of ways to distribute k identical objects to n recipients so
that each receives at least one. If we relax the condition that each recip-
ient receives at least one, then we see that the number of distributions of
k identical objects to n recipients is

∑n
i=1 P (k, i) because if some recipients

receive nothing, it does not matter which recipients these are. This com-
pletes rows 7 and 8 of our table of distribution problems. The completed
table is shown in Figure 3.2. Every entry in that table tells us how to count
something. There are quite a few theorems that you have proved which are
summarized by Table 3.2. It would be worthwhile to try to write them all
down! The methods we used to complete Figure 3.2 are extensions of the
basic counting principles we learned in Chapter 1. The remaining chapters
of this book develop more sophisticated kinds of tools that let us solve more
sophisticated kinds of counting problems.

3.3.4 Partitions into distinct parts

Often Q(k, n) is used to denote the number of partitions of k into distinct
parts, that is, parts that are different from each other.

172. Show that

Q(k, n) ≤ 1
n!

(
k − 1
n− 1

)
.

Solution: The number of compositions of k into n parts is
(k−1
n−1

)
.

Thus the number of compositions of k into n distinct parts is less than(k−1
n−1

)
. Divide the compositions of k into n distinct parts into blocks

with two compositions in the same block if one is a rearrangement of
the other. Because the parts are distinct, each block has n! members.
Further, there is a bijection between the blocks of this partition and the
partitions of k into n distinct parts. Since the number of compositions
of k into n distinct parts is less than

(k−1
n−1

)
, the number of partitions

of k into n distinct parts is less than 1
n!

(k−1
n−1

)
.

173. Show that the number of partitions of seven into three parts equals
the number of partitions of 10 into three distinct parts.
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Table 3.2: The number of ways to distribute k objects to n recipients, with
restrictions on how the objects are received

The Twenty-fold Way: A Table of Distribution Problems

k objects and conditions n recipients and mathematical model for distribution
on how they are received Distinct Identical

1. Distinct nk
∑k

i=1
S(n, i)

no conditions functions set partitions (≤ n parts)

2. Distinct nk 1 if k ≤ n; 0 otherwise
Each gets at most one k-element permutations

3. Distinct S(k, n)n! S(k, n)
Each gets at least one onto functions set partitions (n parts)

4. Distinct k! = n! 1 if k = n; 0 otherwise
Each gets exactly one permutations

5. Distinct, order matters (k + n− 1)k
∑n

i=1
L(k, i)

ordered functions broken permutations (≤ n parts)

6. Distinct, order matters (k)n(k − 1)k−n L(k, n) =
(

k
n

)
(k − 1)k−n

Each gets at least one ordered onto functions broken permutations (n parts)

7. Identical
(

n+k−1
k

) ∑n

i=1
P (k, i)

no conditions multisets number partitions (≤ n parts)

8. Identical
(

n
k

)
1 if k ≤ n; 0 otherwise

Each gets at most one subsets

9. Identical
(

k−1
n−1

)
P (k, n)

Each gets at least one compositions (n parts) number partitions (n parts)

10. Identical 1 if k = n; 0 otherwise 1 if k = n; 0 otherwise
Each gets exactly one

Solution: Given a partition λ of 7 in decreasing list form λ1, λ2, λ3,
if we add 0 to λ3, 1 to λ2 and 2 to λ1 the resulting partition of 10 has
distinct parts. If we take a partition λ′ of 10 with distinct parts, then
λ′1 ≥ λ′2 + 1, λ′1 ≥ λ′2 + 2, and λ′2 ≥ λ′3 + 1. Therefore if we subtract
2 from λ′1 to get λ1, subtract 1 from λ′2 to get λ2 and let λ3 = λ′3,
then λ1, λ2, λ3 is the decreasing list representation of a partition of
10−3 = 7. Thus there is a bijection between partitions of 7 into three
parts and partitions of 10 into three distinct parts.

·174. There is a relationship between P (k, n) and Q(m,n) for some other
number m. Find the number m that gives you the nicest possible
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relationship.

Solution: The number of partitions of k into n parts is equal to the
number of partitions of k+

(n
2

)
into n distinct parts. The bijection from

partitions of k with n parts to partitions of k+
(n
2

)
with n distinct parts

that proves this is the one that takes a partition λnλn−1 · · ·λ1 of k with
λi > λi+1 and adds i − 1 to λi to get λ′i. Then λ′ is a partition into
distinct parts, and the number it partitions is k +1+2+ · · ·+n− 1 =
k +

(n
2

)
. The proof that it is a bijection is the fact that subtracting

n − i from the ith part of a partition of k into distinct parts yields a
partition of k, because part i + j is at least j smaller than part i.

·175. Find a recurrence that expresses Q(k, n) as a sum of Q(k − n, m) for
appropriate values of m.

Solution: Suppose λ is a partition of k into n distinct parts. Either
1 is one of those parts or not. Thus if we subtract 1 from each part,
we either get a partition of k−n into n−1 parts or a partition of k−n
into n parts. If λ and λ′ are different partitions of k into n distinct
parts, they go to different partitions. Each partition of k − n into
n− 1 parts or n parts can be gotten in this way from a corresponding
partition of k into n parts. Thus we have a bijective correspondence
and Q(k, n) = Q(k − n, n− 1) + Q(k − n, n).

∗176. Show that the number of partitions of k into distinct parts equals the
number of partitions of k into odd parts.

Solution: We start by giving a function from the set of partitions
of k to the set of partitions of k with (only) odd parts. Clearly such
a function cannot be one to one. Then we show that when restricted
to the partitions with distinct parts it is one-to-one and onto by con-
structing an inverse. Given a partition λi1

1 λi2
2 · · ·λin

n , write λi = γi2ki ,
where γi is odd. (Thus 2ki is the highest power of 2 that is a factor
of λi, so it is 1 if λi is odd.). It is possible that γi = γj , for exam-
ple if λi = 36 and λj = 18, then γi = γj = 9. We construct a new
partition π whose parts are the numbers γj as follows: Given an odd
number p, let the multiplicity m(p) of p in π be

∑
j:γj=m 2kj . Thus∑

p:m(p) 6=0 m(p)p = k. Therefore, π is a partition of k whose parts are
all odd.

Now consider a partition π of k whose parts are all odd. Let π =
πr1

1 πr2
2 · · ·πrt

t , with πi > πi+1. (In terms of the multiplicity function
m, m(πi) = ri, and

∑t
i=1 riπi = k.) We are going to write the binary
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expansion of each ri as ri =
∑blog2 ric

j=0 2jaij , where aij is 1 if 2j appears
in the binary expansion of ri, and 0 otherwise. All of the numbers
πi2jaij are distinct, because a power of two times one odd number
cannot equal a power of two times another odd number. The numbers
πi2jaij add to k, so they are the parts of a partition π′ of k into distinct
parts. When we apply the function constructed in the first part of the
solution to π′, we get π, so the correspondence between π and π′ is a
bijection.

∗177. Euler showed that if k 6= 3j2+j
2 , then the number of partitions of k

into an even number of distinct parts is the same as the number of
partitions of k into an odd number of distinct parts. Prove this, and
in the exceptional case find out how the two numbers relate to each
other.

Solution: This solution is taken largely from the book Introduction
to Combinatorics by Ioan Tomescu (published in London by Collet’s
in 1975). Tomescu calls a collection of rows in a Young diagram a
“trapezoid” if each row contains one less cell than the row above and
the number of cells in the rows above and below the trapezoid differ
by two or more from the number of cells in rows of the trapezoid.
Thus in (8,6,5,4,2,1) we have 3 trapezoids, the first row, the next
three rows, and the last two. Since we are dealing with partitions with
distinct parts, we don’t have to worry about how two equal rows affect
the definition of a trapezoid. We will describe a way to transform a
partition with an even number of distinct parts into a partition with
an odd number of distinct parts and vice versa.

First we describe a transformation on Young diagrams. Here is the
first part of the description. Suppose the smallest part m of λ is less
than or equal to the number j of rows in the top trapezoid. Suppose
further that if we have only one trapezoid, then j > m. Then we
construct a partition with one less part by adding 1 to each of the m
largest parts and discarding the part m. We still have a diagram for a
partition of the same integer, but now the parity of the number of parts
has changed, and we may have increased the number of trapezoids by
1. The smallest part will now be larger than the number (now m) of
rows in the top trapezoid. (Notice that the construction would not
work if we had only one trapezoid and j = m because we would first
remove one row of the trapezoid and thus have no row to which to
attach one of our squares.)
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Here is the second part of the description of the transformation. Sup-
pose now that m is larger than the number j of rows of the top trape-
zoid in the Young diagram. Suppose also that the Young diagram has
at least two trapezoids or it has one trapezoid and j ≥ m − 2. Take
one square from each of the j rows of the top trapezoid (which is the
whole diagram if there is only one trapezoid) and also add a row of j
squares at the bottom of the diagram. (Since m > j, this gives us a
Young diagram of a partition of the same integer into distinct parts.)
The parity of the number of rows has changed, and now the number of
rows of the top trapezoid is at least as large as the smallest part of the
partition. (Note, two previously distinct trapezoids may have joined
together to form one on top.) (Notice that if we have one trapezoid
and j = m+1, then the construction yields a partition with two equal
parts, which is why we made the special assumption above.) Now let
T be the transformation described by the two constructions above. Its
domain is all Young diagrams except those with one trapezoid and
m ≤ j ≤ m + 1. T 2 is the identity, and so T is a bijection. When re-
stricted to partitions with an odd number of parts, T gives partitions
with an even number of parts, so on its domain it gives a bijection
between partitions with an even number of parts and partitions with
an odd number of parts.

If m = j and the diagram has just one trapezoid, then the diagram
has 3j2−j

2 squares, and if m = j + 1 and the diagram has just one
trapezoid, then the diagram has 3j2+j

2 squares. Thus if k 6= 3j2±j
2 , the

number of partitions of k into distinct even parts equals the number
of partitions of k into distinct odd parts.

If k = 3j2±j
2 and j is even, then there is one diagram of a partition of

k that is not in the domain of the bijection and has an even number
of rows, so in this case there will be one more partition with an even
number of parts than with an odd number. If k = 3j2±j

2 and j is odd,
there is one diagram with an odd number of rows not in the domain
and so in this case there is one more partition with an odd number
of parts than with an even number. This completes the exceptional
cases of the problem.

3.3.5 Supplementary Problems

1. Answer each of the following questions with nk, kn, n!, k!,
(n
k

)
,
(k
n

)
,

nk, kn, nk, kn,
(n+k−1

k

)
,
(n+k−1

n

)
,
(n−1
k−1

)
,
(k−1
n−1

)
, or “none of the above.”
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(a) In how many ways may we pass out k identical pieces of candy
to n children?
Solution:

(n+k−1
k

)
(b) In how many ways may we pass out k distinct pieces of candy to

n children?
Solution: nk

(c) In how many ways may we pass out k identical pieces of candy
to n children so that each gets at most one? (Assume k ≤ n.)
Solution:

(n
k

)
.

(d) In how many ways may we pass out k distinct pieces of candy to
n children so that each gets at most one? (Assume k ≤ n.)
Solution: nk

(e) In how many ways may we pass out k distinct pieces of candy to
n children so that each gets at least one? (Assume k ≥ n.)
Solution: None of the above.

(f) In how many ways may we pass out k identical pieces of candy
to n children so that each gets at least one? (Assume k ≥ n.)
Solution:

(k−1
n−1

)
2. The neighborhood betterment committee has been given r trees to dis-

tribute to s families living along one side of a street. Unless otherwise
specified, it doesn’t matter where a family plants the trees it gets.

(a) In how many ways can they distribute all of them if the trees are
distinct, there are more families than trees, and each family can
get at most one?
Solution: sr

(b) In how many ways can they distribute all of them if the trees are
distinct and any family can get any number?
Solution: sr

(c) In how many ways can they distribute all the trees if the trees are
identical, there are no more trees than families, and any family
receives at most one?
Solution:

(s
r

)
(d) In how many ways can they distribute them if the trees are dis-

tinct, there are more trees than families, and each family receives
at most one (so there could be some leftover trees)?
Solution:

∑s
k=0

(s
k

)
rk or

∑s
k=0 sk

(r
k

)
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(e) In how many ways can they distribute all the trees if they are
identical and anyone may receive any number of trees?
Solution:

(r+s−1
r

)
(f) In how many ways can all the trees be distributed and planted

if the trees are distinct, any family can get any number, and a
family must plant its trees in an evenly spaced row along the
road?
Solution: sr = (r + s− 1)r

(g) Answer the question in Part 2f assuming that every family must
get a tree.
Solution: r!

(r−1
s−1

)
(h) Answer the question in Part 2e assuming that each family must

get at least one tree.
Solution:

(r−1
s−1

)
3. In how many ways can n identical chemistry books, r identical math-

ematics books, s identical physics books, and t identical astronomy
books be arranged on three bookshelves? (Assume there is no limit
on the number of books per shelf.)

Solution: (n+r+s+t+2)!
n!r!s!t!2!

4. One formula for the Lah numbers is

L(k, n) =

(
k

n

)
(k − 1)k−n

Find a proof that explains this product.

Solution: First choose the n elements which will be the first mem-
ber of the part they lie in. (This, in effect, labels the n parts.) Then
assign the remaining k − n elements to their parts by making an or-
dered function of n−k objects to n recipients in (n+(k−n)−1)k−n =
(k − 1)k−n ways.

5. What is the number of partitions of n into two parts?

Solution: n/2 if n is even and (n − 1)/2 if n is odd, equivalently,
bn/2c.

·6. What is the number of partitions of k into k − 2 parts?
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Solution: A partition of k into k−2 parts will have either one part
of size 3 and k−3 parts of size 1, or two parts of size 2 and k−4 parts
of size 1. Thus the number of partitions of k into k − 2 parts is(

k

3

)
+
(

k

2

)(
k − 2

2

)
/2 = k(k − 1)(n− 2)/6 + k(k − 1)(k − 2)(k − 3)/8

= k(k − 1)(k − 2)(1/6 + (k − 3)/8)
= k(k − 1)(k − 2)(3k − 5)/24.

7. Show that the number of partitions of k into n parts of size at most m
equals the number of partitions of mn− k into no more than n parts
of size at most m− 1.

Solution: If we take the complement of the Young diagram of a
partition of k into n parts of size at most m in an rectangle with n
rows and m columns, the number we partition will be mn− k, and we
will have no more than n parts, each of size at most m − 1. And if
we take the complement of a partition of this second kind in the same
rectangle, we will get a partition of the first kind.

8. Show that the number of partitions of k into parts of size at most m
is equal to the number of partitions of k + m into m parts.

Solution: Given the first kind of partition, take the conjugate (giv-
ing a partition of k into at most m parts), add one to each part,
and then add enough parts of size 1 to get a total of m parts. It is
straightforward that this process can be reversed.

9. You can say something pretty specific about self-conjugate partitions
of k into distinct parts. Figure out what it is and prove it. With that,
you should be able to find a relationship between these partitions and
partitions whose parts are consecutive integers, starting with 1. What
is that relationship?

Solution: In a self-conjugate partition, the number of parts is the
size of the largest part. If these parts are distinct, this means that
each number between 1 and the largest part appears once as a part.
That is, the parts are a list of consecutive integers, starting with 1.

10. What is s(k, 1)?

Solution: Since s(k, 1) is the coefficient of x1 in

xk = x(x− 1)(x− 2) · (x− (k − 1)),



3.3. PARTITIONS OF INTEGERS 141

it is (−1)k−1(k − 1)!.

11. Show that the Stirling numbers of the second kind satisfy the recur-
rence

S(k, n) =
k∑

i=1

S(k − i, n− 1)

(
k − 1
i− 1

)
.

Solution: A partition of [k] into n blocks has a block containing k.
If this block has size i, when you remove it, you get a partition of a
set of size k− i into n− 1 blocks. The number of possible sets of size i
containing k is

(k−1
i−1

)
, and i can be any number between 1 and k. Each

partition of k into n blocks may be constructed exactly once by first
choosing the block containing k and then partitioning the remaining
elements into n− 1 blocks. This proves the formula.

12. Let c(k, n) be the number of ways for k children to hold hands to
form n circles, where one child clasping his or her hands together and
holding them out to form a circle is considered a circle. (Having Mary
hold Sam’s right hand is different from having Mary hold Sam’s left
hand.) Find a recurrence for c(k, n). Is the family of numbers c(k, n)
related to any of the other families of numbers we have studied? If so,
how?

Solution: The kth child is either in a circle alone, and there are
c(k−1, n−1) ways for this to happen, or is in a circle with some other
children. In the second case child i can be to the immediate right of
any of the other k− 1 children, so there are (k− 1)c(k− 1, n) ways for
this to happen. Thus c(k, n) = c(k−1, n−1)+(k−1)c(k−1, n). This
recurrence is almost the same as the recurrence for s(k, n), except it
has a plus sign where the recurrence for the Stirling numbers of the first
kind has a minus sign. Further c(k, 1) = (k−1)! and c(k, k) = 1, which
agrees, except for sign, with the Stirling numbers of the first kind. If
we experiment with applying the recurrence, we see that whenever we
use it to compute c(k, n), we get that c(k, n) = |s(k, n)|. It is now
straightforward to prove by induction that c(k, n) = |s(k, n)|.

13. How many labeled trees on n vertices have exactly four vertices of
degree 1?

Solution: The vertices of degree 1 are the vertices that do not
appear in the Prüfer code for the tree. So we first choose four vertices
out of n in

(n
4

)
ways to be our vertices of degree 1, and the Prüfer code
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may be thought of as a function from the n−2 places of the code onto
the n−4 remaining vertices, so there are S(n−2, n−4)(n−4)! Prüfer
codes for each choice of the vertices of degree 1. Thus using Problem 6
from this section of supplementary problems, we have that the number
of labeled trees is

(n
4

)
(n − 2)(n − 3)(n − 4)(3n − 11)(n − 4)!/24 =

n!(n− 2)(n− 3)(n− 4)(3n− 11)/576.

14. The degree sequence of a graph is a list of the degrees of the ver-
tices in non-increasing order. For example the degree sequence of the
first graph in Figure 2.4 is (4, 3, 2, 2, 1). For a graph with vertices
labeled 1 through n, the ordered degree sequence of the graph is the
sequence d1, d2, . . . dn in which di is the degree of vertex i. For ex-
ample the ordered degree sequence of the first graph in Figure 2.2 is
(1, 2, 3, 3, 1, 1, 2, 1).

(a) How many labeled trees are there on n vertices with ordered
degree sequence d1, d2, . . . dn?
Solution: We first solve the ordered degree sequence problem
in which we assume di is the degree of vertex i. The number of
times i appears in the Prüfer code of a tree is one less than the
degree of i, so vertex i appears di− 1 times. Thus the sum of the
di − 1 should be 2n − 2 − n = n − 2. Of the n − 2 places in the
Prüfer code, we want to label d1 − 1 of them with 1, d2 − 1 of
them with 2 and in general di − 1 of them with i. There are(

n− 2
d1 − 1, d2 − 1, d3 − 1, . . . , dn − 1

)

ways to do this, so the number of trees in which vertex i has
degree di is (n−2)!

(d1−1)!(d2−1)!···(dn−1)! .

∗(b) How many labeled trees are there on n vertices with with the
degree sequence in which the degree d appears id times?
Solution: Now we modify the solution of the previous part by
observing that to count all graphs with a given degree sequence,
the actual vertices which have the given degrees is irrelevant, so
we must multiply the result of the easier problem by the num-
ber of ways to assign the degrees to the vertices. To assign the
degrees, we can list the vertices in n! ways, choose the first i1 of
these vertices to have degree 1, then next i2 to have degree 2, and
so on. But the order in which we list the vertices of a given degree



3.3. PARTITIONS OF INTEGERS 143

is irrelevant. Thus the number of ways to assign the degrees is
n!

i1!i2!···in! . Once the degrees are assigned, there are (n−2)!∏n

d=1
(d−1)!id

,

by translating our easier result. Thus the total number of trees
with the degree sequence in which there are id vertices of degree
d is

n!(n− 2)!∏n
j=1 ij !(j − 1)!ij .
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Chapter 4

Generating Functions

4.1 The Idea of Generating Functions

4.1.1 Visualizing Counting with Pictures

Suppose you are going to choose three pieces of fruit from among apples,
pears and bananas for a snack. We can symbolically represent all your
choices as

+ + + + + + + + + .

Here we are using a picture of a piece of fruit to stand for taking a piece
of that fruit. Thus stands for taking an apple, for taking an apple
and a pear, and for taking two apples. You can think of the plus sign
as standing for the “exclusive or,” that is, + would stand for “I take
an apple or a banana but not both.” To say “I take both an apple and a
banana,” we would write . We can extend the analogy to mathematical
notation by condensing our statement that we take three pieces of fruit to

3 + 3 + 3 + 2 + 2 + 2 + 2 + 2 + 2 + .

In this notation 3 stands for taking a multiset of three apples, while 2

stands for taking a multiset of two apples and a banana, and so on. What
our notation is really doing is giving us a convenient way to list all three
element multisets chosen from the set { , , }.1

1This approach was inspired by George Pólya’s paper “Picture Writing,” in the De-
cember, 1956 issue of the American Mathematical Monthly, page 689. While we are taking
a somewhat more formal approach than Pólya, it is still completely in the spirit of his
work.

145
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Suppose now that we plan to choose between one and three apples, be-
tween one and two pears, and between one and two bananas. In a somewhat
clumsy way we could describe our fruit selections as

+ 2 +· · ·+ 2 2 +· · ·+ 2 2 2+ 3 +· · ·+ 3 2 +· · ·+ 3 2 2
.

(4.1)

•178. Using an A in place of the picture of an apple, a P in place of the
picture of a pear, and a B in place of the picture of a banana, write out
the formula similar to Formula 4.1 without any dots for left out terms.
(You may use pictures instead of letters if you prefer, but it gets tedious
quite quickly!) Now expand the product (A+A2+A3)(P +P 2)(B+B2)
and compare the result with your formula.

Solution: APB + APB2 + AP 2B + AP 2B2 + A2PB + A2PB2 +
A2P 2B + A2P 2B2 + A3PB + A3PB2 + A3P 2B + A3P 2B2

(A + A2 + A3)(P + P 2)(B + B2)
= APB + APB2 + AP 2B + AP 2B2 + A2PB + A2PB2 + A2P 2B

+ A2P 2B2 + A3PB + A3PB2 + A3P 2B + A3P 2B2.

We get the same expression in both cases.

•179. Substitute x for all of A, P and B (or for the corresponding pictures)
in the formula you got in Problem 178 and expand the result in powers
of x. Give an interpretation of the coefficient of xn.

Solution: x3 + 3x4 + 4x5 + 3x6 + x7. There is one way to choose
three pieces of fruit, there are three ways to choose four pieces, four
ways to chose 5 pieces, three ways to choose 6 pieces , and there is one
way to choose 7 pieces of fruit. The coefficient of xn is the number of
ways to choose n pieces of fruit.

If we were to expand the formula

( + 2 + 3)( + 2)( + 2), (4.2)

we would get Formula 4.1. Thus Formula 4.1 and Formula 4.2 each describe
the number of multisets we can choose from the set { , , } in which
appears between one and three times, and and each appear once or
twice. We interpret Formula 4.1 as describing each individual multiset we
can choose, and we interpret Formula 4.2 as saying that we first decide how
many apples to take, and then decide how many pears to take, and then
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decide how many bananas to take. At this stage it might seem a bit magical
that doing ordinary algebra with the second formula yields the first, but in
fact we could define addition and multiplication with these pictures more
formally so we could explain in detail why things work out. However, since
the pictures are for motivation, and are actually difficult to write out on
paper, it doesn’t make much sense to work out these details. We will see an
explanation in another context later on.

4.1.2 Picture functions

As you’ve seen, in our descriptions of ways of choosing fruits, we’ve treated
the pictures of the fruit as if they are variables. You’ve also likely noticed
that it is much easier to do algebraic manipulations with letters rather than
pictures, simply because it is time consuming to draw the same picture over
and over again, while we are used to writing letters quickly. In the theory
of generating functions, we associate variables or polynomials or even power
series with members of a set. There is no standard language describing how
we associate variables with members of a set, so we shall invent2 some. By
a picture of a member of a set we will mean a variable, or perhaps a product
of powers of variables (or even a sum of products of powers of variables).
A function that assigns a picture P (s) to each member s of a set S will be
called a picture function. The picture enumerator for a picture function
P defined on a set S will be the sum of the pictures of the elements in S.
In symbols we can write this conveniently as.

EP (S) =
∑

s:s∈S

P (s).

We choose this language because the picture enumerator lists, or enu-
merates, all the elements of S according to their pictures. Thus Formula
4.1 is the picture enumerator of the set of all multisets of fruit with between
one and three apples, one and two pears, and one and two bananas.

◦180. How would you write down a polynomial in the variable A that says
you should take between zero and three apples?

Solution: A0 + A1 + A2 + A3.

•181. How would you write down a picture enumerator that says we take
between zero and three apples, between zero and three pears, and
between zero and three bananas?

2We are really adapting language introduced by George Pólya.
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Solution:
(A0 + A1 + A2 + A3)(P 0 + P 1 + P 2 + P 3)(B0 + B1 + B2 + B3).

·182. (Used in Chapter 6.) Notice that when we used A2 to stand for taking
two apples, and P 3 to stand for taking three pears, then we used the
product A2P 3 to stand for taking two apples and three pears. Thus
we have chosen the picture of the ordered pair (2 apples, 3 pears) to be
the product of the pictures of a multiset of two apples and a multiset
of three pears. Show that if S1 and S2 are sets with picture functions
P1 and P2 defined on them, and if we define the picture of an ordered
pair (x1, x2) ∈ S1 × S2 to be P ((x1, x2)) = P1(x1)P2(x2), then the
picture enumerator of P on the set S1 × S2 is EP1(S1)EP2(S2). We
call this the product principle for picture enumerators.

Solution:

EP (S1 × S2) =
∑

(x1,x2)∈S1×S2

P (x1)P (x2)

=
∑

x1:x1∈S1

∑
x2:x2∈S2

P (x1)P (x2)

=
∑

x1∈S1

P (x1)
∑

x2∈S2

P (x2)

=
∑

x1∈S1

P (x1)EP2(S2)

=

 ∑
x1∈S1

P (x1)

EP2(S2)

= EP1(S1)EP2(S2)

4.1.3 Generating functions

•183. Suppose you are going to choose a snack of between zero and three
apples, between zero and three pears, and between zero and three
bananas. Write down a polynomial in one variable x such that the
coefficient of xn is the number of ways to choose a snack with n pieces
of fruit.

Solution: (1 + x + x2 + x3)3

◦184. Suppose an apple costs 20 cents, a banana costs 25 cents, and a pear
costs 30 cents. What should you substitute for A, P , and B in Problem
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181 in order to get a polynomial in which the coefficient of xn is the
number of ways to choose a selection of fruit that costs n cents?

Solution: Substitute x20 for A, x25 for B and x30 for P .

•185. Suppose an apple has 40 calories, a pear has 60 calories, and a ba-
nana has 80 calories. What should you substitute for A, P , and B in
Problem 181 in order to get a polynomial in which the coefficient of
xn is the number of ways to choose a selection of fruit with a total of
n calories?

Solution: Substitute x40 for A, x60 for P , and x80 for B.

•186. We are going to choose a subset of the set [n] = {1, 2, . . . , n}. Suppose
we use x1 to be the picture of choosing 1 to be in our subset. What
is the picture enumerator for either choosing 1 or not choosing 1?
Suppose that for each i between 1 and n, we use xi to be the picture
of choosing i to be in our subset. What is the picture enumerator for
either choosing i or not choosing i to be in our subset? What is the
picture enumerator for all possible choices of subsets of [n]? What
should we substitute for xi in order to get a polynomial in x such that
the coefficient of xk is the number of ways to choose a k-element subset
of n? What theorem have we just reproved (a special case of)?

Solution: The picture enumerator for choosing 1 or not choosing 1
is x1 + 1. The picture enumerator for choosing or not choosing i is
xi + 1. The picture enumerator for choosing all possible subsets of
[n] is (x1 + 1)(x2 + 1) · · · (xn + 1). We should substitute x for xi, thus
getting (1 + x)n. Since the number of ways to choose an n-element
subset is

(n
k

)
, we have just proved the version of the binomial theorem

that says

(x + 1)n =
n∑

i=0

(
n

i

)
xi.

In Problem 186 we see that we can think of the process of expanding the
polynomial (1+x)n as a way of “generating” the binomial coefficients

(n
k

)
as

the coefficients of xk in the expansion of (1+x)n. For this reason, we say that
(1 + x)n is the “generating function” for the binomial coefficients

(n
k

)
. More

generally, the generating function for a sequence ai, defined for i with
0 ≤ i ≤ n is the expression

∑n
i=0 aix

i, and the generating function for
the sequence ai with i ≥ 0 is the expression

∑∞
i=0 aix

i. This last expression
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is an example of a power series. In calculus it is important to think about
whether a power series converges in order to determine whether or not it
represents a function. In a nice twist of language, even though we use the
phrase generating function as the name of a power series in combinatorics,
we don’t require the power series to actually represent a function in the usual
sense, and so we don’t have to worry about convergence.3 Instead we think of
a power series as a convenient way of representing the terms of a sequence
of numbers of interest to us. The only justification for saying that such
a representation is convenient is because of the way algebraic properties of
power series capture some of the important properties of some sequences that
are of combinatorial importance. The remainder of this chapter is devoted
to giving examples of how the algebra of power series reflects combinatorial
ideas.

Because we choose to think of power series as strings of symbols that we
manipulate by using the ordinary rules of algebra and we choose to ignore
issues of convergence, we have to avoid manipulating power series in a way
that would require us to add infinitely many real numbers. For example,
we cannot make the substitution of y + 1 for x in the power series

∑∞
i=0 xi,

because in order to interpret
∑∞

i=0(y + 1)i as a power series we would have
to apply the binomial theorem to each of the (y+1)i terms, and then collect
like terms, giving us infinitely many ones added together as the coefficient
of y0, and in fact infinitely many numbers added together for the coefficient
of any yi. (On the other hand, it would be fine to substitute y + y2 for x.
Can you see why?)

4.1.4 Power series

For now, most of our uses of power series will involve just simple algebra.
Since we use power series in a different way in combinatorics than we do in
calculus, we should review a bit of the algebra of power series.

◦187. In the polynomial (a0 + a1x + a2x
2)(b0 + b1x + b2x

2 + b3x
3), what is

the coefficient of x2? What is the coefficient of x4?

Solution: a0b
2 + a1b1 + a2b0 is the coefficient of x2. a1b3 + a2b2 is

the coefficient of x4.

3In the evolution of our current mathematical terminology, the word function evolved
through several meanings, starting with very imprecise meanings and ending with our
current rather precise meaning. The terminology “generating function” may be thought
of as an example of one of the earlier usages of the term function.
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◦188. In Problem 187 why is there a b0 and a b1 in your expression for the
coefficient of x2 but there is not a b0 or a b1 in your expression for the
coefficient of x4? What is the coefficient of x4 in

(a0 + a1x + a2x
2 + a3x

3 + a4x
4)(b0 + b1x + b2x

2 + b3x
3 + b4x

4)?

Express this coefficient in the form

4∑
i=0

something,

where the something is an expression you need to figure out. Now
suppose that a3 = 0, a4 = 0, and b4 = 0. To what is your expression
equal after you substitute these values? In particular, what does this
have to do with Problem 187?

Solution: There is a b0 in the coefficient of x2 because box
0 can

be paired with a2x
2 to give the term a2b0x

4. Similarly there is a b1

because it can be paired with a1 for the same purpose. However, there
is no ai that we can pair with b0 to get a coefficient of x4 and no ai

that we can pair with b3 to get a coefficient of x4.

The coefficient of x4 in

(a0 + a1x + a2x
2 + a3x

3 + a4x
4)(b0 + b1x + b2x

2 + b3x
3 + b4x

4)

is
∑4

i=0 aib4−i. If we substitute a3 = 0, a4 = 0, and b4 = 0, we
get the coefficient of x4 in (a0 + a1x + a2x

2)(b0 + b1x + b2x
2 + b3x

3).
This exemplifies the idea that we can get a uniform formula for the
coefficient of xi (namely, sum all ajbi−j from j = 0 to i) in a product
of two polynomials if we are willing to say that the coefficient of a
power of x that does not appear in a polynomial is 0.

◦189. The point of the Problems 187 and 188 is that so long as we are willing
to assume ai = 0 for i > n and bj = 0 for j > m, then there is a very
nice formula for the coefficient of xk in the product(

n∑
i=0

aix
i

) m∑
j=0

bjx
j

 .

Write down this formula explicitly.

Solution:
∑k

i=0 aibk−i.
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•190. Assuming that the rules you use to do arithmetic with polynomials
apply to power series, write down a formula for the coefficient of xk in
the product ( ∞∑

i=0

aix
i

) ∞∑
j=0

bjx
j

 .

Solution:
∑k

i=0 aibk−i.

We use the expression you obtained in Problem 190 to define the product
of power series. That is, we define the product( ∞∑

i=0

aix
i

) ∞∑
j=0

bjx
j


to be the power series

∑∞
k=0 ckx

k, where ck is the expression you found in
Problem 190. Since you derived this expression by using the usual rules
of algebra for polynomials, it should not be surprising that the product of
power series satisfies these rules.4

4.1.5 Product principle for generating functions

Each time that we converted a picture function to a generating function
by substituting x or some power of x for each picture, the coefficient of x
had a meaning that was significant to us. For example, with the picture
enumerator for selecting between zero and three each of apples, pears, and
bananas, when we substituted x for each of our pictures, the exponent i
in the power xi is the number of pieces of fruit in the fruit selection that
led us to xi. After we simplify our product by collecting together all like
powers of x, the coefficient of xi is the number of fruit selections that use
i pieces of fruit. In the same way, if we substitute xc for a picture, where
c is the number of calories in that particular kind of fruit, then the i in
an xi term in our generating function stands for the number of calories
in a fruit selection that gave rise to xi, and the coefficient of xi in our
generating function is the number of fruit selections with i calories. The
product principle of picture enumerators translates directly into a product
principle for generating functions. However, it is possible to give a proof
that does not rely on the product principle for enumerators.

4Technically we should explicitly state these rules and prove that they are all valid for
power series multiplication, but it seems like overkill at this point to do so!
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•191. Suppose that we have two sets S1 and S2. Let v1 (v stands for value)
be a function from S1 to the nonnegative integers and let v2 be a
function from S2 to the nonnegative integers. Define a new function v
on the set S1×S2 by v(x1, x2) = v1(x1)+v2(x2). Suppose further that∑∞

i=0 aix
i is the generating function for the number of elements x1 of

S1 of value i, that is, with v1(x1) = i. Suppose also that
∑∞

j=0 bjx
j is

the generating function for the number of elements x2 of S2 of value
j, that is, with v2(x2) = j. Prove that the coefficient of xk in( ∞∑

i=0

aix
i

) ∞∑
j=0

bjx
j


is the number of ordered pairs (x1, x2) in S1 × S2 with total value k,
that is, with v1(x1)+v2(x2) = k. This is called the product principle
for generating functions.

Solution: The generating function for ordered pairs of total value k
will have the number of ordered pairs of total value k as the coefficient
of xk. But we get a total value k by taking something of value i in
S1 and something of value k − i in j. And since values cannot be
negative, the only values of i available to us are the ones between 0
and k. By the product principle for pairs, the number of ordered pairs
(x, y) with v1(x) = i and v2(y) = k− i is aibk−i. To get the number of
pairs of total value k, we have to sum over all possible pairs (i, k − i)
of values, that is, we have to take the sum

∑k
i=0 aibk−i. And this is

the coefficient of xk in the product( ∞∑
i=0

aix
i

) ∞∑
j=0

bjx
j

 .

This proves the product principle for generating functions.

Problem 191 may be extended by mathematical induction to prove our
next theorem.

Theorem 7 (Product Principle for Generating Functions) If S1, S2,
. . . , Sn are sets with a value function vi from Si to the nonnegative integers
for each i, and fi(x) is the generating function for the number of elements
of Si of each possible value, then the generating function for the number of
n-tuples of each possible total value is

∏n
i=1 fi(x).
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4.1.6 The extended binomial theorem and multisets

•192. Suppose once again that i is an integer between 1 and n.

(a) What is the generating function in which the coefficient of xk

is one? This series is an example of what is called an infinite
geometric series. In the next part of this problem it will be useful
to interpret the coefficient one as the number of multisets of size
k chosen from the singleton set {i}. Namely, there is only one
way to chose a multiset of size k from {i}: choose i exactly k
times.
Solution: 1 + x + x2 + · · ·+ xi + · · · =

∑∞
i=0 xi.

(b) Express the generating function in which the coefficient of xk is
the number of k-element multisets chosen from [n] as a power of
a power series. What does Problem 125 (in which your answer
could be expressed as a binomial coefficient) tell you about what
this generating function equals?
Solution: The generating function is

(∑∞
i=0 xi

)n. Problem 125
tells us that this equals

∑∞
i=0

(n+i−1
i

)
xi.

◦193. What is the product (1− x)
∑n

k=0 xk? What is the product

(1− x)
∞∑

k=0

xk?

Solution:

(1−x)
n∑

k=0

xk = 1−x+x−x2 + · · ·+xn−1−xn +xn−xn+1 = 1−xn+1.

(1− x)
∞∑

k=0

xk =
∞∑
i=0

xi −
∞∑
i=0

xi+1 =
∞∑
i=0

xi −
∞∑
i=1

xi = 1.

•194. Express the generating function for the number of multisets of size k
chosen from [n] (where n is fixed but k can be any nonnegative integer)
as a 1 over something relatively simple.

Solution: Since (1− x)
∑∞

k=0 xk = 1, we have that

∞∑
k=0

xk =
1

1− x
.
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Therefore
(∑∞

k=0 xk
)n

= 1
(1−x)n is the generating function for multisets

of size k chosen from an n element set.

•195. Find a formula for (1+x)−n as a power series whose coefficients involve
binomial coefficients. What does this formula tell you about how we
should define

(−n
k

)
when n is positive?

Solution:

(1+x)−n = (1−(−x))−n =
∞∑
i=0

(
n + i− 1

i

)
(−x)i =

∞∑
i=0

(−1)i

(
n + i− 1

i

)
xi.

We want the coefficient of xk in (1 + x)−n to be
(−n

k

)
, so we want(−n

k

)
= (−1)k

(n+k−1
k

)
.

196. If you define
(−n

k

)
in the way you described in Problem 195, you can

write down a version of the binomial theorem for (x + y)n that is
valid for both nonnegative and negative values of n. Do so. This is
called the extended binomial theorem. Write down a special case with
n negative, like n = −3, to see an interesting surprise that suggests
why we do not use this formula later on.

Solution: (x + y)n =
∑∞

i=0

(n
i

)
xiyn−i. The proof consists of writing

(x + y) = y(x
y + 1) and applying Problem 195 when n is negative.

When n is positive, we recall that
(n
k

)
is zero when k > n, so replacing

the upper limit of n in the standard version of the binomial theorem
by ∞ doesn’t change the value of the sum. When n = −3 we get
(x + y)n =

∑∞
i=0

(−3
i

)
xiy−3−i =

∑∞
i=0(−1)i

(3+i−1
i

)
xiy−3−i. Expanding

our binomial coefficients gives (x + y)−3 =
(2
0

)
x0y−3 −

(3
1

)
x1y−4 +(4

2

)
x2y−5−· · ·. The surprise is that we get an infinite series in positive

and negative powers of variables. In order to limit ourselves to infinite
series with nonnegative exponents, we do not pursue this idea further.

•197. Write down the generating function for the number of ways to dis-
tribute identical pieces of candy to three children so that no child gets
more than 4 pieces. Write this generating function as a quotient of
polynomials. Using both the extended binomial theorem and the orig-
inal binomial theorem, find out in how many ways we can pass out
exactly ten pieces.

Solution: (1 + x + x2 + x3 + x4)3. We can write

(1 + x + x2 + x3 + x4)3 =

(
1− x5

1− x

)3



156 CHAPTER 4. GENERATING FUNCTIONS

= (1− x5)3(1− x)−3

= (1− 3x5 + 3x10 − x15)
∞∑
i=0

(
3 + i− 1

i

)
xi

= (1− 3x5 + 3x10 − x15)
∞∑
i=0

(
2 + i

i

)
xi

The coefficient of x10 is the number of ways to pass out ten pieces of
candy, and is

(12
10

)
− 3

(7
5

)
+ 3

(2
0

)
. Thus the number of ways to pass out

ten pieces of candy is 66− 3 · 21 + 3 = 6.)

•198. What is the generating function for the number of multisets chosen
from an n-element set so that each element appears at least j times
and less than m times? Write this generating function as a quotient
of polynomials, then as a product of a polynomial and a power series.

Solution:

(xj + xj+1 + · · ·+ xm−1) = xj

m−j−1∑
i=0

xi

n

=

(
xj 1− xm−j

1− x

)n

=

(
xj − xm

1− x

)n

= (xj − xm)n
∞∑
i=0

(
n + i− 1

i

)
xi.

199. Recall that a tree is determined by its edge set. Suppose you have a
tree on n vertices, say with vertex set [n]. We can use xi as the picture
of vertex i and xixj as the picture of the edge xixj . Then one possible
picture of the tree T is the product P (T ) =

∏
{i,j}:i and jare adjacent xixj .

(a) Explain why the picture of a tree is also
∏n

i=1 x
deg(i)
i .

Solution: Because the number of times xi appears in an edge
is its degree. This number is also the number of times xi appears
in the picture.
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(b) Write down the picture enumerators for trees on two, three, and
four vertices. Factor them as completely as possible.
Solution: x1x2, x1x2x3(x1 + x2 + x3), and x1x2x3x4(x1 + x2 +
x3 + x4)2. We now explain the third answer. A tree on four
vertices either has a vertex of degree three, or it doesn’t. If vertex
i has degree three, then the picture of the tree is x1x2x3x4x

2
i . If

the tree has no vertex of degree 3, it has two vertices of degree 2.
If i and j are the vertices of degree 2, then the picture of the tree is
x1x1x3x4xixj . Adding up all these pictures gives x1x2x3x4(x1 +
x2 + x3 + x4)2.

(c) Explain why x1x2 · · ·xn is a factor of the picture of a tree on n
vertices.
Solution: Every vertex is in at least one edge, because other-
wise the tree would not be connected.

(d) Write down the picture of a tree on five vertices with one vertex of
degree four, say vertex i. If a tree on five vertices has a vertex of
degree three, what are the possible degrees of the other vertices.
What can you say about the picture of a tree with a vertex of
degree three? If a tree on five vertices has no vertices of degree
three or four, how many vertices of degree two does it have?
What can you say about its picture? Write down the picture
enumerator for trees on five vertices.
Solution: If we have one vertex of degree four, the rest have
degree one. So our picture is x1x2x3x4x5x

3
i . If there is a vertex

of degree three, then one vertex must have degree two and the
rest must have degree 1, because the sum of the degrees must
be 8. Thus the picture must be x1x2x3x4x5x

2
i xj , where i is the

vertex of degree three and j is the vertex of degree two. If it
has no vertices of degree more than 3, then it must have three
vertices of degree two in order for the sum of the degrees to be
eight. Thus its picture is x1x2x3x4x5xixjxk, where i, j, and k
are the vertices of degree two.

(e) Find a (relatively) simple polynomial expression for the picture
enumerator

∑
T :T is a tree on [n] P (T ). Prove it is correct.

Solution: Based on our examples, the enumerator for trees
on [n] must be x1x2 · · ·xn(x1 + x2 + · · · + xn)n−2. When we
factor out x1x2 · · ·xn from the enumerator of trees, the result is
a sum of terms of degree n − 2. (The degree of xi1

1 xi2
2 · · ·xin

n is
i1 + i2 + · · ·+ in.) We want to show this sum of terms of degree
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n− 2 is (x1 + x2 + · · ·+ xn)n−2. So let us analyze this power of
a multinomial. It is a sum of terms of the form xi1xi2 · · ·xin−2

(where xij may equal xik). The factor xi1 is chosen from the first
(x1 +x2 + · · ·+xn) in the product. The factor xi2 is chosen from
the second (x1 + x2 + · · ·+ xn) in the product. The factor xin−2

is chosen from the last (x1 + x2 + · · ·+ xn) in the product. Thus
the product is the sum, over all ordered lists ii, i2, . . . , in−2 of
xi1xi2 · · ·xin−2 . Thus we want to show that each list determines
exactly one tree, and each tree determines exactly one list. But
we did exactly this in Problem 112. We do need just a bit more
than the bijection of Problem 112, though. The list of numbers
we get from a tree determines a monomial in the xs. We need to
know that when we multiply this monomial by x1x2 · · ·xn, we get
the picture of the tree we started with. If the tree is a two vertex
tree this statement is trivial, and if the tree has three vertices,
this is straightforward to prove. Thus we proceed by induction.
We assume that n > 3 and when applied to a tree with the
(n−1)-element vertex set i1, i2, . . . , in−1, the bijection of Problem
112 carries the tree to a sequence whose monomial multiplied by
xi1xi2 · · ·xin−1 is the picture of the tree. Then, given a tree on n
vertices, our bijection has us remove the lowest numbered vertex
of degree one to give a tree on n vertices. Assuming that the
edge removed is xixj , the picture of the tree on n vertices is
xixj times the picture of the resulting tree. But by our inductive
hypothesis, the picture of the n − 1-vertex tree is the picture
provided by the monomial of the list which the bijection gives
us and therefore the monomial that the list gives us for the n-
vertex tree is also the picture of that tree. Therefore, by the
principle of mathematical induction, the monomial given by the
Prüfer bijection is the picture of the tree. Therefore, the picture
enumerator for trees on n vertices is x1x2 · · ·xn(x1 + x2 + · · · +
xn)n−2.

(f) The enumerator for trees by degree sequence is the sum over all
trees of xd1

1 xd2
2 · · ·xdn

n , where di is the degree of vertex i. What
is the enumerator by degree sequence for trees on the vertex set
[n]?

Solution: x1x2 · · ·xn(x1+x2+· · ·+xn)n−2, because the number
of times xi appears in the picture of a tree is the degree of vertex
i.
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(g) Find the number of trees on n vertices and prove your formula
correct.
Solution: nn−2, which we get by substituting 1 for each xi.
This converts the enumerator for trees into the number of trees.

4.2 Generating Functions for Integer Partitions

•200. If we have five identical pennies, five identical nickels, five identical
dimes, and five identical quarters, give the picture enumerator for
the combinations of coins we can form and convert it to a generating
function for the number of ways to make k cents with the coins we
have. Do the same thing assuming we have an unlimited supply of
pennies, nickels, dimes, and quarters.

Solution: (1+P +P 2+P 3+P 4+P 5)(1+N+N2+N3+N4+N5)(1+
D + D2 + D3 + D4 + D5)(1 + Q + Q2 + Q3 + Q4 + Q5). Substituting
x for P , x5 for N , x10 for D and x25 for Q gives us

5∑
i=0

xi
5∑

i=0

x5i
5∑

i=0

x10i
5∑

i=0

x25i =
1− x6

1− x
· 1− x30

1− x5
· 1− x60

1− x10
· 1− x150

1− x25
.

Although we could write this as a polynomial times a product of four
power series, doing so would not significantly increase our understand-
ing, though it would let us make some painful computations of the
number of ways to make a certain number of cents. If we actually
wanted such numbers we would be better off asking a computer al-
gebra package to expand the product of the polynomials on the left.
With unlimited supplies the generating function becomes

1
1− x

· 1
1− x5

· 1
1− x10

· 1
1− x25

.

Again, we could write this as a product of power series, and that would
allow us to compute painfully the number of ways to create a certain
number of cents. If we actually wanted to know the number of ways to
make up 200 cents, say, it would be more sensible to ask a computer
algebra package to extract the coefficient of x200 in the product of the
four quotients.

•201. Recall that a partition of an integer k is a multiset of numbers that
adds to k. In Problem 200 we found the generating function for the
number of partitions of an integer into parts of size 1, 5, 10, and 25.
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When working with generating functions for partitions, it is becom-
ing standard to use q rather than x as the variable in the generating
function. From now on, write your answers to problems involving
generating functions for partitions of an integer in this notation.5

(a) Give the generating function for the number of partitions of an
integer into parts of size one through ten.

Solution:
∏10

i=1
1

1−qi

(b) Give the generating function for the number of partitions of an
integer k into parts of size at most m, where m is fixed but k may
vary. Notice this is the generating function for partitions whose
Young diagram fits into the space between the line x = 0 and the
line x = m in a coordinate plane. (We assume the boxes in the
Young diagram are one unit by one unit.)

Solution:
∏m

i=1
1

1−qi .

•202. In Problem 201b you gave the generating function for the number of
partitions of an integer into parts of size at most m. Explain why this
is also the generating function for partitions of an integer into at most
m parts. Notice that this is the generating function for the number of
partitions whose Young diagram fits into the space between the line
y = 0 and the line y = m.

Solution: Conjugation is a bijection between partitions with largest
part at most m and partitions with at most m parts. Thus the coef-
ficient of qi (the number of partitions of i into parts of size at most
m) in the generating function for the number of partitions of integers
into parts of size at most m will be the coefficient of qi (the number
of partitions of i with at most m parts) in the generating function for
the number of partitions of integers into parts of size at most m. Thus
the two generating functions are the same.

•203. When studying partitions of integers, it is inconvenient to restrict our-
selves to partitions with at most m parts or partitions with maximum
part size m.

5The reason for this change in the notation relates to the subject of finite fields in
abstract algebra, where q is the standard notation for the size of a finite field. While we
will make no use of this connection, it will be easier for you to read more advanced work
if you get used to the different notation.
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(a) Give the generating function for the number of partitions of an
integer into parts of any size. Don’t forget to use q rather than
x as your variable.
Solution: We start with

(1 + q + q2 + · · ·)(1 + q2 + q4 + · · ·) · · · (1 + qi + q2i) · · · ,

which we can write more precisely as
∞∏
i=1

∞∑
j=0

qij .

(b) Find the coefficient of q4 in this generating function.
Solution: From the fifth factor on, there is no way to choose a
qi that has i nonzero and less than five from the factor. Thus we
choose a 1 from each of these factors. We can choose a q4 from
the fourth factor and 1 from the rest, a q3 from the third factor,
a q from the first and a 1 from the rest, a q2 from the second
factor, a q2 from the first and a 1 from the rest, or we can choose
a q4 from the first factor and a 1 from the rest. Therefore the
coefficient of q5 is five.

(c) Find the coefficient of q5 in this generating function.
Solution: From the sixth factor of the product on, there is no
way to choose a qi that has i nonzero and less than six from the
factor, so when we compute the coefficient of q5, we can only
choose the 1 from each of these terms. In the first five factors, we
choose any combination of powers that adds to 5. We can choose
q5 from the fifth and 1 from the rest, q from the first, q4 from
the second and 1 from the rest, q2 from the second, q3 from the
third and 1 from the rest, q2 from the first and q3 from the third
and 1 from the rest, q3 from the first, q2 from the second, and 1
from the rest q5 from the first and 1 from the rest, and these are
the only ways to get a q5 in the product. Thus the coefficient of
q5 is 7.

(d) This generating function involves an infinite product. Describe
the process you would use to expand this product into as many
terms of a power series as you choose.
Solution: To get the coefficient of qk in this product, we look
at all ways of choosing one summand from each of the infinite
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series and multiplying them together to get qk, and add all these
products up. That is, the coefficient of qk is the number of ways
of making these choices of one summand from each series so that
the product of our choices is qk. This lets us write down as many
terms of the series as we want, or as we have patience for!

(e) Rewrite any power series that appear in your product as quotients
of polynomials or as integers divided by polynomials.

Solution: We can rewrite the infinite product as
∞∏
i=0

1
1− qi

.

204. In Problem 203b, we multiplied together infinitely many power series.
Here are two notations for infinite products that look rather similar:

∞∏
i=1

1 + q + q2 + · · ·+ qi and
∞∏
i=1

1 + qi + q2i + · · ·+ qi2 .

However, one makes sense and one doesn’t. Figure out which one
makes sense and explain why it makes sense and the other one doesn’t.
If we want to make sense of a product of the form

∞∏
i=1

1 + pi(q),

where each pi(q) is a nonzero polynomial in q, describe a relatively
simple assumption about the polynomials pi(q) that will make the
product make sense. If we assumed the terms pi(q) were nonzero
power series, is there a relatively simple assumption we could make
about them in order to make the product make sense? (Describe such
a condition or explain why you think there couldn’t be one.)

Solution:
∏∞

i=1 1 + qi + q2i + · · ·+ qi2 makes sense because when we
look for ways of choosing one summand from each factor so that the
summands multiply together to give us qk, we will find only finitely
many ways of making those choices, so the coefficient of qk can be
taken to be the number of such choices. On the other hand, in the
expression

∏∞
i=1(1 + q + q2 + · · ·+ qi), there are infinitely many ways

to choose q from one term and 1 from all the rest of the terms so that
the product of these summands is q. Thus we can’t even specify what
the coefficient of q is in the product. On the basis of this analysis,
we see that for

∏∞
i=1 1 + pi(q) to make sense, we need to assume that

for each possible positive integer n, there are only a finite number of
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polynomials pi whose lowest degree term has degree less than or equal
to n. In that way, for each positive integer, there will be only finitely
many ways to chose a summand from each factor so that the product
of the summands is a multiple of qk. The same assumption works
when the pi are power series, for the same reason.

•205. What is the generating function (using q for the variable) for the num-
ber of partitions of an integer in which each part is even?

Solution: (1 + q2 + q4 + · · ·)(1 + q4 + q8 + · · ·)(1 + q6 + q12 + · · ·) · · ·,

which can be written more concisely as
∞∏
i=1

∞∑
j=0

q2ij .

•206. What is the generating function (using q as the variable) for the num-
ber of partitions of an integer into distinct parts, that is, in which each
part is used at most once?

Solution: (1 + q)(1 + q2)(1 + q3) · · · =
∞∏
i=1

(1 + qi).

•207. Use generating functions to explain why the number of partitions of
an integer in which each part is used an even number of times equals
the generating function for the number of partitions of an integer in
which each part is even. How does this compare to Problem 166?

Solution: In the generating function
∞∏
i=1

∞∑
j=0

q2ij , we may interpret

the 2ij in q2ji the value of using 2i as a part j times or as the value
of using i as a part 2j times. Therefore this is the generating function
both for the number of partitions of integers into parts that are even
and the number of partitions into parts that are used an even number
of times. Therefore the number of partitions of n in which each part
is even equals the number of partitions of n in which each part is used
an even number of times. In Problem 166 we got the same result
bijectively.

•208. Use the fact that
1− q2i

1− qi
= 1 + qi

and the generating function for the number of partitions of an integer
into distinct parts to show how the number of partitions of an integer
k into distinct parts is related to the number of partitions of an integer
k into odd parts.
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Solution:
∞∏
i=1

1 + qi =
n∏

i=1

1− q2i

1− qi
=
∏∞

i=1 1− q2i∏∞
j=1 1− qj

=
∞∏
i=j

1
1− q2j−1

,

because all the terms in the numerator cancel with alternate terms in
the denominator leaving only terms with odd powers of q. But

∞∏
j=1

1
1− q2j−1

=
∞∏

j=1

∞∑
i=0

(q2j−1)i

= (1 + q + q2·1 + · · ·)(1 + q3 + q2·3 + · · ·)(1 + q5 + q2·5 + · · ·) · · · ,

which is the generating function for partitions of integers into parts
that are odd numbers.

209. Write down the generating function for the number of ways to parti-
tion an integer into parts of size no more than m, each used an odd
number of times. Write down the generating function for the number
of partitions of an integer into parts of size no more than m, each used
an even number of times. Use these two generating functions to get a
relationship between the two sequences for which you wrote down the
generating functions.

Solution:
m∏

i=1

qi+q3i+q5i+· · · = q1+2+···m
m∏

i=1

1+q2i+q4i+· · · = q(
n+1

2 )
m∏

i=1

1
1− q2

is the generating function for the number of ways to partition an in-
teger into parts of size at most m, each used an odd number of times.

m∏
i=1

1 + q2i + q4i + q6i + · · · =
m∏

i=1

1
1− q2i

is the generating function for the number of partitions of an integer
into parts of size no more than m, each used an even number of times.
Therefore the number of partitions of k into parts of size no more than
m, each used an even number of times is the number of partitions of
k+

(m+1
2

)
, into parts of size no more than m, each used an odd number

of times.

210. In Problem 201b and Problem 202 you gave the generating functions
for, respectively, the number of partitions of k into parts the largest
of which is at most m and for the number of partitions of k into at
most m parts. In this problem we will give the generating function
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for the number of partitions of k into at most n parts, the largest
of which is at most m. That is, we will analyze

∑∞
i=0 akq

k where ak

is the number of partitions of k into at most n parts, the largest of
which is at most m. Geometrically, it is the generating function for
partitions whose Young diagram fits into an m by n rectangle, as in
Problem 168. This generating function has significant analogs to the
binomial coefficient

(m+n
n

)
, and so it is denoted by

[
m+n

n

]
q
. It is called

a q-binomial coefficient.

(a) Compute
[

4
2

]
q

=
[

2+2
2

]
q
.

Solution: A partition with up to two parts of size up to two
can have no parts, one part of size 1, which makes it a partition of
1, one part of size 2 which makes it a partition of 2, two parts of
size 1, which makes it a partition of 2, a part of size 2 and a part
of size 1, which makes it a partition of 3, or two parts of size 2,
which makes it a partition of 4. Thus

[
4
2

]
q

= 1+q+2q2+q3+q4.

(b) Find explicit formulas for
[n

1

]
q

and
[

n
n−1

]
q
.

Solution: Both are 1 + q + q2 + · · · + qn−1 = 1−qn−1

1−q , because
they are the generating function for the number of partitions
whose Young diagram fits into a rectangle n − 1 units wide and
1 unit deep or into a rectangle 1 unit wide and n− 1 units deep
respectively.

(c) How are
[

m+n
n

]
q

and
[

m+n
m

]
q

related? Prove it. (Note this is the

same as asking how
[ r

s

]
q

and
[

r
r−s

]
q

are related.)

Solution: By conjugation,
[

m+n
n

]
q

=
[

m+n
m

]
q
.

(d) So far the analogy to
(m+n

n

)
is rather thin! If we had a recurrence

like the Pascal recurrence, that would demonstrate a real analogy.
Is
[

m+n
n

]
q

=
[

m+n−1
n−1

]
q
+
[

m+n−1
n

]
q
?

Solution: No.
[

4
2

]
q

= 1+q+2q2+q3+q4, but
[

3
1

]
q

= 1+q+q2

and
[

3
2

]
q

= 1 + q + q2.

(e) Recall the two operations we studied in Problem 171.

i. The largest part of a partition counted by
[

m+n
n

]
q

is either

m or is less than or equal to m − 1. In the second case, the
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partition fits into a rectangle that is at most m−1 units wide
and at most n units deep. What is the generating function
for partitions of this type? In the first case, what kind of
rectangle does the partition we get by removing the largest
part sit in? What is the generating function for partitions
that sit in this kind of rectangle? What is the generating
function for partitions that sit in this kind of rectangle after
we remove a largest part of size m? What recurrence relation
does this give you?
Solution: The generating function for partitions that arise
in the second case is

[
m+n−1

m−1

]
q

=
[

m+n−1
n

]
q
. In the first

case, after we delete the largest part, the Young diagram sits
in a rectangle of width m and depth n − 1. The generating
function for partitions that arise in the first case after we have
deleted a part of size m is

[
m+n−1

n−1

]
q
. Thus the generating

function for partitions that arise in the first case (before we
delete the part of size m) is qm

[
m+n−1

n−1

]
q
. Thus by the sum

principle the generating function for all partitions that fit
into a rectangle of width m and depth n is given by[

m + n

n

]
q

= qm
[
m + n− 1

n− 1

]
q
+
[
m + n− 1

n

]
q
.

If you don’t use the symmetry
[

m+n−1
m−1

]
q

=
[

m+n−1
n

]
q
, you

get [
m + n

n

]
q

= qm
[
m + n− 1

n− 1

]
q
+
[
m + n− 1

m− 1

]
q
.

While this doesn’t quite look like the Pascal recurrence, it is
still a correct answer.

ii. What recurrence do you get from the other operation we
studied in Problem 171?
Solution: We either have exactly k parts or fewer than k
parts. In the first case, removing one from each part gives
us a partition whose Young diagram fits into a m − 1 by
n box, while in the second case doing nothing gives us a
partition that fits into a m by n − 1 box. In the first case
the partition we get partitions k − n, and in the second case
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it still partitions k. Thus we get[
m + n

n

]
q

= qn
[
m + n− 1

n

]
q
+
[
m + n− 1

n− 1

]
q
.

iii. It is quite likely that the two recurrences you got are different.
One would expect that they might give different values for[

m+n
n

]
q
. Can you resolve this potential conflict?

Solution: Yes, by conjugation.
(f) Define [n]q to be 1+q+ · · ·+qn−1 for n > 0 and [0]q = 1. We read

this simply as n-sub-q. Define [n]!q to be [n]q[n−1]q · · · [3]q[2]q[1]q.
We read this as n cue-torial, and refer to it as a q-ary factorial.
Show that [

m + n

n

]
q

=
[m + n]!q
[m]!q[n]!q

.

Solution: Note that
[n

0

]
q

=
[n

n

]
q

= 1, because only the par-
tition with no parts sits in a rectangle of width or depth 0. But
[m+0]!q
[m]!q [0]!q

= 1 and [0+n]!q
[0]!q [n]!q

= 1. Thus the formula holds when
m = 0 or n = 0. But

qm [m + n− 1]!q
[n− 1]!q[m]!q

+
[m + n− 1]!q
[n]!q[m− 1]!q

= [m + n− 1]!q

(
qm

[n− 1]!q[m]!q
+

1
[n]!q[m− 1]!q

)

[m + n− 1]!q

(
[n]qqm

[n]!q[m]q
+

[m]q
[n]!q[m]!q

)

=
[m + n− 1]!q

[n]!q[m]!q

(
(1 + q + · · ·+ qn−1)qm + 1 + q + · · ·+ qm−1

)
=

[m + n− 1]!q[m + n]q
[n]!q[m]!q

=
[
m + n

n

]
q
.

Thus [m+n]!q
[m]!q [n]!q

satisfies our recurrence and so by the principle of

mathematical induction,
[

m+n
n

]
q

= [m+n]!q
[m]!q [n]!q

.

(g) Now think of q as a variable that we will let approach 1. Find an
explicit formula for
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i. lim
q→1

[n]q.

Solution: n

ii. lim
q→1

[n]!q.

Solution: n!

iii. lim
q→1

[
m + n

n

]
q
.

Solution:
(m+n

n

)
Why is the limit in Part iii equal to the number of partitions (of
any number) with at most n parts all of size most m? Can you
explain bijectively why this quantity equals the formula you got?
Solution: Since the generating function is a finite sum (we are
talking about partitions whose Young diagram fits into a finite
rectangle), the limit is obtained by setting q = 1, and this sums
the number of partitions of each possible number k that have at
most n parts all of size at most m. We want a bijection between
such partitions and the n element subsets of an m+n element set.
Recall that there is a bijection between subsets of an n element
set and lattice paths from (0, 0) to (m,n) in a coordinate plane. If
we draw our rectangle of width m and depth n with its lower left
corner at (0, 0), then each Young diagram gives us such a lattice
path and each such lattice path gives us a Young diagram.

∗(h) What happens to
[

m+n
n

]
q

if we let q approach -1?

Solution:
[

m+n
n

]
q

is the generating function for the number

of partitions whose Young diagram fits into an m by n rectangle.
That is, [

m + n

n

]
q

=
∞∑

k=0

akq
k,

where ak is the number of partitions of k whose Young diagram
fits into an m by n rectangle. In particular, ak = 0 if k > mn,
because the Young diagram of a partition of a number larger than
mn certainly cannot fit into an m by n rectangle. Thus[

m + n

n

]
q

=
mn∑
k=0

akq
k.

Furthermore, ak = amn−k, because the complement in an m by n
rectangle of a partition of k is a partition of mn−k, and comple-
mentation in an m by n rectangle is a bijection between partitions
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of k that fit into the rectangle and partitions of mn − k that fit
into the rectangle. Thus

[
m+n

n

]
q

is a polynomial of degree mn

in which the coefficient of qk equals the coefficient of qmn−k. For
this reason we can compute the limit as q approaches −1 simply
by substituting −1 for q in the polynomial; the only trouble is
that the formula we know for

[
m+n

n

]
q

is a quotient of polynomials

that has zero in both the numerator and denominator when we
substitute in q = −1. Nonetheless, when we substitute −1 for q
we get the alternating sum

∑mn
i=0(−1)iai. Thus if ai and amn−i

have opposite sign, they will cancel out. If mn is even, i is even
exactly when mn− i is even, and so ai and amn−i have the same
sign. However, when mn is odd, ai and amn−i have opposite
signs in the sum

∑mn
i=0(−1)iai, and so the sum is zero. Thus the

polynomial
[

m+n
n

]
q

is zero at q = −1 whenever mn is odd.

Our experience with binomial coefficients might lead us to hope
that the alternating sum of the coefficients ak will always be zero.
However, we computed that

[
4
2

]
q

= 1 + q + 2q2 + q3 + q4, so

lim
q→−1

[
4
2

]
q

= 1− 1 + 2− 1 + 1 = 1.

We could compute some more values of the limit by going back
to the definition in this way, but it seems unlikely that we could
get enough data to make a good conjecture. However, we have
the recurrence, and setting q = −1 in the recurrence gives us the
table
m + n\n 0 1 2 3 4 5 6 7 8 9

0 1 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0
2 1 0 1 0 0 0 0 0 0 0
3 1 1 1 1 0 0 0 0 0 0
4 1 0 2 0 1 0 0 0 0 0
5 1 1 2 2 1 1 0 0 0 0
6 1 0 3 0 3 0 1 0 0 0
7 1 1 3 3 3 3 1 1 0 0
8 1 0 4 0 6 0 4 0 1 0
9 1 1 4 4 6 6 4 4 1 1

From the table, it is clear that we get binomial coefficients in-
terspersed with 0s in the even numbered rows of our table and
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repeated binomial coefficients in the odd numbered rows of our
table. In particular when m+n and n are both even,

[
m+n

n

]
−1

=((m+n)/2
n/2

)
, and if m + n is even and n is odd,

[
m+n

n

]
−1

= 0.
In our table, at least, if m + n is odd, it appears that we get[

m+n
n

]
−1

=
(b(m+n)/2c

bn/2c
)
. In fact, using the recurrence just as we

used it to construct the table, we can prove by induction that[
m + n

n

]
−1

=

{
0 if mn is odd(b(m+n)/2c

bn/2c
)

otherwise.

(Note that mn is odd if and only if m + n is even and n is odd.)
Wouldn’t it be fascinating to know what we are counting here?
It is the number of lattice paths from (0, 0) to (n − k, k) that
are symmetric under 180 degree rotation. This and other results
are discussed in the paper by John R. Stembridge “Some hidden
relations involving the ten symmetry classes of plane partitions.”
J. Combin. Theory Ser. A 68 (1994), no. 2, 372–409.

4.3 Generating Functions and Recurrence Rela-
tions

Recall that a recurrence relation for a sequence an expresses an in terms of
values ai for i < n. For example, the equation ai = 3ai−1 +2i is a first order
linear constant coefficient recurrence.

4.3.1 How generating functions are relevant

Algebraic manipulations with generating functions can sometimes reveal the
solutions to a recurrence relation.

211. Suppose that ai = 3ai−1 + 3i.

•(a) Multiply both sides by xi and sum both the left hand side and
right hand side from i = 1 to infinity. In the left-hand side use
the fact that ∞∑

i=1

aix
i = (

∞∑
i=0

aix
i)− a0

and in the right hand side, use the fact that
∞∑
i=1

ai−1x
i = x

∞∑
i=1

ai−1x
i−1 = x

∞∑
j=0

ajx
j = x

∞∑
i=0

aix
i
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(where we substituted j for i− 1 to see explicitly how to change
the limits of summation, a surprisingly useful trick) to rewrite
the equation in terms of the power series

∑∞
i=0 aix

i. Solve the
resulting equation for the power series

∑∞
i=0 aix

i. You can save
a lot of writing by using a variable like y to stand for the power
series.
Solution:

∞∑
i=1

aix
i = 3

∞∑
i=1

ai−1x
i +

i∑
i=1

3ixi

∞∑
i=1

aix
i = 3x

∞∑
i=1

ai−1x
i−1 +

∞∑
i=0

3ixi − 30x0

∞∑
i=0

aix
i − a0 = 3x

∞∑
i=0

aix
i +

1
1− 3x

− 1

(1− 3x)
∞∑
i=0

aix
i = a0 +

1
1− 3x

− 1

∞∑
i=0

aix
i =

a0 − 1
1− 3x

+
1

(1− 3x)2

•(b) Use the previous part to get a formula for ai in terms of a0.
Solution:

∞∑
i=0

aix
i =

a0 − 1
1− 3x

+
1

(1− 3x)2

= (a0 − 1)
∞∑
i=0

3ixi +
∞∑
i=0

(
i + 1

i

)
3ixi,

which gives us ai = (a0 − 1)3i + (i + 1)3i = (a0 + i)3i.

(c) Now suppose that ai = 3ai−1 +2i. Repeat the previous two steps
for this recurrence relation. (There is a way to do this part using
what you already know. Later on we shall introduce yet another
way to deal with the kind of generating function that arises here.)
Solution:

∞∑
i=1

aix
i = 3

∞∑
i=1

ai−1x
i +

∞∑
i=1

2ixi
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∞∑
i=0

aix
i − a0 = 3x

∞∑
i=1

ai−1x
i−1 +

∞∑
i=0

(2x)i − 1

∞∑
i=0

aix
i − a0 = 3x

∞∑
i=0

aix
i +

1
1− 2x

− 1

(1− 3x)
∞∑
i=0

aix
i = a0 +

1
1− 2x

− 1

∞∑
i=0

aix
i =

a0 − 1
1− 3x

+
1

(1− 2x)(1− 3x)
∞∑
i=0

aix
i = (a0 − 1)

∞∑
i=0

3ixi +
∞∑
i=0

2ixi
∞∑

j=0

3jxj .

But
∞∑
i=0

2ixi
∞∑

j=0

3jxj =
∞∑

k=0

k∑
i=0

2i3k−ixk =
∞∑

k=0

3kxk
k∑

i=0

2i

3i
=

∞∑
k=0

1−
(

2
3

)k+1

1− 2
3

3kxk =
∞∑

k=0

(3k+1−2k+1)xk. Substituting this into

the equation for
∑∞

i=0 aix
i gives us ai = (a0 + 2)3i − 2i+1.

◦212. Suppose we deposit $5000 in a savings certificate that pays ten per-
cent interest and also participate in a program to add $1000 to the
certificate at the end of each year (from the end of the first year on)
that follows (also subject to interest). Assuming we make the $5000
deposit at the end of year 0, and letting ai be the amount of money in
the account at the end of year i, write a recurrence for the amount of
money the certificate is worth at the end of year n. Solve this recur-
rence. How much money do we have in the account (after our year-end
deposit) at the end of ten years? At the end of 20 years?

Solution: an = 1.1an−1 + 1000, and a0 = 5000.

∞∑
i=1

aix
i = 1.1x

∞∑
i=1

ai−1x
i−1 + 1000

∞∑
i=1

xi

∞∑
i=0

aix
i − a0 = 1.1x

∞∑
i=0

aix
i + 1000(

∞∑
i=0

xi − 1)

(1− 1.1x)
∞∑
i=0

aix
i = a0 + 1000

∞∑
i=0

xi − 1000
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∞∑
i=0

aix
i = a0

∞∑
i=0

(1.1)ixi + 1000
∞∑
i=0

(1.1)ixi
∞∑
i=0

xi − 1000
∞∑
i=0

(1.1)ixi

∞∑
i=0

aix
i = a0

∞∑
i=0

(1.1)ixi + 1000
∞∑

k=0

(
k∑

i=0

(1.1)i

)
xk − 1000

∞∑
i=0

(1.1)ixi

This gives us that an = 4000(1.1)n + 10001−(1.1)n+1

−.1 . This simplifies
to an = 4000(1.1)n + 10000(1.1)n+1 − 10000 = 15, 000(1.1)n − 10000.
Courtesy of Maple, after ten years we have $28,906.14 and after 20
years we have $90,912.50.

4.3.2 Fibonacci Numbers

The sequence of problems that follows describes a number of hypotheses we
might make about a fictional population of rabbits. We use the example of
a rabbit population for historic reasons; our goal is a classical sequence of
numbers called Fibonacci numbers. When Fibonacci6 introduced them, he
did so with a fictional population of rabbits.

4.3.3 Second order linear recurrence relations

•213. Suppose we start (at the end of month 0) with 10 pairs of baby rab-
bits, and that after baby rabbits mature for one month they begin to
reproduce, with each mature pair producing two new pairs at the end
of each month afterwards. Suppose further that over the time we ob-
serve the rabbits, none die. Let an be the number pairs of rabbits we
have at the end of month n. Show that an = an−1 +2an−2. This is an
example of a second order linear recurrence with constant coefficients.
Using a method similar to that of Problem 211, show that

∞∑
i=0

aix
i =

10
1− x− 2x2

.

This gives us the generating function for the sequence ai giving the
population in month i; shortly we shall see a method for converting
this to a solution to the recurrence.

Solution:
∞∑

n=2

anxn =
∞∑

n=2

an−1x
n + 2

∞∑
n=2

an−2x
n

6Apparently Leonardo de Pisa was given the name Fibonacci posthumously. It is a
shortening of “son of Bonacci” in Italian.
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∞∑
n=0

anxn − a0 − a1x = x
∞∑

n=2

an−1x
n−1 + 2x2

∞∑
n=2

an−2x
n−2

∞∑
n=0

anxn − a0 − a1x = x
∞∑

n=1

anxn + 2x2
∞∑

n=0

anxn

∞∑
n=0

anxn − a0 − a1x = x

( ∞∑
n=0

anxn − a0

)
+ 2x2

∞∑
n=0

anxn

(1− x− 2x2)
∞∑

n=0

anxn = a0 + a1x− a0x

∞∑
n=0

anxn =
a0 + a1x− a0x

(1− x− 2x2)

In this problem a0 = a1 = 10 because we start with ten pairs of
baby rabbits, so they have to mature for a month before they begin

reproducing. Thus
∞∑

n=0

anxn =
10

(1− x− 2x2)

•214. In Fibonacci’s original problem, each pair of mature rabbits produces
one new pair at the end of each month, but otherwise the situation is
the same as in Problem 213. Assuming that we start with one pair of
baby rabbits (at the end of month 0), find the generating function for
the number of pairs of rabbits we have at the end of n months.

Solution: Our recurrence becomes an = an−1 + an−2, and following
the pattern of Problem 213 we get

∞∑
n=2

anxn =
∞∑

n=2

an−1x
n +

∞∑
n=2

an−2x
n

∞∑
n=0

anxn − a0 − a1x = x

( ∞∑
n=0

anxn − a0

)
+ x2

∞∑
n=0

anxn

(1− x− x2)
∞∑

n=0

anxn = a0 + a1x− a0x

∞∑
n=0

anxn =
a0 + a1x− a0x

(1− x− x2)

Since now a0 = a1 = 1, we have
∞∑

n=0

anxn =
1

1− x− x2
.
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215. Find the generating function for the solutions to the recurrence

ai = 5ai−1 − 6ai−2 + 2i.

Solution:

∞∑
i=2

aix
i =

∞∑
i=2

5ai−1x
i −

∞∑
i=2

6ai−2x
i +

∞∑
i=2

2ixi

∞∑
i=0

aix
i − a0 − a1x = 5x

( ∞∑
i=0

aix
i − a0

)
− 6x2

∞∑
i=0

aix
i +

∞∑
n=0

2ixi − 1− 2x

(1− 5x + 6x2)
∞∑
i=0

aix
i = a0 − 1 + (a1 − 5a0 − 2)x +

∞∑
n=0

2ixi

∞∑
i=0

aix
i =

a0 − 1 + (a1 − 5a0 − 2)x
1− 5x + 6x2

+
1

1− 5x + 6x2
· 1
1− 2x

The recurrence relations we have seen in this section are called second
order because they specify ai in terms of ai−1 and ai−2, they are called linear
because ai−1 and ai−2 each appear to the first power, and they are called
constant coefficient recurrences because the coefficients in front of ai−1 and
ai−2 are constants.

4.3.4 Partial fractions

The generating functions you found in the previous section all can be ex-
pressed in terms of the reciprocal of a quadratic polynomial. However,
without a power series representation, the generating function doesn’t tell
us what the sequence is. It turns out that whenever you can factor a polyno-
mial into linear factors (and over the complex numbers such a factorization
always exists) you can use that factorization to express the reciprocal in
terms of power series.

•216. Express 1
x−3 + 2

x−2 as a single fraction.

Solution: x−2+2(x−3)
(x−3)(x−2) = 3x−8

x2−5x+6

◦217. In Problem 216 you see that when we added numerical multiples of
the reciprocals of first degree polynomials we got a fraction in which
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the denominator is a quadratic polynomial. This will always happen
unless the two denominators are multiples of each other, because their
least common multiple will simply be their product, a quadratic poly-
nomial. This leads us to ask whether a fraction whose denominator is
a quadratic polynomial can always be expressed as a sum of fractions
whose denominators are first degree polynomials. Find numbers c and
d so that

5x + 1
(x− 3)(x + 5)

=
c

x− 3
+

d

x + 5
.

Solution:

5x + 1
(x− 3)(x + 5)

=
c

x− 3
+

d

x + 5
5x + 1

(x− 3)(x− 5)
=

cx + 5c + dx− 3d

(x− 3)(x− 5)

gives us

5x = cx + dx

1 = 5c− 3d

5 = c + d

1 = 5c− 3d.

This gives us 16 = 8c so that c = 2 and then d = 3.

•218. In Problem 217 you may have simply guessed at values of c and d,
or you may have solved a system of equations in the two unknowns c
and d. Given constants a, b, r1, and r2 (with r1 6= r2), write down a
system of equations we can solve for c and d to write

ax + b

(x− r1)(x− r2)
=

c

x− r1
+

d

x− r2
.

Solution: To have

ax + b

(x− r1)(x− r2)
=

c

x− r1
+

d

x− r2

we must have
cx− r2c + dx− r1d = ax + b.
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This gives us the equations cx + dx = ax and −r2c− r1d = b. Since x
can be any value, in particular it can be nonzero, so we can divide by
it. This gives us the equations c + d = a and r2c + r1d = −b.

Writing down the equations in Problem 218 and solving them is called the
method of partial fractions. This method will let you find power series ex-
pansions for generating functions of the type you found in Problems 213 to
215. However, you have to be able to factor the quadratic polynomials that
are in the denominators of your generating functions.

•219. Use the method of partial fractions to convert the generating function
of Problem 213 into the form

c

x− r1
+

d

x− r2
.

Use this to find a formula for an.

Solution: 10
(1−x−2x2)

= 10
(1−2x)(1+x) = c

1−2x + d
1+x . This gives us the

equations c + d = 10 and c − 2d = 0. Thus 3d = 10, so d = 10
3 , and

c = 2d so c = 20
3 . Thus

∞∑
i=0

aix
i =

10
1− x− 2x2

=
20/3

1− 2x
+

10/3
1 + x

=
20
3

∞∑
i=0

(2x)i +
10
3

∞∑
i=0

(−1)ixi

Thus ai = 20
3 2i + 10

3 (−1)i.

•220. Use the quadratic formula to find the solutions to x2 + x− 1 = 0, and
use that information to factor x2 + x− 1.

Solution: r1 = −1+
√

5
2 , r2 = −1−

√
5

2 . These roots give us the equa-
tion x2 + x− 1 = (x− −1+

√
5

2 )(x− −1−
√

5
2 ).

•221. Use the factors you found in Problem 220 to write

1
x2 + x− 1

in the form
c

x− r1
+

d

x− r2
.
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(Hint: You can save yourself a tremendous amount of frustrating al-
gebra if you arbitrarily choose one of the solutions and call it r1 and
call the other solution r2 and solve the problem using these algebraic
symbols in place of the actual roots.7 Not only will you save yourself
some work, but you will get a formula you could use in other problems.
When you are done, substitute in the actual values of the solutions and
simplify.)

Solution: 1
x2+x−1

= c
x−r1

+ d
x−r2

gives us cx − cr2 + dx − dr1 = 1.
Thus c + d = 0, and cr2 + dr1 = −1. This gives us d = −c and so
cr2−cr1 = −1, which yields c = 1

r1−r2
, and d = 1

r2−r1
. By substitution,

c = 1/
√

5 and d = −1/
√

5. This gives us

1
x2 + x− 1

=
1/
√

5

x− −1+
√

5
2

+
−1/

√
5

x− −1−
√

5
2

.

•222. (a) Use the partial fractions decomposition you found in Problem 220
to write the generating function you found in Problem 214 in the
form

∞∑
n=0

anxi

and use this to give an explicit formula for an. (Hint: once again
it will save a lot of tedious algebra if you use the symbols r1 and
r2 for the solutions as in Problem 221 and substitute the actual
values of the solutions once you have a formula for an in terms
of r1 and r2.)

∞∑
n=0

anxn =
1

1− x− x2
= − 1

x2 + x− 1

=
1√
5
· 1
r1 − x

− 1√
5
· 1
r2 − x

=
1

r1

√
5
· 1
1− x/r1

− 1
r2

√
5
· 1
1− x/r2

=
1

r1

√
5

∞∑
n=0

(
x

r1

)n

− 1
r2

√
5

∞∑
n=0

(
x

r2

)n

7We use the words roots and solutions interchangeably.
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This gives us that

an =
1√

5 · rn+1
1

+
1√

5 · rn+1
2

=
2n+1

√
5(−1 +

√
5)n+1

+
2n+1

√
5(−1−

√
5)n+1

=
2n+1(1 +

√
5)n+1

√
5 · 4n+1

− 2n+1(1−
√

5)n+1

√
5 · 4n+1

=
1√
5

(
1 +

√
5

2

)n+1

− 1√
5

(
1−

√
5

2

)n+1

.

(b) When we have a0 = 1 and a1 = 1, i.e. when we start with one pair
of baby rabbits, the numbers an are called Fibonacci Numbers.
Use either the recurrence or your final formula to find a2 through
a8. Are you amazed that your general formula produces integers,
or for that matter produces rational numbers? Why does the
recurrence equation tell you that the Fibonacci numbers are all
integers?

Solution: Using the recurrence, the Fibonacci numbers from
a0 to a8 are 1, 1, 2, 3, 5, 8, 13, 21, 34. The recurrence says each
term is the sum of the two preceding terms, and since the first
two terms are integers, all the sums must be integers.

(c) Explain why there is a real number b such that, for large values of
n, the value of the nth Fibonacci number is almost exactly (but
not quite) some constant times bn. (Find b and the constant.)

Solution: Since
∣∣∣1−√5

2

∣∣∣ < 1, 1√
5

(
1−

√
5

2

)n−1
approaches 0 as n

becomes large. Therefore if we take b to be
(

1+
√

5
2

)n
and we take

c to be 1+
√

5
2
√

5
then then nth Fibonacci number is almost exactly

cbn when n is large. In particular, it is the nearest integer to
cbn.

(d) Find an algebraic explanation (not using the recurrence equation)
of what happens to make the square roots of five go away in the
general formula for the Fibonacci numbers. Explain why there
is a real number b such that, for large values of n, the value of
the nth Fibonacci number is almost exactly (but not quite) some
constant times bn. (Find b and the constant.)
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Solution: From the binomial theorem,

1√
5

(
1 +

√
5

2

)n+1

− 1√
5

(
1−

√
5

2

)n+1

=
1

2n+1
√

5

[
n+1∑
i=0

(
n + 1

i

)(√
5
)i
−

n+1∑
i=0

(
n + 1

i

)
(−1)i

(√
5
)i
]

=
1

2n+1
√

5

∑
i:i∈[n+1], i is odd

(
n + 1

i

)((√
5
)i
− (−1)i

(√
5
)i
)

=
1

2n+1
√

5

∑
i:i∈[n+1], i is odd

2

(
n + 1

i

)(√
5
)i

=
1
2n

∑
i:i∈[n+1], i is odd

(
n + 1

i

)(√
5
)i−1

=
1
2n

∑
i:i∈[n], i is even

(
n + 1
i + 1

)
5i/2

=
1
2n

bn/2c∑
k=0

(
n + 1
2k + 1

)
5k,

which makes it clear that an is at least a rational number. It
is not clear from this new formula why the result is always an
integer.

∗(e) As a challenge (which the author has not yet done), see if you
can find a way to show algebraically (not using the recurrence
relation, but rather the formula you get by removing the square
roots of five) that the formula for the Fibonacci numbers yields
integers.
Solution: None is yet available.

223. Solve the recurrence an = 4an−1 − 4an−2.

Solution:

∞∑
n=2

anxn = 4
∞∑

n=2

an−1x
n − 4

∞∑
n=2

an−2x
n

∞∑
n=0

anxn − a0 − a1x = 4x(
∞∑

n=0

anxn − a0)− 4x2
∞∑

n=0

anxn
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(1− 4x + 4x2)
∞∑

n=0

anxn = a0 + a1x− 4a0x

∞∑
n=0

anxn =
a0 + a1x− 4a0x

(1− 4x + 4x2)
∞∑

n=0

anxn =
a0 + a1x− 4a0x

(1− 2x)2

∞∑
n=0

anxn = (a0 + a1x− 4a0x)
∞∑

n=0

(
n + 2− 1

n

)
2nxn

∞∑
n=0

anxn = (a0 + a1x− 4a0x)
∞∑

n=0

(n + 1)2nxn

Thus an = a0(n + 1)2n + (a1 − 4a0)n2n−1 = a02n + (a1 − 2a0)n2n−1.

4.3.5 Catalan Numbers

224. (a) Using either lattice paths or diagonal lattice paths, explain why
the Catalan Number Cn satisfies the recurrence

Cn =
n∑

i=1

Ci−1Cn−i.

Solution: Recall that a Dyck Path is a diagonal lattice path
that never goes lower than its starting point and a Catalan Path
of length 2n is a Dyck path that goes from (0, 0) to (2n, 0) The
Catalan number Cn is the number of Catalan paths of length
2n. We take C0 = 1. A Catalan path could touch the x-axis
several times before it reaches (2n, 0). Its first touch can be any
point (2i, 0) between (2, 0) and (2n, 0). For the path to touch first
at (2i, 0), the path must start with an upstep and then proceed
as a Dyck path from (1, 1) to (2i − 1, 1). From there it must
take a downstep. But the number of Dyck paths from (1, 1) to
(2i− 1, 1) is the same as the number of Catalan paths from (0, 0)
to (2i− 2, 0). The number of Catalan paths is the number whose
first touch of the x-axis is at x = 2 plus the number whose first
touch is at x = 4,. . . , through the number whose first touch is at
2n. After the first touch at x = 2i, the path then behaves as a
Catalan path from (2i, 0) to (2n, 0). The number of such paths
is Cn−i. By the product principle, the number of Catalan paths
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whose first touch is at x = 2i is Ci−1Cn−i. Then by the sum
principle, the number of Catalan paths of length 1 or more is

Cn =
n∑

i=1

Ci−1Cn−i.

(b) Show that if we use y to stand for the power series
∑∞

i=0 Cnxn,
then we can find y by solving a quadratic equation. (Hint: does
the right hand side of the recurrence remind you of some products
you have worked with?) Find y.
Solution: To solve for Cn, write

∞∑
n=0

Cnxn = 1 +
∞∑

n=1

n∑
i=1

Ci−1Cn−ix
n

∞∑
n=0

Cnxn = 1 + x
∞∑

n=1

n∑
i=1

Ci−1x
i−1Cn−ix

n−i

∞∑
n=0

Cnxn = 1 + x
∞∑
i=1

Ci−1x
i−1

∞∑
j=0

Cjx
j

y = 1 + xy2

This gives us xy2 − y + 1 = 0, and solving for y by the quadratic
formula gives us y = 1±

√
1−4x

2x .
(c) Taylor’s theorem from calculus tells us that the extended binomial

theorem

(1 + x)r =
∞∑
i=0

(
r

i

)
xi

holds for any number real number r, where
(r
i

)
is defined to be

ri

i!
=

r(r − 1) · · · (r − i + 1)
i!

.

Use this and your solution for y (note that of the two possible
values for y that you get from the quadratic formula, only one
gives an actual power series) to get a formula for the Catalan
numbers.
Solution: By the extended binomial theorem,

√
1− 4x = (1−4x)1/2 =

∞∑
i=0

(
1/2
i

)
(−4x)i =

∞∑
i=0

(1/2)i

i!
(−1)i4ixi.
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The first term of this power series is 1, so to get a power series
for y, we must take the negative square root so that the x in the
denominator will cancel out. Thus y = −1

2

∑∞
i=1

(1/2)i

i! (−1)i4ixi.
But (1/2)i = (1

2)(−1
2 )(−3

2 )(−5
2 ) · · · (−2i+3

2 ), so

y = −1
2

∞∑
i=1

1 · 3 · 5 · · · (2i− 3)
i!

(−1)2i−12ixi−1

=
∞∑
i=1

(2i− 2)!
(i− 1)!2ii!

2ixi−1

=
∞∑
i=1

2i− 2!
i!(i− 1)!

xi−1

=
∞∑

j=0

2j!
(j + 1)!j!

xj

giving us Cj = 1
j+1

(2j
j

)
, which is our earlier formula for the Cata-

lan Number Cj .

4.4 Supplementary Problems

1. What is the generating function for the number of ways to pass out
k pieces of candy from an unlimited supply of identical candy to n
children (where n is fixed) so that each child gets between three and
six pieces of candy (inclusive)? Use the fact that

(1 + x + x + x3)(1− x) = 1− x4

to find a formula for the number of ways to pass out the candy.

Solution: (x3 + x4 + x5 + x6)n;

(x3 + x4 + x5 + x6)n = x3n(1 + x + x2 + x3)n

= x3n

(
1− x4

1− x

)n

= x3n
n∑

j=0

(−1)j

(
n

j

)
x4j

∞∑
i=0

(
n + i− 1

i

)
xi

The number of ways to pass out k pieces of candy is the coefficient of
xk in this expression. Thus the answer is zero if k < 3n because of
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the x3n in front. Otherwise the answer is the coefficient of xk−3n in∑n
j=0(−1)j

(n
j

)
x4j ∑∞

i=0

(n+i−1
i

)
xi, which is

∑
i,j:4j+i=k−3n

(−1)j

(
n

j

)(
n + i− 1

i

)
=

b(k−3n)/4c∑
j=0

(−1)j

(
n

j

)(
k − 2n− 4j − 1

n− 1

)
.

◦2. (a) In paying off a mortgage loan with initial amount A, annual in-
terest rate p% (on a monthly basis) with a monthly payment of
m, what recurrence describes the amount owed after n months
of payments in terms of the amount owed after n − 1 months?
Some technical details: You make the first payment after one
month. The amount of interest included in your monthly pay-
ment is .01p/12. This interest rate is applied to the amount you
owed immediately after making your last monthly payment.
Solution: an = (1 + .01p

12 )an−1 −m.
(b) Find a formula for the amount owed after n months.

Solution: From Problem 98 or by applying generating func-
tions we have

an = A(1 +
.01p

12
)n −m

1− (1 + .01p
12 )n

1− (1 + .01p
12 )

=
(

A− 1200m

p

)(
1 +

.01p

12

)n

+
1200m

p

(c) Find a formula for the number of months needed to bring the
amount owed to zero. Another technical point: If you were to
make the standard monthly payment m in the last month, you
might actually end up owing a negative amount of money. There-
fore it is ok if the result of your formula for the number of months
needed gives a non-integer number of months. The bank would
just round up to the next integer and adjust your payment so
your balance comes out to zero.
Solution:

(
A− 1200m

p

) (
1 + .01p

12

)n
+ 1200m

p = 0 gives us the

equation
(
1 + .01p

12

)n
= 1200m

1200m−Ap . Taking logarithms to any base

we choose gives us n log(1+ .01p
12 ) = log 1200m− log(1200m−Ap)

and so n = log 1200m−log(1200m−Ap)

log(1+ .01p
12

)
.
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(d) What should the monthly payment be to pay off the loan over a
period of 30 years?
Solution: 360 = log 1200m−log(1200m−Ap)

log(1+ .01p
12

)
is the equation we need

to solve for m, the monthly payment. We need to chose some base
for the logarithm so we can write its inverse function; suppose we
use logs to the base 10. Then

360 log(1 +
.01p

12
) = log 1200m− log(1200m−Ap)

10360 log(1+ .01p
12

) = 10log 1200m/(1200m−Ap)

(1 +
.01p

12
)360 = 1200m/(1200m−Ap)

(1200m−Ap) (1 +
.01p

12
)360 = 1200m

1200m

(
(1 +

.01p

12
)360 − 1

)
= Ap(1 +

.01p

12
)360

m =
Ap(1 + .01p

12 )360

1200
(
(1 + .01p

12 )360 − 1
)

is our monthly payment.

3. We have said that for nonnegative i and positive n we want to define(−n
i

)
to be

(n+i−1
i

)
. If we want the Pascal recurrence to be valid, how

should we define
(−n
−i

)
when n and i are both positive?

Solution: The number
(n
k

)
is the number in row n and column k

of the Pascal (right) triangle. We have said we want to have
(−n

0

)
=(n+0−1

0

)
, so we want ones everywhere in that column. Now the Pascal

recurrence gives us that
(−n

0

)
=
(−n−1

−1

)
+
(−n−1

0

)
, so that

(−n
−1

)
= 0,

as does
( 0
−1

)
. Applying the Pascal recurrence again gives us

(−n
−1

)
=(−n−1

−2

)
+
(−n−1

−1

)
, so we have

(−n−1
−2

)
= 0 as well. Following this pattern,

we can prove by induction that
(−n
−k

)
is zero whenever k and n are

positive.

4. Find a recurrence relation for the number of ways to divide a convex
n-gon into triangles by means of non-intersecting diagonals. How do
these numbers relate to the Catalan numbers?

Solution: Let dn be the number of ways to divide an n-gon into
triangles by means of nonintersecting diagonals. Take an n-gon and
label its vertices cyclically from 1 to n. Any triangulation must have a
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triangle containing the edge between vertex 1 and vertex n. This edge
is denoted by 1n. The third vertex can be any number between 2 and
n − 1. We consider two cases. First, if the third vertex is 2 or n − 1,
then we have divided our polygon up into a triangle and an (n − 1)-
gon, and any triangulation of that (n− 1)-gon joins with our original
triangle to give us a triangulation of the n-gon. Second, if the third
vertex of our original triangle is vertex i with 3 ≤ i ≤ n − 2 then we
have divided our polygon into the polygon with the i edges 12, 23, . . . ,
(i− 1)i, i1, the polygon with n− i+1 edges ni, i(i+1), . . . , (n− 1)n,
and the original triangle with edges n1, 1i, in. Triangulations of the
first two of these polygons join with the original triangle to give us a
triangulation of the original polygon.

The number of triangulations of the original polygon that we get from
case 1 is 2dn−1. The number of triangulations we get from the sec-
ond case is

∑n−2
i=3 didn−i+1. Thus the total number of triangulations is

2dn−1+dn−2d3+dn−3d4+ · · ·+d3dn−2. If we take d2 = 1, then we may

write dn = dn−1d2+dn−2d3+· · ·+d3dn−2+d2dn−1 =
n−1∑
i=2

didn−i+1. This

is very similar to the recurrence in Problem 224c for the Catalan num-
bers. We could apply the generating function method we used with the
Catalan numbers to find a formula for dn. We could also experiment
with the first few Catalan numbers and the first few “triangulation”
numbers to see if they are related. We have C0 = 1, C1 = 1, C2 = 2,
C3 = C0C2+C1C1+C2C0 = 5, and C4 = C0C3+C1C2+C2C1+C3C0 =
14. We have that d2 = 1, d3 = 1, d4 = 2, d5 = d4d2 + d3d3 + d2d4 = 5,
and d6 = d5d2 + d4d3 + d3d4 + d5d2 = 14. This makes pretty convinc-
ing evidence that di = Ci−2. We have already done a base case (and
more) for an inductive proof. So assume inductively that di = Ci−2

for i < n. Then

dn =
n−1∑
i=2

didn−i+1

=
n−1∑
i=2

Ci−2Cn−i+1−2

=
n−1∑
i=2

Ci−2Cn−i−1

=
n−2∑
k=1

Ck−1Cn−(k+1)−1
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=
n−2∑
k=1

Ck−1C(n−2)−k

= Cn−2

Thus by the principle of mathematical induction, dn = Cn−2 for all
integers n ≥ 2.

5. How does
∑n

k=0

(n−k
k

)
relate to the Fibonacci Numbers?

Solution: We begin by computing a few values of an =
∑n

k=0

(n−k
k

)
.

We have a0 = 1, a1 = 1, a2 = 2, a3 = 1 + 2 = 3, a4 = 1 + 3 + 1 = 5,
a5 = 1 + 4 + 3 = 8 and a6 = 1 + 5 + 6 + 1 = 13. So far the sequence
agrees with the Fibonacci Numbers. Each term of the sequence is the
sum of the two preceding terms, so it makes sense to try to prove that
an = an−1 + an−2. We may write

an−1 + an−2 =
n−1∑
k=0

(
n− 1− k

k

)
+

n−2∑
k=0

(
n− 2− k

k

)

=
n−1∑
k=0

(
n− 1− k

k

)
+

n−1∑
j=1

(
n− 1− j

j − 1

)

= 1 +
n−1∑
k=1

(
n− 1− k

k

)
+

(
n− 1− k

k − 1

)

= 1 +
n−1∑
k=1

(
n− k

k

)
=

n−1∑
k=0

(
n− k

k

)
= an.

Thus the sequence satisfies the same recurrence as the Fibonacci num-
bers and its first two values are the same as the Fibonacci numbers.
This lets us prove by induction that an is the nth Fibonacci number.
More generally, given any second order recurrence, if two sequences
satisfy that recurrence and have the same first two values, then they
are equal.

6. Let m and n be fixed. Express the generating function for the number
of k-element multisets of an n-element set such that no element ap-
pears more than m times as a quotient of two polynomials. Use this
expression to get a formula for the number of k-element multisets of
an n-element set such that no element appears more than m times.

Solution: (1+x+x2+ · · ·+xm)n = (1−xm+1)n

(1−x)n . Expanding this gives

us (1−xm+1)n

(1−x)n =
∑n

i=0(−1)i
(n

i

)
x(m+1)i∑∞

j=0

(n+j−1
j

)
. The coefficient of
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xk in this product is the number of k-element multisets chosen from an
n-element set in which no element appears more than m times. This
coefficient is∑
i,j:(m+1)i+j=k

(−1)i
(n

i

)(n+j−1
j

)
=

b k
m+1

c∑
i=1

(−1)i
(n

i

)(n+k−(m+1)i−1
n−1

)
.

7. One natural but oversimplified model for the growth of a tree is that all
new wood grows from the previous year’s growth and is proportional to
it in amount. To be more precise, assume that the (total) length of the
new growth in a given year is the constant c times the (total) length of
new growth in the previous year. Write down a recurrence for the total
length an of all the branches of the tree at the end of growing season
n. Find the general solution to your recurrence relation. Assume that
we begin with a one meter cutting of new wood (from the previous
year) which branches out and grows a total of two meters of new wood
in the first year. What will the total length of all the branches of the
tree be at the end of n years?

Solution: an = an−1 + c(an−1 − an−2) = (1 + c)an−1 − can−2.

∞∑
n=2

anxn =
∞∑

n=2

(1 + c)an−1x
n − c

∞∑
n=2

an−2x
n

(1− (1 + c)x + cx2)
∞∑

n=0

anxn = a0 + a1x− a0(1 + c)x

∞∑
n=0

anxn =
a0 + (a1 − a0(1 + c))x

1− (1 + c)x + cx2

=
a0 + (a1 − a0(1 + c))x

(1− x)(1− cx)

Assuming c 6= 1 and using the method of partial fractions gives us

a0 + (a1 − a0(1 + c))x
(1− x)(1− cx)

= (a0 + (a1 − a0(1 + c))x)
[
1/(1− c)
(1− x)

− c/(1− c)
1− cx

]
= (a0 + (a1 − a0(1 + c))x)

[
1

1− c

∞∑
i=0

xi − c

1− c

∞∑
i=0

cixi

]

=
(a0 + (a1 − a0(1 + c))x)

1− c

∞∑
i=0

(1− ci+1)xi.
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From this we get that

ai =
a0

1− c
(1− ci+1) +

a1 − a0(1 + c)
1− c

(1− ci).

Assuming that we begin with one meter of new wood means a0 = 1,
and assuming we have a total of two meters of new wood at the end
of the first year means c = 2 and a1 = 3. Substituting these into our
formula for ai gives us ai = 2i+1 − 1.

8. (Relevant to Appendix C) We have some chairs which we are going to
paint with red, white, blue, green, yellow and purple paint. Suppose
that we may paint any number of chairs red or white, that we may
paint at most one chair blue, at most three chairs green, only an even
number of chairs yellow, and only a multiple of four chairs purple. In
how many ways may we paint n chairs?
Solution: The generating function for the number of ways to paint
n chairs is

(1 + x + x2 + · · ·)2(1 + x)(1 + x + x2 + x3)(1 + x2 + x4 + · · ·)(1 + x4 + x8 + · · ·)

=
(1 + x)(1 + x + x2 + x3)
(1− x)2(1− x2)(1− x4)

=
1

(1− x)4

Thus the number of ways to paint n chairs is
(n+4−1

n

)
=
(n+3

n

)
.

9. What is the generating function for the number of partitions of an
integer in which each part is used at most m times? Why is this also
the generating function for partitions in which consecutive parts (in
a decreasing list representation) differ by at most m and the smallest
part is also at most m?

Solution:

(1 + q + · · ·+ qm)(1 + q2 + · · ·+ q2m) · · · =
∞∏
i=1

m∑
j=0

qij =
∞∏
i=1

1− qi(m+1)

1− qi

This is also the generating function for the number of partitions of an
integer in which consecutive parts differ by at most m, because when
we conjugate a partition in which each part is used at most m times,
we get a partition in which each distinct column of the Young diagram
occurs at most m times, which means that the difference between two
consecutive parts (in the decreasing list representation) is at most m,
and that the last (smallest) part is at most m.
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Chapter 5

The Principle of Inclusion
and Exclusion

5.1 The Size of a Union of Sets

One of our very first counting principles was the sum principle which says
that the size of a union of disjoint sets is the sum of their sizes. Computing
the size of overlapping sets requires, quite naturally, information about how
they overlap. Taking such information into account will allow us to develop a
powerful extension of the sum principle known as the “principle of inclusion
and exclusion.”

5.1.1 Unions of two or three sets

◦225. In a biology lab study of the effects of basic fertilizer ingredients on
plants, 16 plants are treated with potash, 16 plants are treated with
phosphate, and among these plants, eight are treated with both phos-
phate and potash. No other treatments are used. How many plants
receive at least one treatment? If 32 plants are studied, how many
receive no treatment?

Solution: The number of plants receiving treatment was 16 + 16−
8 = 24. The number of plants receiving no treatment was eight.

+ 226. Give a formula for the size of the union A ∪ B of two sets A and B
in terms of the sizes |A| of A, |B| of B, and |A ∩ B| of A ∩ B. If A
and B are subsets of some “universal” set U , express the size of the
complement U − (A ∪ B) in terms of the sizes |U | of U , |A| of A, |B|
of B, and |A ∩B| of A ∩B.

191
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Solution: |A ∪B| = |A|+ |B| − |A ∩B|.
|U − (A ∪B)| = |U | − |A| − |B|+ |A ∩B|.

◦227. In Problem 225, there were just two fertilizers used to treat the sam-
ple plants. Now suppose there are three fertilizer treatments, and 15
plants are treated with nitrates, 16 with potash, 16 with phosphate, 7
with nitrate and potash, 9 with nitrate and phosphate, 8 with potash
and phosphate and 4 with all three. Now how many plants have been
treated? If 32 plants were studied, how many received no treatment
at all?

Solution: 15 + 16 + 16− 7− 9− 8 + 4 = 27 plants were treated and
five received no treatment.

•228. Give a formula for the size of A ∪ B ∪ A3 in terms of the sizes of A,
B, C and the intersections of these sets.

Solution:
|A∪B∪C| = |A|+ |B|+ |C|−|A∩B|−|A∩C|−|B∩C|+ |A∩B∩C|.

5.1.2 Unions of an arbitrary number of sets

•229. Conjecture a formula for the size of a union of sets

A1 ∪A2 ∪ · · · ∪An =
n⋃

i=1

Ai

in terms of the sizes of the sets Ai and their intersections.

Solution:∣∣∣∣∣
n⋃

i=1

Ai

∣∣∣∣∣ =
n∑

i=1

|Ai|−
n∑

i=1

n∑
j=i+1

|Ai∩Aj |+· · ·+(−1)n−1|A1∩A2∩· · ·∩An|.

The difficulty of generalizing Problem 228 to Problem 229 is not likely to be
one of being able to see what the right conjecture is, but of finding a good
notation to express your conjecture. In fact, it would be easier for some
people to express the conjecture in words than to express it in a notation.
We will describe some notation that will make your task easier. It is similar
to the notation

EP (S) =
∑

s:s∈S

P (s).
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that we used to stand for the sum of the pictures of the elements of a set S
when we introduced picture enumerators.

Let us define ⋂
i:i∈I

Ai

to mean the intersection over all elements i in the set I of Ai. Thus⋂
i:i∈{1,3,4,6}

Ai = A1 ∩A3 ∩A4 ∩A6. (5.1)

This kind of notation, consisting of an operator with a description under-
neath of the values of a dummy variable of interest to us, can be extended
in many ways. For example∑

I:I⊆{1,2,3,4}, |I|=2

| ∩i∈I Ai| = |A1 ∩A2|+ |A1 ∩A3|+ |A1 ∩A4|

+ |A2 ∩A3|+ |A2 ∩A4|+ |A3 ∩A4|. (5.2)

•230. Use notation something like that of Equation 5.1 and Equation 5.2
to express the answer to Problem 229. Note there are many different
correct ways to do this problem. Try to write down more than one
and choose the nicest one you can. Say why you chose it (because your
view of what makes a formula nice may be different from somebody
else’s). The nicest formula won’t necessarily involve all the elements
of Equations 5.1 and 5.2. (The author’s version doesn’t use all those
elements.)

Solution: ∣∣∣∣∣
n⋃

i=1

Ai

∣∣∣∣∣ = ∑
S:S⊆[n],S 6=∅

(−1)|S|−1

∣∣∣∣∣ ⋂
i:i∈S

Ai

∣∣∣∣∣
I chose this way of writing the formula partly because it is efficient with
symbols; for example, it uses only one sum sign. But more importantly
I chose it because it captures what I would want to say in words: “You
sum, over all ways of choosing an intersection of the sets Ai, the size
of the intersection times a sign factor that is -1 if you are intersecting
an even number of sets and 1 if you are intersecting an odd number.”
If I were writing my solution out in words, I would probably assume
that nobody would think about the possibility of an intersection of the
empty set of the Ais, but I had to put the S 6= ∅ in my formula because
otherwise the formula would have had us consider the possibility that
S was empty.
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•231. A group of n students goes to a restaurant carrying backpacks. The
manager invites everyone to check their backpack at the check desk
and everyone does. While they are eating, a child playing in the check
room randomly moves around the claim check stubs on the backpacks.
We will try to compute the probability that, at the end of the meal, at
least one student receives his or her own backpack. This probability
is the fraction of the total number of ways to return the backpacks in
which at least one student gets his or her own backpack back.

(a) What is the total number of ways to pass back the backpacks?
Solution: n!, because there are n students and n backpacks
and a distribution of backpacks to students will be a bijection.

(b) In how many of the distributions of backpacks to students does at
least one student get his or her own backpack? (Hint: For each
student, how big is the set of backpack distributions in which
that student gets the correct backpack? It might be a good idea
to first consider cases with n = 3, 4, and 5.)
Solution: If we let Ai be the set of backpack distributions in
which student i gets the correct backpack, then the number we
want to compute is the size of the union of the sets Ai. For this
purpose we need to know, for every nonempty subset S ⊆ [n] the
size of ∩i∈SAi. That is, we need to know the number of ways
to pass out the backpacks so that student i gets the correct one
for each i in S. It won’t matter whether or not other students
get the correct backpacks, so we can just assume that for each
i ∈ S, student i gets the correct backpack and then hand out the
remaining n− |S| backpacks to the remaining n− |S| students in
(n− |S|)! ways. Thus (n− |S|)! is | ∩i:i∈S Ai|. Using our formula
from Problem 230 we get∣∣∣∣∣

n⋃
i=1

Ai

∣∣∣∣∣ =
∑

S:S⊆[n],S 6=∅
(−1)|S|−1

∣∣∣∣∣ ⋂
i:i∈S

Ai

∣∣∣∣∣
=

∑
S:S⊆[n],S 6=∅

(−1)|S|−1(n− |S|)!

=
n∑

s=1

(
n

s

)
(−1)s−1(n− s)!

=
n∑

s=1

(−1)s−1 n!
s!
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(c) What is the probability that at least one student gets the correct
backpack?
Solution: Dividing the answer in the last part by n!, the total

number of ways to pass back the backpacks, we get
n∑

s=1

(−1)s−1

s!
for the probability that at least one student gets the correct back-
pack.

(d) What is the probability that no student gets his or her own back-
pack?
Solution: Subtracting from 1 to get the probability that no
student gets the correct backpack gives us

1−
n∑

s=1

(−1)s−1

s!
=

n∑
s=0

(−1)s

s!
.

(e) As the number of students becomes large, what does the proba-
bility that no student gets the correct backpack approach?
Solution: From calculus, we know that ex =

∑∞
j=0

xj

j! . Substi-

tuting x = −1 gives us e−1 =
∑∞

j=0
(−1)j

j! , which is the limit as
n becomes infinite of the probability in the solution to Problem
231. Thus the probability approaches 1/e.

Problem 231 is “classically” called the hatcheck problem; the name comes
from substituting hats for backpacks. If is also sometimes called the derange-
ment problem. A derangement of an n-element set is a permutation of that
set (thought of as a bijection) that maps no element of the set to itself. One
can think of a way of handing back the backpacks as a permutation f of the
students: f(i) is the owner of the backpack that student i receives. Then
a derangement is a way to pass back the backpacks so that no student gets
his or her own.

5.1.3 The Principle of Inclusion and Exclusion

The formula you have given in Problem 230 is often called the principle of
inclusion and exclusion for unions of sets. The reason is the pattern in
which the formula first adds (includes) all the sizes of the sets, then subtracts
(excludes) all the sizes of the intersections of two sets, then adds (includes)
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all the sizes of the intersections of three sets, and so on. Notice that we
haven’t yet proved the principle. There are a variety of proofs. Perhaps one
of the most straightforward (though not the most elegant) is an inductive
proof that relies on the fact that

A1 ∪A2 ∪ · · · ∪An = (A1 ∪A2 ∪ · · · ∪An−1) ∪An

and the formula for the size of a union of two sets.

232. Give a proof of your formula for the principle of inclusion and exclu-
sion.

Solution: The principle of inclusion and exclusion for one set says
|A1| = |A1|. The principle of inclusion and exclusion for two sets says
|A1 ∪A2| = |A1|+ |A2| − |A1 ∩A2|, and was proved in our solution to
Problem 226. Now suppose the formula is true for a union of n− 1 or
fewer sets and n > 2. Since

|A1 ∪A2 ∪ · · · ∪An| = (A1 ∪A2 ∪ · · · ∪An−1) ∪An,

we can apply the formula of Problem 226 to get∣∣∣∣∣
n⋃

i=1

Ai

∣∣∣∣∣ = |
(

n−1⋃
i=1

Ai

)
∪An|

= |
n−1⋃
i=1

Ai|+ |An| − |
(

n−1⋃
i=1

Ai

)
∩An|

=

∣∣∣∣∣
n−1⋃
i=1

Ai

∣∣∣∣∣+ |An| −
∣∣∣∣∣
n−1⋃
i=1

Ai ∩An

∣∣∣∣∣ (∗)

By the inductive hypothesis, we may apply the principle of inclusion
and exclusion to the first and last term in the line of the equation
marked (∗). We can rewrite the line (∗) as

∑
S:S⊆[n−1],S 6=∅

(−1)|S|−1

∣∣∣∣∣ ⋂
i:i∈S

Ai

∣∣∣∣∣+ |An| −
∑

S:S⊆[n−1],S 6=∅
(−1)|S|−1

∣∣∣∣∣ ⋂
i:i∈S

Ai ∩An

∣∣∣∣∣
=

∑
S:S⊆[n],S 6=∅

(−1)|S|−1

∣∣∣∣∣ ⋂
i:i∈S

Ai

∣∣∣∣∣ ,
where the last line follows because every nonempty subset of [n] is
either (1) a nonempty subset of [n − 1], (2) a nonempty subset of
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[n − 1] with n added in, or (3) the set {n}. Thus by the principle of
mathematical induction, the formula for the principle of inclusion and
exclusion holds for all nonnegative integers n.

233. We get a more elegant proof if we ask for a picture enumerator for
A1 ∪A2 ∪ · · · ∪An. So let us assume A is a set with a picture function
P defined on it and that each set Ai is a subset of A.

(a) By thinking about how we got the formula for the size of a union,
write down instead a conjecture for the picture enumerator of a
union. You could use a notation like EP (

⋂
i:i∈S

Ai) for the picture

enumerator of the intersection of the sets Ai for i in a subset S
of [n].

Solution: EP (
n⋃

i=1

Ai) =
∑

S:S⊆[n],S 6=∅
(−1)|S|−1EP (

⋂
i:i∈S

Ai).

(b) If x ∈
n⋃

i=1

Ai, what is the coefficient of P (x) in (the inclusion-

exclusion side of) your formula for EP (
n⋃

i=1

Ai)?

Solution: Let T be the set of all i such that x ∈ Ai. Then x ∈
Ai for exactly those i with i ∈ T . Note that |T | > 0 because x is at
least one Ai. Then the coefficient of P (x) is

∑
S:S⊆T,S 6=∅

(−1)|S|−1.

But

∑
S:S⊆T,S 6=∅

(−1)|S|−1 = −
|T |∑
i=1

(
|T |
i

)
(−1)i = −[(1−1)|T |−1] = 0+1 = 1.

Thus if x ∈ EP (
n⋃

i=1

Ai), then the coefficient of P (x) in EP (
⋃n

i=1 Ai)

is 1.

(c) If x 6∈
n⋃

i=1

Ai, what is the coefficient of P (x) in (the inclusion-

exclusion side of) your formula for EP (
n⋃

i=1

Ai)?

Solution: Since P (x) is not in any of the enumerators
EP (

⋂
i:i∈S Ai), its coefficient is 0.
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(d) How have you proved your conjecture for the picture enumerator
of the union of the sets Ai?

Solution: We have shown that P (x) appears in the right hand
side of our formula with coefficient one if it is in the union and
with coefficient 0 otherwise.

(e) How can you get the formula for the principle of inclusion and
exclusion from your formula for the picture enumerator of the
union?

Solution: Substitute 1 for the picture of each element x. Then
EP (

⋂
i:i∈S

Ai) becomes |
⋂

i:i∈S

Ai|, and our formula follows.

234. Frequently when we apply the principle of inclusion and exclusion, we
will have a situation like that of Problem 231d. That is, we will have
a set A and subsets A1, A2, . . . , An and we will want the size or the
probability of the set of elements in A that are not in the union. This
set is known as the complement of the union of the Ais in A, and is
denoted by A −

⋃n
i=1 Ai, or if A is clear from context, by

⋃n
i=1 Ai.

Give the formula for
⋃n

i=1 Ai. The principle of inclusion and exclusion
generally refers to both this formula and the one for the union.

Solution: Since all the Ais are subsets of A, one way to write this size
is as |A| −

∑
S: S⊆[n],S 6=∅(−1)|S|−1|

⋂
i:i∈S Ai|. Letting |A| = |

⋂
i:i∈∅

Ai|,

we may write |
n⋃

i=1

Ai| =
∑

S: S⊆[n]

(−1)|S||
⋂

i:i∈S

Ai|.

We can find a very elegant way of writing the formula in Problem 234
if we let

⋂
i:i∈∅

Ai = A. For this reason, if we have a family of subsets Ai of a

set A, we define1
⋂

i:i∈∅
Ai = A.

1For those interested in logic and set theory, given a family of subsets Ai of a set A, we
define

⋂
i:i∈S

Ai to be the set of all members x of A that are in Ai for all i ∈ S. (Note that
this allows x to be in some other Ajs as well.) Then if S = ∅, our intersection consists
of all members x of A that satisfy the statement “if i ∈ ∅, then x ∈ Ai.” But since the
hypothesis of the ‘if-then’ statement is false, the statement itself is true for all x ∈ A.
Therefore

⋂
i:i∈∅ Ai = A.
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5.2 Applications of Inclusion and Exclusion

5.2.1 Multisets with restricted numbers of elements

235. In how many ways may we distribute k identical apples to n children
so that no child gets more than four apples? Compare your result with
your result in Problem 197.

Solution: Let S be the set of all distributions of k identical apples
to the n children. Let Ai be the set of distributions in which child
i gets five or more apples. Then we are asking for the number of
distributions of apples that lie in none of the sets, so we are asking
for |A1 ∪A2 ∪ · · · ∪An|. From the formula you gave in Problem 234
we see that to find this number we need to know |

⋂
i∈S Ai| for every

subset S of [n]. But if S has size s, then S determines a distribution
such that all the children in a particular set of size s will get five or
more apples. By Problem 128, we can pass out the apples so that
the children in a particular set Ŝ of children get at least five apples
as follows: we give everyone in Ŝ five apples, and then pass out the
remaining k − 5s apples to the children in

(k−5s+n−1
k−5s

)
=
(k−5s+n−1

n−1

)
ways. This counts the number of ways to give at least five apples to
every child in Ŝ, and maybe give five apples to some other children
as well. Thus |

⋂
i∈S Ai| =

(k−5|S|+n−1
n−1

)
. In particular, if S = ∅, we

get
(k+n−1

n−1

)
, which is the total number of ways to pass out k identical

apples to n children. Applying the formula from Problem 234 gives us

|
n⋃

i=1

Ai| =
∑

S:S⊆[n]

(−1)|S||
⋂

i:i∈S

Ai|

=
n∑

s=0

(
n

s

)
(−1)s

(
k − 5s + n− 1

n− 1

)

=
n∑

s=0

(−1)s

(
n

s

)(
k − 5s + n− 1

n− 1

)

5.2.2 The Ménage Problem

236. A group of n married couples comes to a group discussion session where
they all sit around a round table. In how many ways can they sit so
that no person is next to his or her spouse? (Note that two people of
the same sex can sit next to each other.)



200 CHAPTER 5. INCLUSION AND EXCLUSION

Solution: Let A be the set of all seating arrangements for 2n people
around a round table. Let Ai be the set of arrangements in which
couple i sits together. We are interested in |A1 ∪A2 ∪ · · · ∪An|. Thus
for a set S ⊆ [n], we need to compute |

⋂
i:i∈S Ai|. If we let each couple

described by S sit together, we will seat |S| couples and 2n − 2|S|
individuals around the table. We can do this in 2|S|(|S|+2n−2|S|−1)!
ways, because once we choose a place for a couple (i.e. two adjacent
seats) there are two ways the couple can sit down. Thus as long as S is
nonempty we have the right formula for |

⋂
i:i∈S Ai|. Notice that in the

case where S = ∅ the formula gives us (2n− 1)! seating arrangements,
which is exactly the number of way to seat 2n people around a round
table. This is the size of our set A. Therefore

|
⋂

i:i∈S

Ai| = 2|S|(2n− |S| − 1)!.

Substituting this into the formula from Problem 234 gives us

|
n⋃

i=1

Ai| =
∑

S:S⊆[n]

(−1)|S||
⋂

i:i∈S

Ai|

=
n∑

s=0

(−1)s

(
n

s

)
2s(2n− s− 1)!

∗237. A group of n married couples comes to a group discussion session
where they all sit around a round table. In how many ways can they
sit so that no person is next to his or her spouse or a person of the
same sex? This problem is called the ménage problem. (Hint: Reason
somewhat as you did in Problem 236, noting that if the set of couples
who do sit side-by-side is nonempty, then the sex of the person at each
place at the table is determined once we seat one couple in that set,
or, for that matter, once we seat one person.)

Solution: We are going to consider arrangements of the couples al-
ternating sex around the table. This will be our set A. The set Ai is
the set of arrangements in which couple i sits together. We are inter-
ested in the number of arrangements that are in none of these sets.
Thus for each subset S of [n], we consider the number of arrangements
in

⋂
i: i∈S

Ai. We distinguish the case that S is empty from the others.

The number of arrangements with S empty is just the number of ways
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to seat 2n couples around the table, alternating sex, but with no other
restrictions. We can arrange one of the sexes in a circle in (n − 1)!
ways and then assign the members of the opposite sex to the places
between them in n! ways, so

⋂
i: i∈∅

Ai = (n − 1)!n!. (Another way to

get this result is to let one person sit down. This determines the sex
of the person at each place of the table, so there are (n − 1)! ways
to assign the people of the same sex of the first person, and n! ways
to assign the people of the opposite sex. It appears that there are 2n
choices for where the first person sits, but we can break the seating
charts up into blocks of 2n seating charts, each of which gives the same
circular arrangement. Thus there are (n − 1)!n! inequivalent seating
arrangements.)

Now if S is nonempty and has s members, we seat one of the couples
that must sit together (say the first in alphabetical order), and this
determines the sex of the person that must sit at each other place.
There are 2n pairs of adjacent seats where we can seat that couple
and two ways they can sit in the pair of adjacent seats that we choose.
Then we have s − 1 couples, n − s men and n − s women to seat in
the remaining places. First we arrange the s − 1 couples and 2n −
2s identical empty chairs in places at the table in (2n − 2s + s −
1)!/(2n− 2s)! = (2n− s− 1)!/(2n− 2s)! ways. Each couple can sit in
only one way in the places they have chosen, because the sex of the
person in a given place has been determined by how the first couple
sits. The sex of the person in each of the remaining chairs has been
determined, so we assign the men to their seats in (n − s)! ways and
we assign the women to their seats in (n − s)! ways. Thus we have
2 ·2n(2n− s−1)!(n− s)!2/(2n−2s)! ways to place the people. But we
can partition the placements into blocks of 2n equivalent placements,
because shifting everyone the same number of places to the right or
left gives an equivalent placement. Thus the number of inequivalent
seating arrangements is

2(2n− s− 1)!(n− s)!2

(2n− 2s)!
=

2(2n− s− 1)!(n− s)!2

2(n− s)(2n− 2s− 1)!

=
(2n− s− 1)!(n− s)!(n− s− 1)!

(2n− 2s− 1)!
.

Notice that if we take s = 0, this formula reduces to (n− 1)!n!. Thus
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for all sets S∣∣∣∣∣ ⋂
i:i∈S

Ai

∣∣∣∣∣ = (2n− s− 1)!(n− s)!(n− s− 1)!
(2n− 2s− 1)!

.

Then from Problem 234

|
n⋃

i=1

Ai| =
∑

S:S⊆[n]

(−1)|S|
(2n− |S| − 1)!(n− |S|)!(n− |S| − 1)!

(2n− 2|S| − 1)!

=
n∑

s=0

(−1)s

(
n

s

)
(2n− s− 1)!(n− s)!(n− s− 1)!

(2n− 2s− 1)!

=
n∑

s=0

(−1)s n!
s!(n− s)!

(2n− s− 1)!(n− s)!(n− s− 1)!
(2n− 2s− 1)!

=
n∑

s=0

(−1)s n!(2n− s− 1)!(n− s− 1)!
s!(2n− 2s− 1)!

=
n∑

s=0

(−1)s

(
2n− s− 1

s

)
n!(n− s− 1)!

is the number of ways to seat the people, alternating sex, so that no
couple sits together.

5.2.3 Counting onto functions

•238. Given a function f from the k-element set K to the n-element set [n],
we say f is in the set Ai if f(x) 6= i for every x in K. How many of
these sets does an onto function belong to? What is the number of
functions from a k-element set onto an n-element set?

Solution: An onto function is in none of these sets. Since we want
the number of functions that are in none of these sets, we let our set
A be the set of all functions from K to [n]. Then the number of onto
functions is |A1 ∪A2 ∪ · · · ∪An|. For a nonempty subset S of [n], the
set

⋂
i: i∈∅ Ai is the set of functions from K to [n] − S. The size of

this set is (n − |S|)k. When S = ∅ this gives the size of A. Thus by
Problem 234

|
n⋃

i=1

Ai| =
∑

S:S⊆[n]

(−1)|S|(n− |S|)k

=
n∑

s=0

(−1)s

(
n

s

)
(n− s)k
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is the number of functions from K onto [n].

239. Find a formula for the Stirling number (of the second kind) S(k, n).

Solution: Since the number of functions from [k] onto [n] is S(k, n)n!,
we get from the solution to Problem 238

S(k, n) =
1
n!

n∑
s=0

(−1)s

(
n

s

)
(n− s)k.

240. If we roll a die eight times, we get a sequence of 8 numbers, the number
of dots on top on the first roll, the number on the second roll, and so
on.

(a) What is the number of ways of rolling the die eight times so that
each of the numbers one through six appears at least once in
our sequence? To get a numerical answer, you will likely need a
computer algebra package.

Solution: By the formula for the number of onto functions,
we have

∑6
s=0(−1)s

(6
s

)
(6 − s)8 sequences in which each number

between one and six appears. Courtesy of Maple, this number is
191,520.

(b) What is the probability that we get a sequence in which all six
numbers between one and six appear? To get a numerical answer,
you will likely need a computer algebra package, programmable
calculator, or spreadsheet.

Solution: 191520/68 = 665/5832, which is about .1140260631,
courtesy of Maple.

(c) How many times do we have to roll the die to have probability
at least one half that all six numbers appear in our sequence.
To answer this question, you will likely need a computer algebra
package, programmable calculator, or spreadsheet.

Solution: Some experimenting with Maple shows that if we roll
our die 13 times, we get probability approximately .5138581940
of having all six numbers appear, but with 12 rolls the probability
is approximately .4378156806. Thus, 13 rolls are required.
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5.2.4 The chromatic polynomial of a graph

We defined a graph to consist of set V of elements called vertices and a set E
of elements called edges such that each edge joins two vertices. A coloring
of a graph by the elements of a set C (of colors) is an assignment of an
element of C to each vertex of the graph; that is, a function from the vertex
set V of the graph to C. A coloring is called proper if for each edge joining
two distinct vertices2, the two vertices it joins have different colors. You
may have heard of the famous four color theorem of graph theory that says
if a graph may be drawn in the plane so that no two edges cross (though
they may touch at a vertex), then the graph has a proper coloring with
four colors. Here we are interested in a different, though related, problem:
namely, in how many ways may we properly color a graph (regardless of
whether it can be drawn in the plane or not) using k or fewer colors? When
we studied trees, we restricted ourselves to connected graphs. (Recall that
a graph is connected if, for each pair of vertices, there is a walk between
them.) Here, disconnected graphs will also be important to us. Given a
graph which might or might not be connected, we partition its vertices into
blocks called connected components as follows. For each vertex v we put
all vertices connected to it by a walk into a block together. Clearly each
vertex is in at least one block, because vertex v is connected to vertex v by
the trivial walk consisting of the single vertex v and no edges. To have a
partition, each vertex must be in one and only one block. To prove that we
have defined a partition, suppose that vertex v is in the blocks B1 and B2.
Then B1 is the set of all vertices connected by walks to some vertex v1 and
B2 is the set of all vertices connected by walks to some vertex v2.

·241. (Relevant in Appendix C as well as this section.) Show that B1 = B2.

Solution: Since v is in B1, there is a walk from v1 to v. Since there
is a walk from every vertex in B1 to v1, there is a walk from every
vertex in in B1 to v. But there is a walk from v to v2 since v ∈ B2.
Thus there is a walk from every vertex in B1 to v2. Then by our
description of B2 just before the problem, every vertex in B1 is also in
B2. A similar argument shows that every vertex in B2 is also in B1.
Thus B1 = B2.

Since B1 = B2, these two sets are the same block, and thus all blocks con-
taining v are identical, so v is in only one block. Thus we have a partition of

2If a graph had a loop connecting a vertex to itself, that loop would connect a vertex
to a vertex of the same color. It is because of this that we only consider edges with two
distinct vertices in our definition.
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the vertex set, and the blocks of the partition are the connected components
of the graph. Notice that the connected components depend on the edge
set of the graph. If we have a graph on the vertex set V with edge set E
and another graph on the vertex set V with edge set E′, then these two
graphs could have different connected components. It is traditional to use
the Greek letter γ (gamma)3 to stand for the number of connected compo-
nents of a graph; in particular, γ(V,E) stands for the number of connected
components of the graph with vertex set V and edge set E. We are going to
show how the principle of inclusion and exclusion may be used to compute
the number of ways to color a graph properly using colors from a set C of c
colors.

·242. Suppose we have a graph G with vertex set V and edge set E =
{e1, e2, . . . e|E|}. Suppose F is a subset of E. Suppose we have a set
C of c colors with which to color the vertices.

(a) In terms of γ(V, F ), in how many ways may we color the vertices
of G so that each edge in F connects two vertices of the same
color?
Solution: For each edge in F to connect two vertices of the
same color, we must have all the vertices in a connected compo-
nent of the graph with vertex set V and edge set F colored the
same color. Thus the number of such colorings is cγ(V,F ).

(b) Given a coloring of G, for each edge ei in E, let us consider the
set Ai of colorings that the endpoints of e are colored the same
color. In which sets Ai does a proper coloring lie?
Solution: A proper coloring is in none of those sets.

(c) Find a formula (which may involve summing over all subsets F
of the edge set of the graph and using the number γ(V, F ) of
connected components of the graph with vertex set V and edge
set F ) for the number of proper colorings of G using colors in the
set C.

Solution: |
⋃|E|

i=1 Ai| =
∑

F :F⊆E(−1)|F |cγ(V,F ).

The formula you found in Problem 242c is a formula that involves powers
of c, and so it is a polynomial function of c. Thus it is called the “chromatic
polynomial of the graph G.” Since we like to think about polynomials as
having a variable x and we like to think of c as standing for some constant,

3The Greek letter gamma is pronounced gam-uh, where gam rhymes with ham.
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people often use x as the notation for the number of colors we are using to
color G. Frequently people will use χG(x) to stand for the number of ways
to color G with x colors, and call χG(x) the chromatic polynomial of G.

5.3 Deletion-Contraction and the Chromatic Poly-
nomial

243. In Chapter 2 we introduced the deletion-contraction recurrence for
counting spanning trees of a graph. Figure out how the chromatic
polynomial of a graph is related to those resulting from deletion of
an edge e and from contraction of that same edge e. Try to find a
recurrence like the one for counting spanning trees that expresses the
chromatic polynomial of a graph in terms of the chromatic polynomials
of G− e and G/e for an arbitrary edge e. Use this recurrence to give
another proof that the number of ways to color a graph with x colors
is a polynomial function of x.

Solution: The number of colorings of G− e is equal to the number
of proper colorings of G plus the number of colorings of G that are
proper except for giving both ends of e the same color. But the number
of colorings of G that are proper except for giving both ends of e
the same color is the number of proper colorings of G/e. Therefore
χG−e(x) = χG(x)−χ

G/e(x). This gives us χG(x) = χG−e(x)−χ
G/e(x).

We can use this to prove inductively that χG(x) is a polynomial in x.
If G has one vertex, then the number of ways to color G properly with
x colors is x. This is a polynomial in x. Now suppose inductively
that G has more than one vertex and whenever a graph H has fewer
vertices than G, the function χH(x) is a polynomial function in x.
Then χG(x) = χG−e(x)−χ

G/e(x), is a difference of of two polynomial
functions in x, so it is a polynomial function in x. Therefore by the
principle of mathematical induction, for all graphs G on a finite vertex
set, the number of ways to properly color G in x colors is a polynomial
in x.

244. Use the deletion-contraction recurrence to reduce the computation of
the chromatic polynomial of the graph in Figure 5.1 to computation
of chromatic polynomials that you can easily compute. (You can sim-
plify your computations by thinking about the effect on the chromatic
polynomial of deleting an edge that is a loop, or deleting one of several
edges between the same two vertices.)
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Solution: If a graph has a loop it has no proper colorings. The graph
in Figure 5.1 has no loops and no multiple edges between two vertices.
The only way we could get a loop is by contracting one of several
multiple edges between two vertices, and the resulting graph would
have no contribution to the chromatic polynomial of the original graph.
Thus whenever a contraction gives us a graph with multiple edges
between two vertices, we can replace the multiple edges by one edge
and go on with our computation from there. The graphs we get when
we delete and contract the edges {1, 2} and {2, 3} are (G − {1, 2}) −
{2, 3}, (G− {1, 2})/{2, 3}, (G− {2, 3})/{1, 2}, and (G/{2, 3})/{1, 2}.
These are shown in the following picture.

1 2

3
4

5

1 2

4

5

1

3
4

5

1

4

5

G - {1,2} - {2,3} G - {1,2}/{2,3} G/{1,2} - {2,3} G/{1,2}/{2,3

The chromatic polynomial of a triangle is x(x− 1)(x− 2) because for
one vertex we have x colors, for a second we have x − 1, and for the
third vertex, because it is adjacent to both of the other vertices, we
have x − 2 choices of colors. For a vertex of degree 1 there are x − 1
choices of colors, those colors not used on the one vertex to which
it is adjacent. As we mentioned, the extra edges do not change the
chromatic polynomial, so we have that the chromatic polynomial of
(G− {1, 2})− {2, 3} is x(x− 1)3(x− 2), the chromatic polynomial of
(G−{1, 2})/{2, 3} is x(x−1)2(x−2), as is that of (G−{2, 3})/{1, 2},
and the chromatic polynomial of (G/{2, 3})/{1, 2} is (x−1)(x−2)(x−
3). Using the deletion-contraction recurrence, we get that

χG(x) = χ
G−{1,2}(x)− χ

G/{1,2}(x)
= χ

G−{1,2}−{2,3}(x)− χ
(G−{1,2})/{2,3}(x)− χ

(G/{1,2})−{2,3}(x)
+ χ

G/{1,2}/{2,3}(x)

= x(x− 1)3(x− 2)− 2x(x− 1)2(x− 2) + x(x− 1)(x− 2)
= x(x− 1)(x− 2)(x2 − 2x + 1 + 2x− 2 + 1)
= x3(x− 1)(x− 2)

for the chromatic polynomial of G.
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Figure 5.1: A graph.
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245. (a) In how many ways may you properly color the vertices of a path
on n vertices with x colors? Describe any dependence of the
chromatic polynomial of a path on the number of vertices.
Solution: To color the vertices of a path, start at one end.
There are x colors for that vertex, and x−1 colors for each of the
next n−1, since each of them must be different from the preceding
one. Thus the chromatic polynomial of a path on n vertices is
x(x− 1)n−1. The dependence on the number of vertices appears
in the exponent on x− 1.

∗(b) (Not tremendously hard.) In how many ways may you properly
color the vertices of a cycle on n vertices with x colors? Describe
any dependence of the chromatic polynomial of a cycle on the
number of vertices.
Solution: If we use Cn to stand for a path on n vertices and Pn

to stand for a path on n vertices, then by the deletion-contraction
recurrence, we may write

χCn(x) = χPn(x)− χCn−1(x)
= χPn(x)− χPn−1(x) + χCn−2(x)
= χPn(x)− χPn−1(x) + χPn−3(x)− · · ·+ (−1)n−3(χP3(x)− χC2(x))
= x(x− 1)n−1 − x(x− 1)n−2 + x(x− 1)n−3 · · ·
+ (−1)n−3[x(x− 1)2 − x(x− 1)]

= x(x− 1)
n−2∑
i=0

(x− 1)i(−1)n−2−i

= x(x− 1)(−1)n−2
n−2∑
i=0

(1− x)i
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= x(x− 1)(−1)n−2 1− (1− x)n−1

1− (1− x)
= (x− 1)[(x− 1)n−1 + (−1)n].

Here the dependence on n is interesting; effectively, we are taking
(x− 1) times the result of dropping the constant term from
(x− 1)n−1.

246. In how many ways may you properly color the vertices of a tree on n
vertices with x colors?

Solution: Color an arbitrary vertex; you have x choices for the color
of that vertex. No two vertices adjacent to it are adjacent (otherwise
we’d have a cycle), so for for each of them you have x − 1 choices
of colors. No two vertices adjacent to colored vertices are adjacent
to each other, nor is one of them adjacent to two colored vertices (in
either case you’d have a cycle), so for each of them you’d have x − 1
colors. You can continue this argument until all vertices are colored,
so you have x(x− 1)n−1 ways to color the vertices.

You can also prove by induction that the chromatic polynomial of a
tree is x(x−1)n−1. This is clearly true if there is one vertex. Otherwise,
choose a vertex of degree 1 in an n-vertex tree and remove it. You may
inductively assume that the chromatic polynomial of the remaining
tree is x(x − 1)n−2. Now there are x − 1 choices for the color of
the vertex you removed since it has degree 1, and so the chromatic
polynomial of the tree is x(x − 1)n−1. There is also an inductive
argument in which you delete and contract an arbitrary edge.

247. What do you observe about the signs of the coefficients of the chro-
matic polynomial of the graph in Figure 5.1? What about the signs
of the coefficients of the chromatic polynomial of a path? Of a cycle?
Of a tree? Make a conjecture about the signs of the coefficients of a
chromatic polynomial and prove it.

Solution: Not all powers of x appear, but the signs alternate as
the power of x increases; that is, the sign of xi is opposite that of
xi+1. More precisely, if ci is the coefficient of xi, then (−1)n−ici ≥
0. To prove this, note it is trivially true for a graph with no edges.
Choose an edge e of G. Then χG(x) = χG−e(x)− χ

G/e(x). In G− e,
we may assume inductively that (−1)n−ic′i ≥ 0 and in G/e we can
assume inductively that c′′i (−1)n−1−i ≥ 0, where we use c′i and c′′i
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as the coefficient of xi in χG−e(x) and χ
G/e(x), respectively. Then

ci = c′i − c′′i , and

ci(−1)n−i = c′i(−1)n−i − c′′i (−1)n−i = c′i(−1)n−i + c′′i (−1)n−1−i ≥ 0.

Therefore by the principle of mathematical induction, ci(−1)i ≥ 0 for
all finite graphs.

5.4 Supplementary Problems

1. Each person attending a party has been asked to bring a prize. The
person planning the party has arranged to give out exactly as many
prizes as there are guests, but any person may win any number of
prizes. If there are n guests, in how many ways may the prizes be
given out so that nobody gets the prize that he or she brought?

Solution: We use inclusion and exclusion. Let A be the set of all
ways to distribute the prizes. Let Ai be the the set of distributions
in which person i gets the prize he or she brought. We are interested
in |

⋃n
i=1 Ai|. We need to compute |

⋂
i: i∈S Ai| for every subset S of

[n]. But |
⋂

i: i∈S Ai| is the number of functions from the prizes to the
people that assign the prize that person i brought to person i for each
i in the set S. Think in terms of distributing those prizes first. Then
there are n−|S| other prizes that we may pass out to the n people as we
please, so we may do that in nn−|S| ways. Thus |

⋂
i: i∈S Ai| = nn−|S|.

When S is empty, this gives A. Applying Equation 234, we get

|
n⋃

i=1

Ai| =
∑

S:s⊆P

(−1)|S|nn−|S| =
n∑

s=0

(−1)|S|
(

n

s

)
nn−s.

2. There are m students attending a seminar in a room with n seats. The
seminar is a long one, and in the middle the group takes a break. In
how many ways may the students return to the room and sit down so
that nobody is in the same seat as before?

Solution: We use inclusion and exclusion. We let A be the set of all
seating arrangements. We let Ai be the set of seating arrangements
such that student i sits in the same seat as before. We are interested
in |

⋃n
i=1 Ai|. For this purpose, for each subset S of the set [n], we

need to compute |
⋂

i: i∈S Ai|, the number of ways for the students to
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return so that every student represented by an i in S sits in his or
her previous seat. This leaves us with n − |S| seats to be filled in a
one-to-one fashion by m− |S| students. There are (n− |S|)m−|S| such
seating arrangements, so |

⋂
i: i∈S Ai| = (n− |S|)m−|S|. Thus we have

|
n⋃

i=1

Ai| =
∑

S:S⊆[n]

(−1)|S|(n− |S|)m−|S| =
m∑

s=0

(−1)s

(
m

s

)
(n− s)m−s

ways for the students to return so that nobody sits in his or her pre-
vious place.

3. What is the number of ways to pass out k pieces of candy from an
unlimited supply of identical candy to n children (where n is fixed) so
that each child gets between three and six pieces of candy (inclusive)?
If you have done Supplementary Problem 1 in Chapter 4 compare your
answer in that problem with your answer in this one.

Solution: We could do the problem as a generating functions prob-
lem. But, as an inclusion-exclusion problem, we would let Ai be the
set of i such that child i gets more than six pieces of candy. We
would then observe that the number of ways to pass out the candy
so that the children determined by a subset S of [i] all get more than
six pieces, and everyone else gets at least 3, is the number of ways to
pass out the remaining candy after giving 7 pieces to each child iden-
tified by S and 3 pieces to each of the other children. This number
is
(k−7|S|−3(n−|S|)−1

n−1

)
=
(k−2n−4|S|−1

n−1

)
. From here we would substitute

into formula of Problem 234, make any simplifications we could, and
we would be done. This will give the same answer as Problem 1 in
Chapter 4.

4. In how many ways may k distinct books be arranged on n shelves so
that no shelf gets more than m books?

Solution: We use inclusion and exclusion. Let A be the set of all
arrangements of the books on the shelves. Let Ai be the set of arrange-
ments in which shelf i gets more than m books. Then the number of
arrangements of books in which the shelves determined by a subset S
of [n] get more than m books is |

⋂
i: i∈S Ai| = k(m+1)|S|nk−(m+1)|S|,

because in order to get an arrangement in
⋃

i: i∈S Ai we may choose
(m+1)|S| books and arrange m+1 of them on each of the shelves rep-
resented by the elements of S, after which we arrange the remainder
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of the books. Thus

|
n⋃

i=1

Ai| =
∑

S:S⊆[n]

(−1)|S|k(m+1)|S|nk−(m+1)|S|

=
n∑

s=0

(−1)s

(
n

s

)
k(m+1)snk−(m+1)s

is the number of ways to arrange the books so that no shelf gets more
than m.

5. Suppose that n children join hands in a circle for a game at nursery
school. The game involves everyone falling down (and letting go). In
how many ways may they join hands in a circle again so that nobody
has the same person immediately to the right both times the group
joins hands?

Solution: We use inclusion and exclusion, with A being the set of
all circular arrangements of the children (where rotation of an ar-
rangement gives the same arrangement, but flipping gives a different
arrangement). The set Ai is the set of arrangements such that child
i has the same child to the immediate right the both times they join
hands. Given a set S ⊆ [n], we can think of arranging units consisting
of individual children and strings of children holding hands in a circle.
We have n− s of these units because s children are to the immediate
right of someone in units of size more than one (and everyone else is
lefmost in a unit or not in a string of length 2 or more). Each string of
children can be arranged in only one way, because our set specifies who
has to have the same child on the right. Thus |

⋂
i: i∈S Ai| = (n−s−1)!.

This gives us

|
n⋃

i=1

Ai| =
∑

S:S⊆P

(−1)|S|(n− s− 1)!

=
n∑

s=0

(−1)s

(
n

s

)
(n− s− 1)!

=
n∑

s=0

(−1)s n!
s!(n− s)

ways for the children to join hands the second time so that none of
them has the same child to the right.
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∗6. Suppose that n people link arms in a folk-dance and dance in a circle.
Later on they let go and dance some more, after which they link arms
in a circle again. In how many ways can they link arms the second
time so that no one links with a person with whom he or she linked
arms before?

Solution: We use the principle of inclusion and exclusion. The set
A will be the set of arrangements of people in a circle where two
arrangements are the same if we get one from the other by rotating or
flipping the second. Set Ai will be the set of arrangements in which
person i links arms with someone previously to his or her immediate
right. (Saying it is the person to the right gives us more control over
our formulas.) Given a subset S of [n], the number of ways for the
people determined by that set to link arms with the people previously
on their right is the number of ways to arrange n−|S| strings of people
around a circle with strings of length more than 1 having two ways to
arrange themselves. (Once we have two or more people linked, another
person can be added to this string only at one end or not at all, because
this person must have been to the right of one of the people on an end
of the string. However, a string of length two or more can unlink and
then link in the opposite order, and each person will still be linked to
exactly the same people.) Thus |

⋂
i: i∈S Ai| = (n−|S|−1)!2m(S), where

m(S) is the number of strings of length more than one determined by
S. The number m(S) can be any number from 1 to S, so long as S
is not too big; namely so long as |S| ≤ bn/2c. (This is because if
m(S) = |S|, then each person determined by an integer in S must be
adjacent to a person not determined by an integer in S.) In particular,
|
⋂

i: i∈S Ai| is not completely determined by the size of S, as in all our
other inclusion-exclusion problems. How do we compute m(S)? Let
us call a subset R of S a run if

(a) the people determined by R are linked together in a row in both
linkings, and

(b) no other person in S is in a row with these people in both linkings.

Some runs might determine just one person, but a run could also
equal all of S. Each run will have one more person not in S who was
originally to the right of the person in the run who was rightmost in
the first linking, and so this person will have to sit in a row with the
people in R in the second linking as well. Thus the number r of runs
in S is the number of strings m(S) that may be linked in two ways,
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and there are n − |S| − r people who do not have to be linked with
runs. Thus |

⋂
i: i∈S Ai| = (n − |S| − 1)!2r, because the total number

of strings of people (including strings of just one person) we need to
arrange is n− |S| − r, and there are (k− 1)! ways to arrange k objects
in a circle. If we try to use the information we have so far to compute
|
⋃n

i=1 Ai|, we get

|
n⋃

i=1

Ai| =
∑

S:S⊆P

(−1)|S|(n− |S|1)!2r =
n∑

s=0

|S|∑
r=1

N(s, r)(n− s− 1)!2r,

in which N(s, r) stands for the number of sets S with size s and r
runs.

Picking out runs in a circular arrangement adds a layer of difficulty, so
to compute N(s, r), we first compute how many subsets of [n] we have
with r runs and then adjust for putting 1 through n around a circle
in order. Imagine writing 1 through n in a straight line, each integer
occupying one unit of distance along the line. We now place r sticks
whose lengths add to s (each stick has positive integer length) along
that line. Each stick picks out a set of consecutive integers, as many
as its length, so the sticks together pick out s integers. In order to be
sure the sticks correspond to runs, we need to make sure they do not
touch each other, so we place n− s identical stones along the line too,
making sure there is at least one stone between any two sticks. The
stones thus pick out the integers not in S. The sticks are not quite
identical, though the sticks of a given length are. In other words, which
lengths of sticks are in which places is what matters. So the sticks give
us a composition of s, a list of distinct positive integers that add to
s. We know there are

(s−1
r−1

)
such compositions. Once we have chosen

an ordering for the sticks, we need to distribute the stones among the
sticks so that no two sticks are adjacent. Since the stones are identical,
we can do this by putting one stone between each pair of sticks in our
composition, and then distribute the remaining n− s− r +1 stones in
any way we want among the r − 1 places between the sticks and the
two places to the left and right of all the sticks.. We can do this in(

r + 1 + (n− s− r + 1)− 1
n− s− r + 1

)
=

(
n− s + 1

n− s− r + 1

)
=

(
n− s + 1

r

)

ways. Thus there are
(s−1
r−1

)(n−s+1
r

)
ways to choose a subset S of [n]

that has r runs.
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Now we have to deal with the fact that our n people (who we have
replaced with the integers 1 through n in order) were arranged around
a circle. That means that a run is now a set of consecutive integers on
the circle, where n and 1 are considered consecutive. Recall that the
set S is picked out by the sticks. If we arrange 1 through n around a
circle in order, the set S that originally had r runs will have r−1 runs
if sticks covered both the first and last integer (1 and n), but otherwise
it will still have n runs. Thus the number of subsets of [n] that have
n runs when 1 through n are arranged in a circle is the number of
subsets of [n] with r + 1 runs that have both 1 and n in S plus the
number of subsets of [n] with r runs that do not have both 1 and n
in S. To compute the number of subsets S that do contain both 1
and n, we compute the number of arrangements of r sticks and n− s
stones that do start and end with a stick; that means that after we
choose our composition into r parts to get our arrangement of sticks
and place one stone between each pair of previously adjacent sticks,
we now place the remaining n − s − r + 1 stones in the r − 1 places
between previously adjacent sticks in(

r − 1 + (n− s− r + 1)− 1
n− s− r + 1

)
=

(
n− s− 1

n− s− r + 1

)
=

(
n− s− 1

r − 2

)
ways. For the sticks and stones to determine a subset we must assign
lengths to the sticks; the number of ways to do this is, as above,(s−1
r−1

)
, the number of compositions of s with r parts. Thus there are(s−1

r−1

)(n−s−1
r−2

)
subsets of [n] that have r runs and include both 1 and

n. For our computation we will also want the number of subsets of [n]
that have r + 1 runs and contain both 1 and n; this is

(s−1
r

)(n−s−1
r−1

)
.

On the other hand, the number of subsets of [n] that have r runs and
do not contain both 1 and n is the total number of subsets with r runs
minus the number that do contain both 1 and n; this is(

s− 1
r − 1

)((
n− s + 1

r

)
−
(

n− s− 1
r − 2

))
.

This gives us

N(s, r) =

(
s− 1

r

)(
n− s− 1

r − 1

)
+

(
s− 1
r − 1

)((
n− s + 1

r

)
−
(

n− s− 1
r − 2

))
ways to choose an s-element subset of [n] that has r runs when [n] is
arranged around a circle. Thus there are
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n∑
s=0

s∑
r=1

(−1)s
[(s−1

r

)(n−s−1
r−1

)
+
(s−1
r−1

) ((n−s+1
r

)
−
(n−s−1

r−2

))]
(n− s− 1)!2r

ways for people to arrange themselves in the second circle so that no
one is adjacent to anyone he or she was previously adjacent to.

∗7. (A challenge; the author has not tried to solve this one!) Redo Problem
6 in the case that there are n men and n women and when people
arrange themselves in a circle they do so alternating gender.

8. Suppose we take two graphs G1 and G2 with disjoint vertex sets, we
choose one vertex on each graph, and connect these two vertices by an
edge e to get a graph G12. How does the chromatic polynomial of G12

relate to those of G1 and G2?

Solution: By the deletion-contraction recurrence,

χG12(x) = χG12−e(x)− χG12/e
(x).

Now χG12−e(x) = χG1(x) ·χG2(x) because each ordered pair of proper
colorings of G1 and G2 is a proper coloring of G12 − e. G12/e is the
graph we get by identifying the endpoint of e in G1 with the endpoint
of e in G2. Notice that if you fix one vertex of a graph G, fix one
color, and ask how many proper colorings with x colors G has in which
the fixed vertex is the fixed color, you get χG(x)/x (by the quotient
principle). Thus χG2(x)/x is the number of ways to extend a proper
coloring of G1 to a proper coloring of G12/e. Then, by the product
principle, the number of proper colorings of G12/e with x colors is
χG1(x)χG2(x)/x. Therefore by the deletion-contraction recurrence,
χG12(x) = χG1(x)χG2(x)(1− 1

x).



Chapter 6

Groups Acting on Sets

6.1 Permutation Groups

Until now we have thought of permutations mostly as ways of listing the
elements of a set. In this chapter we will find it very useful to think of
permutations as functions. This will help us in using permutations to solve
enumeration problems that cannot be solved by the quotient principle be-
cause they involve counting the blocks of a partition in which the blocks
don’t have the same size. We begin by studying the kinds of permutations
that arise in situations where we have used the quotient principle in the
past.

6.1.1 The rotations of a square

Figure 6.1: The four possible results of rotating a square but maintaining
its location.
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In Figure 6.1 we show a square with its four vertices labeled a, b, c,
and d. We have also labeled the spots in the plane where each of these
vertices falls with the label 1, 2, 3, or 4. Then we have shown the effect of
rotating the square clockwise through 90, 180, 270, and 360 degrees (which
is the same as rotating through 0 degrees). Underneath each of the rotated
squares we have named the function that carries out the rotation. We use
ρ, the Greek letter pronounced “row,” to stand for a 90 degree clockwise
rotation. We use ρ2 to stand for two 90 degree rotations, and so on. We
can think of the function ρ as a function on the four element set1 {1, 2, 3, 4}.
In particular, for any function ϕ (the Greek letter phi, usually pronounced
“fee,” but sometimes “fie”) from the plane back to itself that may move the
square around but otherwise leaves it in the same location, we let ϕ(i) be
the label of the place where vertex previously in position i is now. Thus
ρ(1) = 2, ρ(2) = 3, ρ(3) = 4 and ρ(4) = 1. Notice that ρ is a permutation
on the set {1, 2, 3, 4}.

◦248. The composition f ◦g of two functions f and g is defined by f ◦g(x) =
f(g(x)). Is ρ3 the composition of ρ and ρ2? Does the answer depend
on the order in which we write ρ and ρ2? How is ρ2 related to ρ?

Solution: Yes, ρ3 is the composition of ρ and ρ2, and also of ρ2 and
ρ, so it doesn’t matter in which order we write them. ρ2 = ρ ◦ ρ.

◦249. Is the composition of two permutations always a permutation?

Solution: Yes, because the composition of one-to-one functions is
one-to-one and the composition of onto functions is onto.

In Problem 248 you see that we can think of ρ2 ◦ ρ as the result of first
rotating by 90 degrees and then by another 180 degrees. In other words, the
composition of two rotations is the same thing as first doing one and then
doing the other. Of course there is nothing special about 90 degrees and 180
degrees. As long as we first do one rotation through a multiple of 90 degrees
and then another rotation through a multiple of 90 degrees, the composition
of these rotations is a rotation through a multiple of 90 degrees.

If we first rotate by 90 degrees and then by 270 degrees then we have
rotated by 360 degrees, which does nothing visible to the square. Thus we
say that ρ4 is the “identity function.” In general the identity function on
a set S, denoted by ι (the Greek letter iota, pronounced eye-oh-ta) is the
function that takes each element of the set to itself. In symbols, ι(x) = x

1What we are doing is restricting the rotation ρ to the set {1, 2, 3, 4}.
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for every x in S. Of course the identity function on a set is a permutation
of that set.

6.1.2 Groups of permutations

◦250. For any function ϕ from a set S to itself, we define ϕn (for nonnegative
integers n) inductively by ϕ0 = ι and ϕn = ϕn−1 ◦ϕ for every positive
integer n. If ϕ is a permutation, is ϕn a permutation? Based on your
experience with previous inductive proofs, what do you expect ϕn◦ϕm

to be? What do you expect (ϕm)n to be? There is no need to prove
these last two answers are correct, for you have, in effect, already done
so in Chapter 2.

Solution: It is a permutation because the composition of permu-
tations is a permutation. (You could be more precise and use the
inductive definition of ϕn to prove inductively that ϕn is a permuta-
tion.) We expect ϕm ◦ ϕn = ϕm+n, and we expect (ϕm)n = ϕmn, and
we would prove this by induction.

◦251. If we perform the composition ι ◦ ϕ for any function ϕ from S to S,
what function do we get? What if we perform the composition ϕ ◦ ι?

Solution: ι ◦ ϕ = ϕ ◦ ι = ϕ

What you have observed about iota in Problem 251 is called the identity
property of iota. In the context of permutations, people usually call the
function ι “the identity” rather than calling it “iota.”

Since rotating first by 90 degrees and then by 270 degrees has the same
effect as doing nothing, we can think of the 270 degree rotation as undoing
what the 90 degree rotation does. For this reason we say that in the rotations
of the square, ρ3 is the “inverse” of ρ. In general, a function ϕ : T → S
is called an inverse of a function σ : S → T (σ is the lower case Greek
letter sigma) if ϕ ◦ σ = σ ◦ ϕ = ι. For a slower introduction to inverses and
practice with them, see Section A.1.3 in Appendix A. Since a permutation is
a bijection, it has a unique inverse, as in Section A.1.3 of Appendix A. And
since the inverse of a bijection is a bijection (again, as in the Appendix), the
inverse of a permutation is a permutation.

We use ϕ−1 to denote the inverse of the permutation ϕ. We’ve seen
that the rotations of the square are functions that return the square to its
original location but may move the vertices to different places. In this way
we create permutations of the vertices of the square. We’ve observed three
important properties of these permutations.
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• (Identity Property) These permutations include the identity permuta-
tion.

• (Inverse Property) Whenever these permutations include ϕ, they also
include ϕ−1.

• (Closure Property) Whenever these permutations include ϕ and σ,
they also include ϕ ◦ σ.

A set of permutations with these three properties is called a permuta-
tion group2 or a group of permutations. We call the group of permutations
corresponding to rotations of the square the rotation group of the square.
There is a similar rotation group with n elements for any regular n-gon.

252. If f : S → T , g : T → X, and h : X → Y , is

h ◦ (g ◦ f) = (h ◦ g) ◦ f?

What does this say about the status of the associative law

ρ ◦ (σ ◦ ϕ) = (ρ ◦ σ) ◦ ϕ

in a group of permutations?

Solution: Since (h ◦ (g ◦ f))(x) = h((g ◦ f)(x)) = h(g(f(x))) and
((h ◦ g) ◦ f)(x) = (h ◦ g)(f(x)) = h(g(f(x))), we have that

h ◦ (g ◦ f) = (h ◦ g) ◦ f.

This says that the associative law holds for the composition operation
in a group of permutations.

253. •(a) How should we define ϕ−n for an element ϕ of a permutation
group?
Solution: We define ϕ−n =

(
ϕ−1

)n.
•(b) Will the two standard rules for exponents

aman = am+n and (am)n = amn

still hold in a group if one or more of the exponents may be
negative? (No proof required yet.)
Solution: Yes.

2The concept of a permutation group is a special case of the concept of a group that
one studies in abstract algebra. When we refer to a group in what follows, if you know
what groups are in the more abstract sense, you may use the word in this way. If you
do not know about groups in this more abstract sense, then you may assume we mean
permutation group when we say group.
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(c) Proving that (ϕ−m)n = ϕ−mn when m and n are nonnegative is
different from proving that (ϕm)−n = ϕ−mn when m and n are
nonnegative. Make a list of all such formulas we would need to
prove in order to prove that the rules of exponents of Part 253b
do hold for all nonnegative and negative m and n.
Solution: To prove this we need to show that for nonnegative
m and n we have that ϕm ◦ϕ−n = ϕm−n, that ϕ−m ◦ϕn = ϕn−m,
that ϕ−mϕ−n = ϕ−m−n, that (ϕm)−n = ϕ−mn, that (ϕ−m)n =
ϕ−mn and that (ϕ−m)−n = ϕmn.

(d) If the rules hold, give enough of the proof to show that you know
how to do it; otherwise give a counterexample.
Solution: We prove the first and last formula. We will induct
on n in the first proof. If n = 0 the formula automatically holds.
Assume inductively that ϕm ◦ ϕ−(n−1) = ϕm−(n−1). Compose
both sides of this equation on the right by σ−1 and use the asso-
ciative law for composition of functions to get, in the case that
m− n is nonnegative

ϕm ◦ (ϕ−(n−1) ◦ ϕ−1) = ϕm−(n−1) ◦ ϕ−1

ϕm ◦ (ϕ−1)n−1ϕ−1 = (ϕm−n ◦ ϕ) ◦ ϕ−1

ϕm ◦ (ϕ−1)n = ϕm−n

ϕmϕ−n = ϕm−n.

We do the same in the case that m− n is negative, getting

ϕm ◦ (ϕ−(n−1) ◦ ϕ−1) = ϕm−(n−1) ◦ ϕ−1

ϕm ◦ (ϕ−1)n−1ϕ−1 = (ϕ−1)n−m−1 ◦ ϕ−1

ϕm ◦ (ϕ−1)n = (ϕ−1)n−m

ϕm ◦ ϕ−n = ϕm−n.

To prove the last statement we need to prove, we write the follow-
ing, in which the line marked (∗) follows from (ϕm)−n = ϕ−mn

and the line marked (∗∗) follows from the fact that (ϕ−1)−1 = ϕ.

(ϕ−m)−n = ([ϕ−1)m]−1)n

= [(ϕ−1)−m]n (∗)
= ([(ϕ−1)−1]m)n

= (ϕm)n (∗∗)
= ϕmn
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This completes our proof.

•254. If a finite set of permutations satisfies the closure property is it a
permutation group?

Solution: Yes, because the permutations σ, σ2, . . . , σn, . . .must
eventually start repeating. But if σi = σj , and i < j, then σj−i = ι,
so σj−i−1 is the inverse of σ. This means that every member of the set
of permutations has an inverse in that set. But then since σ ◦σ−1 = ι,
we have that the identity is in the set as well. Thus it is a permutation
group.

•255. There are three-dimensional geometric motions of the square that re-
turn it to its original location but move some of the vertices to other
positions. For example, if we flip the square around a diagonal, most
of it moves out of the plane during the flip, but the square ends up
in the same location. Draw a figure like Figure 6.1 that shows all the
possible results of such motions, including the ones shown in Figure
6.1. Do the corresponding permutations form a group?

Solution:
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The set of all permutations corresponding to motions forms a group
because it is closed under composition.

256. Let σ and ϕ be permutations.

(a) Why must σ ◦ ϕ have an inverse?
Solution: One could either say that the composition of one-
to-one and onto functions is one-to-one and onto, or note that
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(σ ◦ ϕ) ◦ (ϕ−1 ◦ σ−1) = ι by the associative law. Note that this
says that (σ ◦ ϕ)−1 = ϕ−1 ◦ σ−1.

(b) Is (σ ◦ ϕ)−1 = σ−1ϕ−1? (Prove or give a counter-example.)
Solution: The set of all permutations of {1, 2, 3} is a permu-
tation group. Let σ be given by σ(1) = 2, σ(2) = 3, and
σ(3) = 1. Let ϕ be given by ϕ(1) = 1, ϕ(2) = 3, and ϕ(3) = 2.
Then σ ◦ ϕ(1) = 2, σ ◦ ϕ(2) = 1, and σ ◦ ϕ(3) = 3. But
σ−1 ◦ ϕ−1(2) = σ−1(3) = 2. Thus (σ ◦ ϕ)−1 6= σ−1ϕ−1.

(c) Is (σ ◦ ϕ)−1 = ϕ−1σ−1? (Prove or give a counter-example.)
Solution: See the second solution for Part (a).

◦257. Explain why the set of all permutations of four elements is a permu-
tation group. How many elements does this group have? This group
is called the symmetric group on four letters and is denoted by S4.

Solution: It is a finite set of permutations that satisfies the closure
property. It has 4! = 24 elements.

6.1.3 The symmetric group

In general, the set of all permutations of an n-element set is a group. It is
called the symmetric group on n letters. We don’t have nice geometric
descriptions (like rotations) for all its elements, and it would be inconvenient
to have to write down something like “Let σ(1) = 3, σ(2) = 1, σ(3) = 4, and
σ(4) = 1” each time we need to introduce a new permutation. We introduce
a new notation for permutations that allows us to denote them reasonably
compactly and compose them reasonably quickly. If σ is the permutation of
{1, 2, 3, 4} given by σ(1) = 3, σ(2) = 1, σ(3) = 4 and σ(4) = 2, we write

σ =
(

1 2 3 4
3 1 4 2

)
.

We call this notation the two row notation for permutations. In the two
row notation for a permutation of {a1, a2, . . . , an}, we write the numbers
a1 through an in one row and we write σ(a1) through σ(an) in a row right
below, enclosing both rows in parentheses. Notice that(

1 2 3 4
3 1 4 2

)
=
(

2 1 4 3
1 3 2 4

)
,

although the second ordering of the columns is rarely used.
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If ϕ is given by

ϕ =
(

1 2 3 4
4 1 2 3

)
,

then, by applying the definition of composition of functions, we may compute
σ ◦ ϕ as shown in Figure 6.2.

Figure 6.2: How to multiply permutations in two row notation.
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We don’t normally put the circle between two permutations in two row
notation when we are composing them, and refer to the operation as multi-
plying the permutations, or as the product of the permutations. To see how
Figure 6.2 illustrates composition, notice that the arrow starting at 1 in ϕ
goes to 4. Then from the 4 in ϕ it goes to the 4 in σ and then to 2. This
illustrates that ϕ(1) = 4 and σ(4) = 2, so that σ(ϕ(1)) = 2.

258. For practice, compute
(

1 2 3 4 5
3 4 1 5 2

)(
1 2 3 4 5
4 3 5 1 2

)
.

Solution:
(

1 2 3 4 5
5 1 2 3 4

)

6.1.4 The dihedral group

We found four permutations that correspond to rotations of the square. In
Problem 255 you found four permutations that correspond to flips of the
square in space. One flip fixes the vertices in the places labeled 1 and 3
and interchanges the vertices in the places labeled 2 and 4. Let us denote
it by ϕ1|3. One flip fixes the vertices in the positions labeled 2 and 4 and
interchanges those in the positions labeled 1 and 3. Let us denote it by
ϕ2|4. One flip interchanges the vertices in the places labeled 1 and 2 and
also interchanges those in the places labeled 3 and 4. Let us denote it by
ϕ12|34. The fourth flip interchanges the vertices in the places labeled 1 and
4 and interchanges those in the places labeled 2 and 3. Let us denote it by
ϕ14|23. Notice that ϕ1|3 is a permutation that takes the vertex in place 1



6.1. PERMUTATION GROUPS 225

to the vertex in place 1 and the vertex in place 3 to the vertex in place 3,
while ϕ12|34 is a permutation that takes the edge between places 1 and 2
to the edge between places 2 and 1 (which is the same edge) and takes the
edge between places 3 and 4 to the edge between places 4 and 3 (which is
the same edge). This should help to explain the similarity in the notation
for the two different kinds of flips.

•259. Write down the two row notation for ρ3, ϕ2|4, ϕ12|34 and ϕ2|4 ◦ϕ12|34.

Solution:(
1 2 3 4
4 1 2 3

)
,
(

1 2 3 4
3 2 1 4

)
,
(

1 2 3 4
2 1 4 3

)
,
(

1 2 3 4
2 3 4 1

)
.

260. (You may have already done this problem in Problem 255, in which
case you need not do it again!) In Problem 255, if a rigid motion in
three-dimensional space returns the square to its original location, in
how many places can vertex number one land? Once the location of
vertex number one is decided, how many possible locations are there
for vertex two? Once the locations of vertex one and vertex two are
decided, how many locations are there for vertex three? Answer the
same question for vertex four. What does this say about the relation-
ship between the four rotations and four flips described just before
Problem 259 and the permutations you described in Problem 255?

Solution: Vertex number one can go in four places. After the place
for vertex 1 is chosen, there are two choices for vertex 2. After vertices
1 and 2 are placed, one side of the square has been placed, and there is
only one way the rest of the square can fill in the same location where
the square used to be, so there is only one choice for where vertex 3
goes and one choice for where vertex 4 goes. Thus the permutations
described in Problem 255 are exactly the rotations and flips.

The four rotations and four flips of the square described before Problem
259 form a group called the dihedral group of the square. Sometimes the
group is denoted D8 because it has eight elements, and sometimes the group
is denoted by D4 because it deals with four vertices! Let us agree to use the
notation D4 for the dihedral group of the square. There is a similar dihedral
group, denoted by Dn, of all the rigid motions of three-dimensional space
that return a regular n-gon to its original location (but might put the vertices
in different places).

261. Another view of the dihedral group of the square is that it is the
group of all distance preserving functions, also called isometries, from
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a square to itself. Notice that an isometry must be a bijection. Any
rigid motion of the square preserves the distances between all points
of the square. However, it is conceivable that there might be some
isometries that do not arise from rigid motions. (We will see some
later on in the case of a cube.) Show that there are exactly eight
isometries (distance preserving functions) from a square to itself.

Solution: We can use three of the vertices of a square to set up a
rectangular coordinate system, and every point is determined by its
signed distances from the two coordinate lines. But the distance of
a point from a line is simply the height of a triangle given by that
point and two points on the line. All unsigned distances of points in
the square from the coordinate lines are determined by the distances of
points from the three points we use to construct our coordinate system.
We can set up our coordinate system so all distances of points in the
square from the coordinate lines are positive. Therefore each point
in the square is determined by its distances from the three points we
have chosen. But a distance preserving map must take corners of the
square to corners of the square (it has to preserve diagonal distances).
Therefore any isometry is determined by what it does to the corners of
the square. But two adjacent corners must go to two adjacent corners
for distances to be preserved and so a corner and the two edges adjacent
to it must be mapped to a corner and the two edges adjacent to it.
There are four choices for the corner that we map to and two choices
of which edges go to which once the corner is chosen. Thus there are
8 choices for an isometry of the square. Each element of the dihedral
group of the square is a permutation of the corners determined by a
rigid motion, and thus an isometry. Thus the dihedral group can also
be thought of as the permutations of the vertices (corners) of a square
induced by isometries.

262. How many elements does the group Dn have? Prove that you are
correct.

Solution: Dn has 2n elements, because once you have chosen one of
the n places for vertex one, there are two choices for vertex two, and
the remaining vertices can go in only one place each.

•263. In Figure 6.3 we show a cube with the positions of its vertices and
faces labeled. As with motions of the square, we let we let ϕ(x) be the
label of the place where vertex previously in position x is now.
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Figure 6.3: A cube with the positions of its vertices and faces labeled. The
curved arrows point to the faces that are blocked by the cube.
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(a) Write in two row notation the permutation ρ of the vertices that
corresponds to rotating the cube 90 degrees around a vertical axis
through the faces t (for top) and u (for underneath). (Rotate in
a right-handed fashion around this axis, meaning that vertex 6
goes to the back and vertex 8 comes to the front.)

Solution:
(

1 2 3 4 5 6 7 8
2 3 4 1 6 7 8 5

)
(b) Write in two row notation the permutation ϕ that rotates the

cube 120 degrees around the diagonal from vertex 1 to vertex 7
and carries vertex 8 to vertex 6.

Solution:
(

1 2 3 4 5 6 7 8
1 4 8 5 2 3 7 6

)
(c) Compute the two row notation for ρ ◦ ϕ.

Solution:(
1 2 3 4 5 6 7 8
2 3 4 1 6 7 8 5

)(
1 2 3 4 5 6 7 8
1 4 8 5 2 3 7 6

)
=(

1 2 3 4 5 6 7 8
2 1 5 6 3 4 8 7

)
.
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(d) Is the permutation ρ◦ϕ a rotation of the cube around some axis?
If so, say what the axis is and how many degrees we rotate around
the axis. If ρ ◦ ϕ is not a rotation, give a geometric description
of it.
Solution: It is a rotation of 180 degrees around the axis be-
tween the center of the edge 1,2 and the center of the edge 7,8.

·264. How many permutations are in the group R? R is sometimes called
the “rotation group” of the cube. Can you justify this?

Solution: There are eight places where vertex one can go. Once
vertex 1 is placed, there are three ways the three faces including vertex
1 can be placed so that the cube returns to its original location, and
then the location of all the vertices is determined. Thus there are 24
elements of the group. Of them, we have the identity, three rotations
about each of the three axes through the midpoints of the faces, one
additional rotation about each of the six axes joining opposite faces,
and 2 · 4 = 8 additional rotations about each of the four axes joining
a vertex to the diagonally (in three dimensions) opposite vertex. This
gives us a total of 10+6+8=24 rotations, so every element of the group
is a rotation.

265. As with a two-dimensional figure, it is possible to talk about isometries
of a three-dimensional figure. These are distance preserving functions
from the figure to itself. The function that reflects the cube in Figure
6.3 through a plane halfway between the bottom face and top face
exchanges the vertices 1 and 5, 2 and 6, 3 and 7, and 4 and 8 of the
cube. This function preserves distances between points in the cube.
However, it cannot be achieved by a rigid motion of the cube because
a rigid motion that takes vertex 1 to vertex 5, vertex 2 to vertex 6,
vertex 3 to vertex 7, and vertex 4 to vertex 8 would not return the
cube to its original location; rather it would put the bottom of the
cube where its top previously was and would put the rest of the cube
above that square rather than below it.

(a) How many elements are there in the group of permutations of [8]
that correspond to isometries of the cube?
Solution: There are 48, because there are 8 places for vertex
one to go, and once it is placed, there are six ways to place the
three vertices adjacent to vertex 1, and each of them corresponds
to an isometry.
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(b) Is every permutation of [8] that corresponds to an isometry either
a rotation or a reflection?
Solution: It suffices by symmetry to show that half the per-
mutations that take vertex 1 to itself are rotations and half are
reflections. There are six permutations corresponding to isome-
tries that take vertex 1 to vertex 1. We already know that three
of them are rotations of the cube around an axis through vertex
1 and vertex 7. One of them reflects through the plane bisecting
and perpendicular to the edges 1, 5 and 3, 7. One of them re-
flects through the plane bisecting and perpendicular to the edges
1, 4 and 6, 7. One of them reflects through the plane bisecting
and perpendicular to the edges 1, 2 and 7, 8. Thus half of the
isometries that take vertex 1 to vertex 1 are reflections, and by
symmetry, half of the isometries (or in other words, 24 of them)
are reflections. The other half (again, 24 isometries) are rotations.
Thus every isometry is either a rotation or a reflection.

6.1.5 Group tables (Optional)

We can always figure out the composition of two permutations of the same
set by using the definition of composition, but if we are going to work with
a given permutation group again and again, it is worth making the com-
putations once and recording them in a table. For example, the group of
rotations of the square may be represented as in Table 6.1. We list the
elements of our group, with the identity first, across the top of the table
and down the left side of the table, using the same order both times. Then
in the row labeled by the group element σ and the column labeled by the
group element ϕ, we write the composition σ ◦ ϕ, expressed in terms of the
elements we have listed on the top and on the left side. Since a group of
permutations is closed under composition, the result σ ◦ ϕ will always be
expressible as one of these elements.

266. In Table 6.1, all the entries in a row (not including the first entry,
the one to the left of the line) are different. Will this be true in any
group table for a permutation group? Why or why not? Also in Table
6.1 all the entries in a column (not including the first entry, the one
above the line) are different. Will this be true in any group table for
a permutation group? Why or why not?

Solution: It will always be the case that all the entries of a row or
column below and to the left of the lines in a group table are different.
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Table 6.1: The group table for the rotations of a square.

◦ ι ρ ρ2 ρ3

ι ι ρ ρ2 ρ3

ρ ρ ρ2 ρ3 ι
ρ2 ρ2 ρ3 ι ρ
ρ3 ρ3 ι ρ ρ2

If two entries of the row labeled by σ were equal, that would mean
σ◦ϕ1 = σ◦ϕ2 for two different elements ϕ1 and ϕ2. But if we multiply
both sides of the equation by σ−1 we get σ−1(σ ◦ ϕ1) = σ−1(σ ◦ ϕ2),
and by using the associative law and the identity property, we get
ϕ1 = ϕ2, a contradiction. The same sort of argument (with σ on the
right) works for columns.

267. In Table 6.1, every element of the group appears in every row (even if
you don’t include the first element, the one before the line). Will this
be true in any group table for a permutation group? Why or why not?
Also in Table 6.1 every element of the group appears in every column
(even if you don’t include the first entry, the one before the line). Will
this be true in any group table for a permutation group? Why or why
not?

Solution: Every element appears in each row and every element ap-
pears in each column (after and below the lines). This is because the
number of entries in a row or column is the number of elements of
the group. By the pigeonhole principle, if not all the elements appear
in a row, then two are the same, so τ ◦ σ1 = τ ◦ σ2 for some σ1, σ2,
and τ (τ is the Greek letter tau that rhymes with cow) in the group
with σ1 6= σ2. Composing by τ−1 gives us σ1 = σ2, a contradiction.
The same kind of argument works on columns, though you now have
σ1 ◦ τ = σ2 ◦ τ for some σ1, σ2, and τ in the group with σ1 6= σ2.

·268. Write down the group table for the dihedral group D4. Use the ϕ
notation described earlier to denote the flips. (Hints: Part of the table
has already been written down. Will you need to think hard to write
down the last row? Will you need to think hard to write down the last
column?)

Solution:
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◦ ι ρ ρ2 ρ3 ϕ1|3 ϕ2|4 ϕ12|34 ϕ14|23
ι ι ρ ρ2 ρ3 ϕ1|3 ϕ2|4 ϕ12|34 ϕ14|23
ρ ρ ρ2 ρ3 ι ϕ12|34 ϕ23|14 ϕ2|4 ϕ1|3
ρ2 ρ2 ρ3 ι ρ ϕ2|4 ϕ1|3 ϕ14|23 ϕ12|34
ρ3 ρ3 ι ρ ρ2 ϕ23|14 ϕ12|34 ϕ1|3 ϕ2|4

ϕ1|3 ϕ1|3 ϕ14|23 ϕ2|4 ϕ12|34 ι ρ2 ρ ρ3

ϕ2|4 ϕ2|4 ϕ12|34 ϕ1|3 ϕ14|23 ρ2 ι ρ3 ρ

ϕ12|34 ϕ13|24 ϕ1|3 ϕ14|23 ϕ2|4 ρ ρ3 ι ρ2

ϕ14|23 ϕ14|23 ϕ2|4 ϕ12|34 ϕ1|3 ρ3 ρ ρ2 ι

You may notice that the associative law, the identity property, and the
inverse property are three of the most important rules that we use in regroup-
ing parentheses in algebraic expressions when solving equations. There is
one property we have not yet mentioned, the commutative law, which would
say that σ ◦ϕ = ϕ ◦ σ. It is easy to see from the group table of the rotation
group of a square that it satisfies the commutative law.

269. Does the commutative law hold in all permutation groups?

Solution: No. In the group D3 or D4, for example, a nontrivial
rotation (other than ρ2 in D4) does not commute with a flip.

6.1.6 Subgroups

We have seen that the dihedral group D4 contains a copy of the group of
rotations of the square. When one group G of permutations of a set S
is a subset of another group G′ of permutations of S, we say that G is a
subgroup of G′.

◦270. Find all subgroups of the group D4 and explain why your list is com-
plete.

Solution: {ρ2,ι}, {ϕ1|3,ι}, {ϕ2|4,ι}, {ϕ12|34,ι}, {ϕ14|23,ι}, {ι, ρ, ρ2, ρ3},
{ι, ϕ1|3, ρ

2, ϕ2|4}, {ι, ϕ12|34, ρ
2, ϕ12|34}, {ι}, and all of D4. Notice that

once a subgroup has ρ or ρ3 in it, it has all powers of ρ, and if it has all
powers of ρ and just one flip, it has all the flips in it. But the product
of two “different kinds” of flips is ρ or ρ3, and this shows that our list
of subgroups is complete.
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271. Can you find subgroups of the symmetric group S4 with two elements?
Three elements? Four elements? Six elements? (For each positive
answer, describe a subgroup. For each negative answer, explain why
not.)

Solution: Yes to all of the above. For two elements, {ι,
(

1 2 3 4
2 1 3 4

)
},

for three elements, {ι,
(

1 2 3 4
3 1 2 4

)
,

(
1 2 3 4
2 3 1 4

)
} (which is the

rotations of a triangle on {1, 2, 3}), for four elements, the rotations of
a square, and for six elements, the rotations and flips of a triangle on
{1, 2, 3}. (There is no subgroup with five elements, but at this point,
that is quite hard to verify.)

6.1.7 The cycle decomposition of a permutation

The digraph of a permutation gives us a nice way to think about it. No-

tice that the product in Figure 6.2 is
(

1 2 3 4
2 3 1 4

)
. We have drawn the

directed graph of this permutation in Figure 6.4. You see that the graph

Figure 6.4: The directed graph of the permutation
(

1 2 3 4
2 3 1 4

)
.

1

23
4

has two directed cycles, the rather trivial one with vertex 4 pointing to it-
self, and the nontrivial one with vertex 1 pointing to vertex 2 pointing to
vertex 3 which points back to vertex 1. A permutation is called a cycle if

its digraph consists of exactly one cycle. Thus
(

1 2 3
2 3 1

)
is a cycle but(

1 2 3 4
2 3 1 4

)
is not a cycle by our definition. We write (1 2 3) or (2 3 1)

or (3 1 2) to stand for the cycle σ =
(

1 2 3
2 3 1

)
.
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We can describe cycles in another way as well. A cycle of the permuta-
tion σ is a list (i σ(i) σ2(i) . . . σn(i)) that does not have repeated elements
while the list (i σ(i) σ2(i) . . . σn(i) σn+1(i)) does have repeated elements.

272. If the list (i σ(i) σ2(i) . . . σn(i)) does not have repeated elements but
the list (i σ(i) σ2(i) . . . σn(i) σn+1(i)) does have repeated elements,
then what is σn+1(i)?

Solution: Only one element can be repeated, and that element must
be σn+1(i). Further, we have that σn+1(i) must be i, because if we
had

σj(i) = σn+1(i) (∗)

and 0 < j < n + 1, applying σ−j to both sides of Equation (∗) would
give us an earlier repeat.

We say σj(i) is an element of the cycle (i σ(i) σ2(i) . . . σn(i)). Notice
that the case j = 0 means i is an element of the cycle. Notice also that
if j > n, σj(i) = σj−n−1(i), so the distinct elements of the cycle are i,
σ(i), σ2(i), through σn(i). We think of the cycle (i σ(i) σ2(i) . . . σn(i)) as
representing the permutation σ restricted to the set of elements of the cycle.
We say that the cycles

(i σ(i) σ2(i) . . . σn(i))

and
(σj(i) σj+1(i) . . . σn(i) i σ(i) σ2(i) . . . σj−1(i))

are equivalent. Equivalent cycles represent the same permutation on the set
of elements of the cycle. For this reason, we consider equivalent cycles to be
equal in the same way we consider 1

2 and 2
4 to be equal. In particular, this

means that (i1 i2 . . . in) = (ij ij+1 . . . in i1 i2 . . . ij−1).

•273. Find the cycles of the permutations ρ, ϕ1|3 and ϕ12|34 in the group D4.

Solution: The permutation ρ has one cycle, (1 2 3 4), ϕ1|3 has the
cycles (2 4) (1), and (3), ϕ12|34 has two cycles, namely (1 2) and (3 4).

◦274. Find the cycles of the permutation
(

1 2 3 4 5 6 7 8 9
3 4 6 2 9 7 1 5 8

)
.

Solution: ( 1 3 6 7 ), ( 2 4 ), and ( 5 9 8 ).
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275. If two cycles of σ have an element in common, what can we say about
them?

Solution: They are the same cycle, since if the cycles are

(i σ(i) σ2(i) . . . σn(i))

and
(j σ(j) σ2(j) . . . σm(j))

and σp(i) = σq(j) is a common element, then, j = σp−q(i). Thus if
p ≥ q, j is in the first cycle. Otherwise σp−q(i) = σn+1=p−q(i) = j,
and so j is in the first cycle. Thus if we start the first cycle with σk(i)
rather than i, we will get an equivalent cycle. But we will get the
second cycle, so the two cycles are equal.

Problem 275 leads almost immediately to the following theorem.

Theorem 8 For each permutation σ of a set S, there is a unique partition
of S each of whose blocks is the set of elements of a cycle of σ.

More informally, we may say that every permutation partitions its domain
into disjoint cycles. We call the set of cycles of a permutation the cycle
decomposition of the permutation. Since the cycles of a permutation σ tell us
σ(x) for every x in the domain of σ, the cycle decomposition of a permutation
completely determines the permutation. Using our informal language, we
can express this idea in the following corollary to Theorem 8.

Corollary 2 Every partition of a set S into cycles determines a unique
permutation of S.

276. Prove Theorem 8.

Solution: Suppose the (inequivalent) cycles of σ are γ1, γ2, . . . , γk.
Then let Bj be the set of elements of γj . Since each element i is in
the cycle (i σ(i) . . . ), every element is in a set Bj . Since no two
(inequivalent) cycles have an element in common, every element of S
is in exactly one set Bj . Then the sets Bj are the blocks of a partition,
and it is the only partition each of whose blocks is the set of elements
of a cycle of σ. This completes the proof.

In Problems 273 and 274 you found the cycle decompositions of typical
elements of the group D4 and of the permutation(

1 2 3 4 5 6 7 8 9
3 4 6 2 9 7 1 5 8

)
.
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The group of all rotations of the square is simply the set of the four
powers of the cycle ρ = (1 2 3 4). For this reason, it is called a cyclic group3

and often denoted by C4. Similarly, the rotation group of an n-gon is usually
denoted by Cn.

277. Write a recurrence for the number c(k, n) of permutations of [k] that
have exactly n cycles, including 1-cycles. Use it to write a table of
c(k, n) for k between 1 and 7 inclusive. Can you find a relationship
between c(k, n) and any of the other families of special numbers such
as binomial coefficients, Stirling numbers, Lah numbers, etc. we have
studied? If you find such a relationship, prove you are right.

Solution: The element k is either in a cycle by itself or it isn’t. The
number of permutations in which it is in a cycle by itself is c(k−1, n−
1). If it is in a cycle with something else, it can come after any of the
k − 1 elements, and each choice of which one it comes after gives a
different permutation. (You can always shift a cycle around so that k
doesn’t come first.) Thus c(k, n) = c(k− 1, n− 1) + (k− 1)c(k− 1, n).
The table is:

k/n 0 1 2 3 4 5 6 7
0 1 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0
2 0 1 1 0 0 0 0 0
3 0 2 3 1 0 0 0 0
4 0 6 11 6 1 0 0 0
5 0 24 50 35 10 1 0 0
6 0 120 274 225 85 15 1 0
7 0 720 1764 1624 735 175 21 1

We see that the table is identical with our earlier table of the Stir-
ling numbers of the first kind, except that in that table there was an
alternating pattern of minus signs, offset by one place in successive
rows. Thus it must be the case that c(k, n) = |s(k, n)|. To prove this,
note that it is the case when k = 0, and also when n = 1. Now as-
sume inductively it is true when k = m − 1 and notice that if n > 0,
s(m, n) = s(m − 1, n − 1) − (m − 1)s(m − 1, n), that s(m − 1, n − 1)
and s(m− 1, n) have opposite signs, so

|s(m− 1, n− 1)− (m− 1)s(m− 1, n)|
3The phrase cyclic group applies in a more general (but similar) situation. Namely the

set of all powers of any member of a group is called a cyclic group.
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= |s(m− 1, n− 1)|+ (m− 1)|s(m− 1, n)|
= c(m− 1, n− 1) + (m− 1)c(m− 1, n)
= c(m,n).

Thus by the principle of mathematical induction c(k, n) = |s(k, n)| for
all nonnegative numbers k (and all n between 0 and k).

·278. (Relevant to Appendix C.) A permutation σ is called an involution if
σ2 = ι. When you write down the cycle decomposition of an involution,
what is special about the cycles?

Solution: They are all 2-cycles or 1-cycles.

6.2 Groups Acting on Sets

We defined the rotation group C4 and the dihedral group D4 as groups
of permutations of the vertices of a square. These permutations represent
rigid motions of the square in the plane and in three-dimensional space
respectively. The square has geometric features of interest other than its
vertices; for example, its diagonals, or its edges. Any geometric motion
of the square that returns it to its original location takes each diagonal to
a possibly different diagonal, and takes each edge to a possibly different
edge. In Figure 6.5 we show the results on the sides and diagonals of the
rotations of a square. The rotation group permutes the sides of the square

Figure 6.5: The results on the sides and diagonals of rotating the square
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and permutes the diagonals of the square as it rotates the square. Thus we
say the rotation group “acts” on the sides and diagonals of the square.
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◦279. (a) Write down the two-line notation for the permutation ρ that a
90 degree rotation does to the sides of the square.

Solution:
(

s1 s2 s3 s4

s3 s3 s4 s1

)
.

(b) Write down the two-line notation for the permutation ρ2 that a
180 degree rotation does to the sides of the square.

Solution:
(

s1 s2 s3 s4

s3 s4 s1 s2

)
.

(c) Is ρ2 = ρ ◦ ρ? Why or why not?
Solution: Yes, because(

s1 s2 s3 s4

s2 s3 s4 s1

)(
s1 s2 s3 s4

s2 s3 s4 s1

)
=
(

s1 s2 s3 s4

s3 s4 s1 s2

)
.

(d) Write down the two-line notation for the permutation ρ̂ that a 90
degree rotation does to the diagonals d13, and d24 of the square.

Solution:
(

d13 d24

d24 d13

)
.

(e) Write down the two-line notation for the permutation ρ̂2 that a
180 degree rotation does to the diagonals of the square.

Solution:
(

d13 d24

d13 d24

)
.

(f) Is ρ̂2 = ρ̂ ◦ ρ̂? Why or why not? What familiar permutation is ρ̂2

in this case?
Solution: Yes, because(

d13 d24

d24 d13

)(
d13 d24

d24 d13

)
=
(

d13 d24

d13 d24

)
.

Interestingly, ρ̂2 = ι.

We have seen that the fact that we have defined a permutation group
as the permutations of some specific set doesn’t preclude us from thinking
of the elements of that group as permuting the elements of some other set
as well. In order to keep track of which permutations of which set we are
using to define our group and which other set is being permuted as well, we
introduce some new language and notation. We are going to say that the
group D4 “acts” on the edges and diagonals of a square and the group R of
permutations of the vertices of a cube that arise from rigid motions of the
cube “acts” on the edges, faces, diagonals, etc. of the cube.
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•280. In Figure 6.3 we show a cube with the positions of its vertices and
faces labeled. As with motions of the square, we let we let ϕ(x) be the
label of the place where vertex previously in position x is now.

·(a) In Problem 263 we wrote in two row notation the permutation ρ
of the vertices that corresponds to rotating the cube 90 degrees
around a vertical axis through the faces t (for top) and u (for
underneath). (We rotated in a right-handed fashion around this
axis, meaning that vertex 6 goes to the back and vertex 8 comes
to the front.) Write in two row notation the permutation ρ of the
faces that corresponds to this member ρ of R.

Solution:
(

t f r b l u
t r b l f u

)
(b) In Problem 263 we wrote in two row notation the permutation

ϕ that rotates the cube 120 degrees around the diagonal from
vertex 1 to vertex 7 and carries vertex 8 to vertex 6. Write in two
row notation the permutation ϕ of the faces that corresponds to
this member of R.

Solution:
(

t f r b l u
r u b t f l

)
(c) In Problem 263 we computed the two row notation for ρ ◦ ϕ.

Now compute the two row notation for ρ ◦ ϕ (ρ was defined in
Part 280a), and write in two row notation the permutation ρ ◦ ϕ
of the faces that corresponds to the action of the permutation
ρ ◦ ϕ on the faces of the cube (for this question it helps to think
geometrically about what motion of the cube is carried out by
ρ ◦ ϕ). What do you observe about ρ ◦ ϕ and ρ ◦ ϕ?
Solution:(

t f r b l u
t r b l f u

)(
t f r b l u
r u b t f l

)
=(

t f r b l u
b u l t r f

)

ρ ◦ ϕ =
(

t f r b l u
b u l t r f

)
= ρ ◦ ϕ

We say that a permutation group G acts on a set S if, for each member
σ of G there is a permutation σ of S such that

σ ◦ ϕ = σ ◦ ϕ
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for every member σ and ϕ of G. In Problem 280c you saw one example of
this condition. If we think intuitively of ρ and ϕ as motions in space, then
following the action of ϕ by the action of ρ does give us the action of ρ ◦ ϕ.
We can also reason directly with the permutations in the group R of rigid
motions (rotations) of the cube to show that R acts on the faces of the cube.

◦281. Show that a group G of permutations of a set S acts on S with ϕ = ϕ
for all ϕ in G.

Solution: Clearly ϕ is a permutation of S. Further, σ ◦ϕ = σ ◦ϕ =
σ ◦ ϕ.

◦282. The group D4 is a group of permutations of {1, 2, 3, 4} as in Problem
255. We are going to show in this problem how this group acts on
the two-element subsets of {1, 2, 3, 4}. In Problem 287 we will see a
natural geometric interpretation of this action. In particular, for each
two-element subset {i, j} of {1, 2, 3, 4} and each member σ of D4 we
define σ({i, j}) = {σ(i), σ(j)}. Show that with this definition of σ, the
group D4 acts on the two-element subsets of {1, 2, 3, 4}.
Solution: The action has been defined for us, so all we need to show
is that it is indeed an action. We must show that for each permutation
σ in D4, σ is a permutation of the two-element sets of [4] and in
addition we must show that σ ◦ τ = σ ◦ τ . If σ({i, j}) = σ({h, k}),
then either σ(i) = σ(h) and σ(j) = σ(k) or else σ(i) = σ(k) and
σ(j) = σ(h). Since σ is a permutation, in the first case we get i = h
and j = k, so that {i, j} = {h, k}, and in the second case we get that
i = k and j = h so that {i, j} = {k, h} = {h, k}. Thus in either case
{i, j} = {h, k}, so that σ a one-to-one function from the finite set of
two element subsets of {1, 2, 3, 4} to itself, and so it is a permutation.

To show that σ ◦ τ = σ ◦ τ , we note that

(σ ◦ τ)({i, j}) = σ(τ({i, j})) = σ({τ(i), τ(j)}) =
σ(τ(i), τ(j)) = {(σ ◦ τ)(i), (σ ◦ τ)(j)} =

σ ◦ τ({i, j})

·283. Suppose that σ and ϕ are permutations in the group R of rigid motions
of the cube. We have argued already that each rigid motion sends a
face to a face. Thus σ and ϕ both send the vertices on one face to the
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vertices on another face. Let {h, i, j, k} be the set of labels next to the
vertices on a face F .

(a) What are the labels next to the vertices of the face F ′ that F is
sent to by ϕ? (The function ϕ may appear in your answer.)
Solution: ϕ(h), ϕ(i), ϕ(j), ϕ(k).

(b) What are the next to the vertices of the face F ′′ that F ′ is sent
to by σ?
Solution: σ(ϕ(h)), σ(ϕ(i)), σ(ϕ(j)), σ(ϕ(k)).

(c) What are the labels next to the vertices of the face F ′′′ that F is
sent to by σ ◦ ϕ?
Solution: (σ ◦ ϕ)(h) = σ(ϕ(h)), σ(ϕ(i)), σ(ϕ(j)), σ(ϕ(k)).

(d) How have you just shown that the group R acts on the faces?
Solution: We have just shown that for each face F , σ ◦ ϕ(F ) =
σ ◦ ϕ(F ), so that σ ◦ ϕ = σ ◦ ϕ.

6.2.1 Groups acting on colorings of sets

Recall that when you were asked in Problem 45 to find the number of ways
to place two red beads and two blue beads at the corners of a square free to
move in three-dimensional space, you were not able to apply the quotient
principle to answer the question. Instead you had to see that you could
divide the set of six lists of two Rs and two Bs into two sets, one of size
two in which the Rs and Bs alternated and one of size four in which the
two reds (and therefore the two blues) would be side-by-side on the square.
Saying that the square is free to move in space is equivalent to saying that
two arrangements of beads on the square are equivalent if a member of the
dihedral group carries one arrangement to the other. Thus an important
ingredient in the analysis of such problems will be how a group can act on
colorings of a set of vertices. We can describe the coloring of the square in
Figure 6.6 as the function f with

f(1) = R, f(2) = R, f(3) = B, and f(4) = B,

but it is more compact and turns out to be more suggestive to represent the
coloring in Figure 6.6 as the set of ordered pairs

(1, R), (2, R), (3, B), (4, B). (6.1)
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Figure 6.6: The colored square with coloring {(1, R), (2, R), (3, B), (4, B)}

R
1

R
2

B
4

B
3

This gives us an explicit list of which colors are assigned to which vertex.4

Then if we rotate the square through 90 degrees, we see that the set of
ordered pairs becomes

{(ρ(1), R), (ρ(2), R), (ρ(3), B), (ρ(4), B)} (6.2)

which is the same as

{(2, R), (3, R), (4, B), (1, B)}.

or, in a more natural order,

{(1, B), (2, R), (3, R), (4, B)}. (6.3)

The reordering we did in 6.3 suggests yet another simplification of nota-
tion. So long as we know we that the first elements of our pairs are labeled
by the members of [n] for some integer n and we are listing our pairs in
increasing order by the first component, we can denote the coloring

{(1, B), (2, R), (3, R), (4, B)}

by BRRB. In the case where we have numbered the elements of the set S
we are coloring, we will call this list of colors of the elements of S in order
the standard notation for the coloring. We will call the ordering used in 6.3
the standard ordering of the coloring.

Thus we have three natural ways to represent a coloring of a set as a
function, as a set of ordered pairs, and as a list. Different representations
are useful for different things. For example, the representation by ordered

4The reader who has studied Appendix A will recognize that this set of ordered pairs
is the relation of the function f , but we won’t need to make any specific references to the
idea of a relation in what follows.
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pairs will provide a natural way to define the action of a group on colorings
of a set. Given a coloring as a function f , we denote the set of ordered pairs

{(x, f(x))|x ∈ S},

suggestively as (S, f) for short. We use f(1)f(2) · · · f(n) to stand for a
particular coloring (S, f) in the standard notation.

◦284. Suppose now that instead of coloring the vertices of a square, we color
its edges. We will use the shorthand 12, 23, 34, and 41 to stand for the
edges of the cube between vertex 1 and vertex 2, vertex 2 and vertex
3, and so on. Then a coloring of the edges with 12 red, 23 blue, 34 red
and 41 blue can be represented as

{(12, R), (23, B), (34, R), (41, B)}. (6.4)

If ρ is the rotation through 90 degrees, then we have a permutation ρ
acting on the edges. This permutation acts on the colorings to give us
a permutation ρ of the set of colorings.

(a) What is ρ of the coloring in 6.4?
Solution: {(12, B), (23, R), (34, B), (41, R)}.

(b) What is ρ2 of the coloring in 6.4?
Solution: {(12, R), (23, B), (34, R), (41, B)}.

If G is a group that acts the set S, we define the action of G on the
colorings (S, f) by

σ((S, f)) = σ({(x, f(x))|x ∈ S}) = {(σ(x), f(x))|x ∈ S}. (6.5)

We have the two bars over σ, because σ is a permutation of one set that gives
us a permutation σ of a second set, and then σ acts to give a permutation σ
of a third set, the set of colorings. For example, suppose we want to anlayze
colorings of the faces of a cube under the action of the rotation group of
the cube as we have defined it on the vertices. Each vertex-permutation
σ in the group gives a permutation σ of the faces of the cube. Then each
permutation σ of the faces gives us a permutation σ of the colorings of the
faces.

In the special case that G is a group of permutations of S rather than a
group acting on S, Equation 6.5 becomes

σ((S, f)) = σ({(x, f(x))|x ∈ S}) = {(σ(x), f(x))|x ∈ S}.
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In the case where G is the rotation group of the square acting on the vertices
of the square, the example of acting on a coloring by ρ that we saw in 6.3
is an example of this kind of action. In the standard notation, when we act
on a coloring by σ, the color in position i moves to position σ(i).

285. Why does the action we have defined on colorings in Equation 6.5 take
a coloring to a coloring?

Solution: G acts on S. Since σ is a permutation of S when σ ∈ G,
we get a set of pairs in which each element of S is listed once as a
first element and in which each second element is a color. This is a
coloring.

286. Show that if G is a group of permutations of a set S, and f is a coloring
function on S, then the equation

σ({(x, f(x))|x ∈ S}) = {(σ(x), f(x))|x ∈ S}

defines an action of G on the colorings (S, f) of S.

Solution: By Problem 285, σ takes a coloring to a coloring. We
will delay showing that σ is a permutation of the colorings of S. For
the second condition for a group action,

σ ◦ ϕ({(x, f(x))|x ∈ S}) = σ(ϕ({(x, f(x))|x ∈ S}))
= σ({ϕ(x), f(x)|x ∈ S})
= {σ(ϕ(x)), f(x))|x ∈ S}
= {(σ ◦ ϕ(x), f(x))|x ∈ S}
= σ ◦ ϕ(S, f),

so that σ ◦ ϕ = σ ◦ ϕ.

By the condition we just proved σ ◦ σ−1 = σ−1 ◦ σ = ι. Therefore, σ
has an inverse (because ι is the identity), so it is a permutation.

6.2.2 Orbits

•287. In Problem 282

(a) What is the set of two element subsets that you get by computing
σ({1, 2}) for all σ in D4?
Solution: From {1, 2} we get {1, 2}, {2, 3}, {3, 4}, and {1, 4}.
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(b) What is the multiset of two-element subsets that you get by com-
puting σ({1, 2}) for all σ in D4?
Solution:
{{1, 2}, {1, 2}, {2, 3}, {2, 3}, {3, 4}, {3, 4}, {1, 4}, {1, 4}}.

(c) What is the set of two-element subsets you get by computing
σ({1, 3}) for all σ in D4?
Solution: From {1, 3} we get {1, 3} and {2, 4}.

(d) What is the multiset of two-element subsets that you get by com-
puting σ({1, 3}) for all σ in D4?
Solution:
{{1, 3}, {1, 3}, {1, 3}, {1, 3}, {2, 4}, {2, 4}, {2, 4}, {2, 4}}.

(e) Describe the two sets in parts (a) and (c) geometrically in terms
of the square.
Solution: We get the set of edges and the set of diagonals of
the square.

◦288. This problem uses the notation for permutations in the dihedral group
of the square introduced before Problem 259. What is the effect of a
180 degree rotation ρ2 on the diagonals of a square? What is the effect
of the flip ϕ1|3 on the diagonals of a square? How many elements of D4

send each diagonal to itself? How many elements of D4 interchange
the diagonals of a square?

Solution: The 180 degree rotation sends the diagonals to them-
selves, i.e., it fixes the diagonals. ϕ1|3 fixes the diagonals. So does
ϕ2|4 and the identity. However, ρ, ρ3, ϕ12|34 and ϕ14|23 all exchange
the diagonals. Thus four elements fix each diagonal and four elements
interchange them.

In Problem 287 you saw that the action of the dihedral group D4 on
two element subsets of {1, 2, 3, 4} seems to split them into two blocks, one
with two elements and one with 4. We call these two blocks the “orbits” of
D4 acting on the two element subsets of {1, 2, 3, 4}. More generally, given a
group G acting on a set S, the orbit of G determined by an element x of S
is the set

{σ(x)|σ ∈ G},

and is denoted by Gx. In Problem 287 it was possible to have Gx = Gy. In
fact in that problem, Gx = Gy for every y in Gx.
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289. Suppose a group acts on a set S. Could an element of S be in two
different orbits? (Say why or why not.)

Solution: No, because if z = σ(x) and z = ϕ(y), then Gz = Gx =
Gy, where the last two equalities follow from the fact that as τ ranges
over G, so does τσ and τϕ.

Problem 289 almost completes the proof of the following theorem.

Theorem 9 Suppose a group acts on a set S. The orbits of G form a
partition of S.

It is probably worth pointing out that this theorem tells us that the orbit
Gx is also the orbit Gy for any element y of Gx.

290. Complete the proof of Theorem 9.

Solution: Every element x of S lies in the orbit Gx. In Problem
289 we showed that the element x can lie in only one orbit. Therefore
each x in S lies in one and only one orbit, so the orbits partition S.

Notice that thinking in terms of orbits actually hides some information
about the action of our group. When we computed the multiset of all results
of acting on {1, 2} with the elements of D4, we got an eight-element multiset
containing each side twice. When we computed the multiset of all results of
acting on {1, 3} with the elements of D4, we got an eight-element multiset
containing each diagonal of the square four times. These multisets remind
us that we are acting on our two-element sets with an eight-element group.
The multiorbit of G determined by an element x of S is the multiset

{σ(x)|σ ∈ G},

and is denoted by Gxmulti.
When we used the quotient principle to count circular seating arrange-

ments or necklaces, we partitioned up a set of lists of people or beads into
blocks of equivalent lists. In the case of seating n people around a round
table, what made two lists equivalent was, in retrospect, the action of the
rotation group Cn. In the case of stringing n beads on a string to make
a necklace, what made two lists equivalent was the action of the dihedral
group. Thus the blocks of our partitions were orbits of the rotation group or
the dihedral group, and we were counting the number of orbits of the group
action. In Problem 45, we were not able to apply the quotient principle be-
cause we had blocks of different sizes. However, these blocks were still orbits



246 CHAPTER 6. GROUPS ACTING ON SETS

of the action of the group D4. And, even though the orbits have different
sizes, we expect that each orbit corresponds naturally to a multiorbit and
that the multiorbits all have the same size. Thus if we had a version of the
quotient rule for a union of multisets, we could hope to use it to count the
number of multiorbits.

◦291. (a) Find the orbit and multiorbit of D4 acting on the coloring

{(1, R), (2, R), (3, B), (4, B)},

or, in standard notation, RRBB, of the vertices of a square.
Solution: The orbit is, in the standard notation,
{RRBB, BRRB, BBRR, RBBR.}
The multiorbit, in the standard notation, is

{RRBB, RRBB, BRRB, BRRB,BBRR,BBRR,RBBR,RBBR}.
(b) How many group elements map the coloring RRBB to itself?

What is the multiplicity of RRBB in its multiorbit?
Solution: 2, 2.

(c) Find the orbit and multiorbit of D4 acting on the coloring

{(1, R), (2, B), (3, R), (4, B)}.

Solution: The orbit is, in the standard notation,
{RBRB, BRBR}.
The multiorbit, in the standard notation, is

{RBRB, RBRB, RBRB, RBRB,BRBR,BRBR,BRBR,BRBR}.
(d) How many elements of the group send the coloring RBRB to

itself? What is the multiplicity of RBRB in its orbit?
Solution: 4, 4.

292. (a) If G is a group, how is the set {τσ|τ ∈ G} related to G?
Solution: It is G, because composition on the right by σ gives
a bijection from G to G.

(b) Use this to show that y is in the multiorbit Gxmulti if and only if
Gxmulti = Gymulti.
Solution: If y = σx, Part (a) tells us that Gymulti = Gσ(x)multi =
{τσ(x)|τ ∈ G}multi = {σ(x)|τ ∈ G}multi = Gxmulti.

Problem 292b tells us that, when G acts on S, each element x of S is
in one and only one multiorbit. Since each orbit is a subset of a multiorbit
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and each element x of S is in one and only one orbit, this also tells us there
is a bijection between the orbits of G and the multiorbits of G, so that we
have the same number of orbits as multiorbits.

When a group acts on a set, a group element is said to fix an element of
x ∈ S if σ(x) = x. The set of all elements fixing an element x is denoted by
Fix(x).

293. Suppose a group G acts on a set S. What is special about the subset
Fix(x) for an element x of S?

Solution: Fix(x) is a group; in fact a subgroup of G.

•294. Suppose a group G acts on a set S. What is the relationship of the
multiplicity of x ∈ S in its multiorbit and the size of Fix(x)?

Solution: The multiplicity of x is the size of Fix(x), because in
Gxmulti the multiplicity of x will be exactly the number of elements
that send x to itself.

295. What can you say about relationships between the multiplicity of an
element y in the multiorbit Gxmulti and the multiplicites of other el-
ements? Try to use this to get a relationship between the size of an
orbit of G and the size of G.

Solution: Every element y of a multiorbit has the same multiplicity.
This is because if σ(x) = y, then the permutations that send x to y are
the permutations στ where τ fixes x. Thus the size of the multiorbit is
|Fix(x)| · |Gx|, so the size of the orbit divides the size of the multiorbit,
which is the size of G. In particular, the size of an orbit is |G|/|Fix(x)|
for any x in the orbit.

We suggested earlier that a quotient principle for multisets might prove
useful. The quotient principle came from the sum principle, and we do not
have a sum principle for multisets. Such a principle would say that the
size of a union of disjoint multisets is the sum of their sizes. We have not
yet defined the union of multisets or disjoint multisets, because we haven’t
needed the ideas until now. We define the union of two multisets S and T to
be the multiset in which the multiplicity of an element x is the maximum5

of the multiplicity of x in S and its multiplicity in T . Similarly, the union of
a family of multisets is defined by defining the multiplicity of an element x
to be the maximum of its multiplicities in the members of the family. Two

5We choose the maximum rather than the sum so that the union of sets is a special
case of the union of multisets.
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multisets are said to be disjoint if no element is a member of both, that is, if
no element has multiplicity one or more in both. Since the size of a multiset
is the sum of the multiplicities of its members, we immediately get the sum
principle for multisets.

The size of a union of disjoint multisets is the sum of their
sizes.

Taking the multisets all to have the same size, we get the product prin-
ciple for multisets.

The union of a set of m disjoint multisets, each of size n has
size mn.

The quotient principle for multisets then follows immediately.

If a p-element multiset is a union of q disjoint multisets, each
of size r, then q = p/r.

•296. How does the size of the union of the set of multiorbits of a group G
acting on a set S relate to the number of multiorbits and the size of
G?

Solution: It is simply the product of the number of multiorbits and
the size of G.

•297. How does the size of the union of the set of multiorbits of a group G
acting on a set S relate to the numbers |Fix(x)|?
Solution: Since the size of the union is the sum of the multiplicities
of the elements of S in the union, it is the sum of |Fix(x)| over all x
in S.

•298. In Problems 296 and 297 you computed the size of the union of the
set of multiorbits of a group G acting on a set S in two different
ways, getting two different expressions which must be equal. Write
the equation that says they are equal and solve for the number of
multiorbits, and therefore the number of orbits.

Solution: Using m for the number of multiorbits, we get

m|G| =
∑

x:x∈S

|Fix(x)|.

Therefore,

m =
1
|G|

∑
x:x∈S

|Fix(x)|.
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6.2.3 The Cauchy-Frobenius-Burnside Theorem

•299. In Problem 298 you stated and proved a theorem that expresses the
number of orbits in terms of the number of group elements fixing each
element of S. It is often easier to find the number of elements fixed
by a given group element than to find the number of group elements
fixing an element of S.

(a) For this purpose, how does the sum
∑

x:x∈S |Fix(x)| relate to the
number of ordered pairs (σ, x) (with σ ∈ G and x ∈ S) such that
σ fixes x?
Solution: They are equal, because Fix(x) computes the num-
ber of ordered pairs using that particular x.

(b) Let χ(σ) denote the number of elements of S fixed by σ. How
can the number of ordered pairs (σ, x) (with σ ∈ G and x ∈ S)
such that σ fixes x be computed from χ(σ)? (It is ok to have a
summation in your answer.)
Solution: The number of ordered pairs is

∑
σ: σ∈G χ(σ).

(c) What does this tell you about the number of orbits?
Solution: m = 1

|G|
∑

σ: σ∈G χ(σ).

300. A second computation of the result of problem 299 can be done as
follows.

(a) Let χ̂(σ, x) = 1 if σ(x) = x and let χ̂(σ, x) = 0 otherwise. Notice
that χ̂ is different from the χ in the previous problem, because it is
a function of two variables. Use χ̂ to convert the single summation
in your answer to Problem 298 into a double summation over
elements x of S and elements σ of G.
Solution:

m =
1
|G|

∑
x:x ∈S

∑
σ:σ∈G

χ̂(σ, x).

(b) Reverse the order of the previous summation in order to convert
it into a single sum involving the function χ given by

χ(σ) = the number of elements of S left fixed by σ.

Solution: m = 1
|G|
∑

σ: σ∈G χ(σ).
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In Problem 299 you gave a formula for the number of orbits of a group G
acting on a set X. This formula was first worked out by Cauchy in the case of
the symmetric group, and then for more general groups by Frobenius. In his
pioneering book on Group Theory, Burnside used this result as a lemma, and
while he attributed the result to Cauchy and Frobenius in the first edition of
his book, in later editions, he did not. Later on, other mathematicians who
used his book named the result “Burnside’s Lemma,” which is the name
by which it is still most commonly known. Let us agree to call this result
the Cauchy-Frobenius-Burnside Theorem, or CFB Theorem for short in a
compromise between historical accuracy and common usage.

301. In how many ways may we string four (identical) red, six (identical)
blue, and seven (identical) green beads on a necklace?

Solution: We are stringing 17 beads on our necklace, so we are ask-
ing for the number of orbits of the group D17 on lists of four Rs, six Bs,
and seven Gs. For a rotation ρi to fix a list, it must take an R to a R.
The powers of ρi form a group. Thus the set of places that contain an
R in a list that is fixed by ρi must be an orbit of that group. But the
size of the orbit must be a divisor of the size of the subgroup, which
must be a divisor of seventeen, so the size of the orbit is one or 17. If it
is 1, then i = 0. Thus no elements are fixed by any nontrivial rotation,
and all

( 17
4,6,7

)
lists of Rs, Bs and Gs are fixed by the identity. Each flip

will be a flip around a line from a bead to the spot between the two
“opposite” beads. This line divides the list into the eight beads on its
left, the eight beads on its right and the one bead it goes through. If
a flip fixes a list, the eight beads on the left must be identical to the
eight beads on the right, meaning that the bead the line goes through
must be one of the seven green beads. Thus the number of lists that
are fixed by a flip is the number of ways to place three green beads,
two red beads, and three blue beads in 8 slots, which is

( 8
3,2,3

)
, or 8!

3!2!3! .
There are 17 flips, so there are 17·8!

3!2!3! elements fixed by flips. Therefore
we have

1
2 · 17

(
17!

4!6!7!
+

17 · 8!
3!2!2!

)
=

8 · 15!
4!6!7!

+
4 · 7!
3!2!3!

= 120, 400

necklaces. The numerical answer, which is unimportant here, was
obtained from Maple.

302. If we have an unlimited supply of identical red beads and identical blue
beads, in how many ways may we string 17 of them on a necklace?
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Solution: We are asking for the number of orbits of D17 on the set of
colorings of [17] by {R,B}. Every coloring is fixed by the identity. The
only colorings fixed by a nontrivial rotation are the constant colorings
that assign the same color to each bead. Each flip is around a line from
a bead to the space between the two “opposite” beads. The bead the
line goes through can be either color, and then the eight beads to the
left of this one must be identical to the eight beads to the right of this
one. There are 28 ways to assign beads to the positions on the left, so
a flip fixes 29 colorings. Therefore by the CFB theorem, we have

1
2 · 17

(
217 + 17 · 29 + 16 · 2

)
=

216

17
+ 28 +

24

17
= 16

4097
17

+ 256 = 4112

necklaces.

303. If we have five (identical) red, five (identical) blue, and five (identical)
green beads, in how many ways may we string them on a necklace?

Solution: Here we need to consider the action of D15 on colorings of
[15] by {R,G,B} with five Rs, five Bs, and five Gs. The identity will
fix
( 15
5,5,5

)
colorings. A rotation through 3, 6, 9, or 12 places will fix any

coloring that has the same color in places 1, 4, 7, 10, and 13, the same
color in places 2, 5, 8, 11, and 14, and the same color in places 3, 6,
9, 12, and 15. There are 3! such colorings. There is no other rotation
that fixes any colorings. Each flip is around an axis that goes from a
bead to the space between two “opposite beads.” If it fixed a coloring,
the seven colors to the left of the axis would have to equal the seven
colors to the right of the axis. Thus the number of beads of each color
on the left and right sides would have to be equal. So except for the
color of the bead the axis goes through, we would have to have an even
number of beads of each color for a flip to fix a coloring. Thus no flip
fixes any colorings. Therefore by the CFB theorem we have

1
2 · 15

(
15!

5!5!5!
+ 4 · 3!

)
= 25, 226

necklaces. (The numerical answer, which was obtained from Maple, is
not important here.)

304. In how many ways may we paint the faces of a cube with six different
colors, using all six?

Solution: Here we must consider the action of the rotation group of
the cube on lists of six distinct colors. But no nontrivial rotation will
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fix a cube with all its faces colored differently. The identity rotation
will fix all 6! lists, and there are 24 members of the rotation group, so
we have 6!/24 = 6 · 5 = 30 ways to paint the faces of a cube with six
distinct colors, using each color.

305. In how many ways may we paint the faces of a cube with two colors
of paint? What if both colors must be used?

Solution: We must consider the action of the rotation group of the
cube on colorings of [6] by {R,B} or some other two-element set of
colors. There are five kinds of elements in the rotation group of the
cube. There is one identity, there are six rotations by 90 degrees or 270
degrees around an axis connecting the centers of two opposite faces,
there are three rotations of 180 degrees around such an axis, there are 8
rotations (of 120 degrees and 240 degrees, respectively) around an axis
connecting two diagonally opposite vertices, and there are 6 rotations
of 180 degrees around an axis connecting the centers of two opposite
edges. The identity fixes 26 colorings. There are eight colorings fixed
by a 90 degree or 270 degree rotation. There are 16 colorings fixed
by a 180 degree rotation along an axis through two faces. There are
8 colorings fixed by a 180 degree rotation along an axis joining the
centers of two opposite sides. There are 4 colorings fixed by a 120
degree or 240 degree rotation. Thus by the CFB theorem, we have

1
24

(64 + 6 · 8 + 3 · 16 + 8 · 4 + 6 · 8) = 10

ways to paint the faces of a cube with two colors of paint. Two of
these colorings use only one color, so there are eight colorings that use
both colors.

306. In how many ways may we color the edges of a (regular) (2n + 1)-gon
free to move around in the plane (so it cannot be flipped) if we use
red n times and blue n + 1 times? If this is a number you have seen
before, identify it.

Solution: The set of all powers of a rotation is a subgroup of the
rotation group of the (2n+1)-gon. If a given rotation fixes a coloring,
all powers of that rotation fix the coloring. The set of edges to which a
given edge is taken by that rotation is an orbit of the group of powers
of the rotation. The size of this orbit is a divisor of the size of the
subgroup, which is a divisor of 2n + 1. If the edge is colored red, the
size of the orbit is also a divisor of n, and if the edge is colored blue,
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the size of the orbit is also a divisor of n + 1. But neither n nor n + 1
has common divisors with 2n + 1, except for one. Therefore the only
rotation that fixes a coloring is the identity rotation, and it fixes all(2n+1

n

)
colorings. Thus the number of orbits is

1
2n + 1

(
2n + 1

n

)
=

1
n + 1

(
2n

n

)
,

a Catalan number.

∗307. In how many ways may we color the edges of a (regular) (2n + 1)-gon
free to move in three-dimensional space so that n edges are colored
red and n + 1 edges are colored blue? Your answer may depend on
whether n is even or odd.

Solution: The set of all powers of a rotation is a subgroup of the
dihedral group of the (2n+1)-gon. If a given rotation fixes a coloring,
all powers of that rotation fix the coloring. The set of edges to which a
given edge is taken by that rotation is an orbit of the group of powers
of the rotation. The size of this orbit is a divisor of the size of the
subgroup, which is a divisor of 2n + 1. If the edge is colored red, the
size of the orbit is also a divisor of n, and if the edge is colored blue,
the size of the orbit is also a divisor of n + 1. But neither n nor n + 1
has common divisors with 2n + 1, except for one. Therefore the only
rotation that fixes a coloring is the identity rotation, and it fixes all(2n+1

n

)
colorings.

A flip, on the other hand, can fix some colorings. In particular, if n is
even, we color one edge blue, leaving an even number n of additional
edges to be colored blue and an even number n of edges to be colored
red. It the flip over the axis perpendicular to the side we picked fixes
the coloring, the n edges to the right of the chosen edge must be
colored identically with the corresponding n edges to the left of the
chosen edge. There are

( n
n/2

)
ways to color the n edges to the right

of the chosen edge (choose which edges get red), and so this is the
number of colorings fixed by this flip. We have 2n + 1 flips, and since
we have one flip of the type described for each edge, all flips have the
form just given. Thus each flip fixes

( n
n/2

)
colorings.

Thus the number of orbits is

1
2(2n + 1)

((
2n + 1

n

)
+ (2n + 1)

(
n

n/2

))
.



254 CHAPTER 6. GROUPS ACTING ON SETS

If n is odd, we color one edge red, leaving an even number n − 1 of
edges to be colored red and an even number n+1 of edges to be colored
blue. With an argument similar to the previous one we see that there
are

1
2(2n + 1)

((
2n + 1

n

)
+ (2n + 1)

(
n

(n− 1)/2

))

orbits.

∗308. (Not unusually hard for someone who has worked on chromatic poly-
nomials.) How many different proper colorings with four colors are
there of the vertices of a graph which is a cycle on five vertices? (If we
get one coloring by rotating or flipping another one, they aren’t really
different.)

Solution: We are asking for the number of orbits of D5 on lists of five
colors chosen from the given four with no two adjacent colors equal;
we consider the first and last position adjacent as well. The identity
fixes all such colorings. For those who are familiar with the chromatic
polynomial, as in Problem 243, the number of such colorings is the
chromatic polynomial of the cycle on five vertices evaluated at 4. The
number of ways to properly color a cycle on five vertices is the number
of ways to color a path on five vertices minus the number of ways
to color a path on five vertices so that its first and last vertices are
identical, which is the number of ways to color a cycle on four vertices.
The number of ways to color a cycle on four vertices is the number
of ways to color a path on four vertices minus the number of ways to
color a path on four vertices so that the first and last vertices are the
same color, which is the same as the number of ways to color a cycle
on three vertices. The number of ways to properly color a path on five
vertices with four colors is 4 ·34. The number of ways to properly color
a path on four vertices with four colors is 4 ·33. The number of ways to
properly color a cycle on three vertices with four colors is 4 ·3 ·2. Thus
the number of proper colorings of a five vertex cycle with four colors is
4 ·34−4 ·33+4 ·3 ·2 = 240. This is the number of colorings fixed by the
identity. No proper coloring is fixed by a nontrivial rotation, because
if a rotation of the five cycle fixes a coloring, all the vertices must have
the same color. No proper coloring is fixed by a flip, because for a flip
to fix a coloring, the coloring must give the same color to two adjacent
vertices. Thus the number of really different proper four-colorings of
a cycle on 5 vertices is 240

10 = 24.
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∗309. How many different proper colorings with four colors are there of the
graph in Figure 6.7? Two graphs are the same if we can redraw one
of the graphs, not changing the vertex set or edge set, so that it is
identical to the other one. This is equivalent to permuting the vertices
in some way so that when we apply the permutation to the endpoints
of the edges to get a new edge set, the new edge set is equal to the
old one. Such a permutation is called an automorphism of the graph.
Thus two colorings are different if there is no automorphism of the
graph that carries one to the other one.

Figure 6.7: A graph on six vertices.

1 2

3

45

6

Solution: We want the number of orbits of the set of proper col-
orings under the action of the group of automorphisms of the graph.
An automorphism σ maps vertex 1 to any of six vertices. Vertex 2 can
be mapped to any of the four vertices adjacent to the image of vertex
1. Vertex 3 is adjacent to vertices 1 and 2, so it must be mapped
to a vertex adjacent to the images of both vertex 1 and vertex 2; by
checking cases you can see that there are always exactly two vertices
adjacent to the images of vertex 1 and vertex 2, and mapping vertex
3 to either of these vertices preserves all the edges among vertices 1,
2, and 3. However, each of the other three vertices is adjacent to ex-
actly two vertices of the set {1, 2, 3}, and thus it must be mapped to
the unique vertex adjacent to the corresponding two of σ(1), σ(2) and
σ(3). (It is always the case that each vertex is adjacent to exactly two
of these, as you can see by considering the cases with σ(1) = 1.) Thus
there are 6 · 4 · 2 = 48 elements in the group. Now to apply the CFB
theorem we would need to know how many proper colorings are fixed
by each group element, so we would need to know what the group
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elements are. We have observed that a permutation that preserves
the edges is determined by where the triangle {1, 2, 3} goes. We can
see eight triangles in the graph, triangles of the form {i, i + 1, i + 2},
where we identify 7 with 1 and 8 with 2, and the triangles {1, 3, 5}
and {2, 4, 6}. We can map the set {1, 2, 3} to any of these eight sets
by six one-to-one maps, so each group element is determined uniquely
by one of these mappings. However, focusing on these triangles makes
our job here simpler in another way. In a proper coloring, vertices 1,
2, and 3 must be colored differently. We have four choices for the color
of vertex 1, three different ones for vertex 2 and two still different ones
for vertex 3, so there are 24 ways to color this triangle. Clearly the
only difference among these ways is the actual names of the colors.
That is, we can assume that vertex 1 is colored red, vertex 2 is colored
blue and vertex 3 is colored green, then determine the proper colorings
starting with these three colors, and up to changing the names of the
colors, we will have determined all the proper colorings. Then we can
ask which group elements fix a coloring rather than which colorings
are fixed by a group element. This turns out to be easier. Let us write
RBGRBG for the coloring that colors vertices 1 and 4 red, two and
five blue, and three and six green. An examination of the figure shows
that this is a proper coloring. In fact, it is the only proper coloring
that starts RBG and uses only three colors. Suppose we were to use
a fourth color, Y . Then among vertices 4, 5, and 6, it could be used
in just one place, because those three vertices are mutually adjacent.
Each of the other two vertices is adjacent to two of the original three
vertices colored RBG, and so there is only one color available to use
on it. In summary, the colorings that start RBG are

(a) RBGRBG

(b) RBGY BG

(c) RBGRY G

(d) RBGRBY .

Thus for any of the 24 choices of colorings of the first three vertices,
there are four ways to complete it to a proper coloring of the whole
graph, so there are 96 proper colorings of the graph. Among the
ones that start RGB, let us analyze which group elements fix them.
Note that the 2-cycles (1 4), (2 5) and (3 6) are all permutations
that fix coloring one. (Note that we are identifying (i j) with the
permutation of [6] that has the cycle (i j) and four-cycles of size one.)
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Further, interchanging vertices 1 and 4 does not change the endpoints
of any edges, nor does interchanging 2 and 5 nor 3 and 6. So all
these two-cycles are automorphisms of the graph. A composition of
automorphisms must be an automorphism (this follows directly from
the definition of automorphism) and so the eight permutations ι, (1 4),
(2 5), (3 6), (1 4)(2 5), (1 4)(3 6), (2 5)(3 6), and (1 4)(2 5)(3 6) all
are automorphisms of the graph, and they are all in the subgroup of
the automorphism group that fixes Coloring (a). Any permutation
not in the list will take some vertex to a vertex of another color, and
so the eight permutations we listed are the subgroup fixing Coloring
(a). The subgroup fixing Coloring (b) is ι, (1 3), (2 4), and (1 3)(2 4).
The subgroups fixing Coloring (c) and Coloring (d) also have size 4.
Thus there are 8 + 12 = 20 pairs of a coloring with R, B, and G, in
that order, on vertices 1, 2, and 3 and an automorphism fixing that
coloring. Since there are 4 · 3 · 2 = 24 ways to color vertices 1, 2, and
3 properly, and each gives rise to 20 pairs of a proper coloring and an
automorphism fixing that coloring, there are 20 · 24 = 480 such pairs.
Since the automorphism group has size 48, this means that there are
10 proper colorings of this graph, up to automorphisms. Note that we
did not really use the CFB theorem, though we did use the fact that
its formula is proved by dividing the number of ordered pairs of a set
member and a group element fixing that member by the size of the
group.

6.3 Pólya-Redfield Enumeration Theory

George Pólya and Robert Redfield independently developed a theory of gen-
erating functions that describe the action of a group G on colorings of a set
S by a set T when we know the action of G on S. Pólya’s work on the
subject is very accessible in its exposition, and so the subject has become
popularly known as Pólya theory, though Pólya-Redfield theory would be a
better name. In this section we develop the elements of this theory.

The idea of coloring a set S has many applications. For example, the
set S might be the positions in a hydrocarbon molecule which are occupied
by hydrogen, and the group could be the group of spatial symmetries of the
molecule (that is, the group of permutations of the atoms of the molecule
that move the molecule around so that in its final position the molecule
cannot be distinguished from the original molecule). The colors could then
be radicals (including hydrogen itself) that we could substitute for each
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hydrogen position in the molecule. Then the number of orbits of colorings
is the number of chemically different compounds we could create by using
these substitutions.6

In Figure 6.8 we show two different ways to substitute the OH radical
for a hydrogen atom in the chemical diagram we gave for butane in Chapter
2. We have colored one vertex of degree 1 with the radical OH and the
rest with the atom H. There are only two distinct ways to do this, as the
OH must either connect to an “end” C or a “middle” C. This shows that
there are two different forms, called isomers of the compound shown. This
compound is known as butyl alcohol.

Figure 6.8: The two different isomers of butyl alcohol.
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So think intuitively about some “figure” that has places to be colored.
(Think of the faces of a cube, the beads on a necklace, circles at the vertices
of an n-gon, etc.) How can we picture the coloring? If we number the places
to be colored, say 1 to n, then we have a standard way to represent our color-
ing. For example, if our colors are blue, green and red, then BBGRRGBG
describes a typical coloring of 8 such places. Unless the places are somehow
“naturally” numbered, this idea of a coloring imposes structure that is not
really there. Even if the structure is there, visualizing our colorings in this
way doesn’t “pull together” any common features of different colorings; we
are simply visualizing all possible colorings. We have a group (think of it as
symmetries of the figure you are imagining) that acts on the places. That
group then acts in a natural way on the colorings of the places and we are

6There is a fascinating subtle issue of what makes two molecules different. For example,
suppose we have a molecule in the form of a cube, with one atom at each vertex. If we
interchange the top and bottom faces of the cube, each atom is still connected to exactly
the same atoms as before. However, we cannot achieve this permutation of the vertices
by a member of the rotation group of the cube. It could well be that the two versions
of the molecule interact with other molecules in different ways, in which case we would
consider them chemically different. On the other hand, if the two versions interact with
other molecules in the same way, we would have no reason to consider them chemically
different. This kind of symmetry is an example of what is called chirality in chemistry.
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interested in orbits of the colorings. Thus we want a picture that pulls to-
gether the common features of the colorings in an orbit. One way to pull
together similarities of colorings would be to let the letters we are using as
pictures of colors commute as we did with our pictures in Chapter 4; then
our picture BBGRRGBG becomes B3G3R2, so our picture now records
simply how many times we use each color. Think about how we defined the
action of a group on the colorings of a set on which the group acts. You will
see that acting with a group element won’t change how many times each
color is used; it simply moves colors to different places. Thus the picture
we now have of a given coloring is an equally appropriate picture for each
coloring in an orbit. One natural question for us to ask is “How many orbits
have a given picture?”

•310. Suppose we draw identical circles at the vertices of a regular hexagon.
Suppose we color these circles with two colors, red and blue.

(a) In how many ways may we color the set {1, 2, 3, 4, 5, 6} using the
colors red and blue?
Solution: There are 64 functions from a six-element set to a
two-element set, so there are 64 colorings.

(b) These colorings are partitioned into orbits by the action of the
rotation group on the hexagon. Using our standard notation,
write down all these orbits and observe how many orbits have
each picture, assuming the picture of a coloring is the product of
commuting variables representing the colors.
Solution: {RRRRRR},

{RRRRRB,BRRRRR,RBRRRR, RRBRRR, RRRBRR,RRRRBR},
{RRRRBB, BRRRRB, BBRRRR, RBBRRR, RRBBRR,RRRBBR},
{RRRBRB, BRRRBR, RBRRRB, BRBRRR, RBRBRR,RRBRBR},
{RRBRRB, BRRBRR, RBRRBR},
{RRRBBB, BRRRBB,BBRRRB, BBBRRR,RBBBRR, RRBBBR},
{RRBRBB, BRRBRB,BBRRBR, RBBRRB,BRBBRR, RBRBBR},
{RRBBRB, BRRBBR,RBRRBB, BRBRRB,BBRBRR, RBBRBR}
{RBRBRB, BRBRBR},
{RRBBBB,BRRBBB,BBRRBB, BBBRRB, BBBBRR,RBBBBR},
{RBRBBB,BRBRBB,BBRBRB, BBBRBR, RBBBRB,BRBBBR},
{RBBRBB,BRBBRB,BBRBBR},
{RBBBBB, BRBBBB, BBRBBB, BBBRBB, BBBBRB,BBBBBR},
{BBBBBB}

We have one orbit with picture R6, one with picture R5B, three
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with picture R4B2, four with picture R3B3, three with picture
R2B4, one with picture RB5, and one with picture B6.

(c) Using the picture function of the previous part, write down the
picture enumerator for the orbits of colorings of the vertices of a
hexagon under the action of the rotation group.
Solution: R6 +R5B +3R4B2 +4R3B3 +3R2B4 +RB5 +B6.

In Problem 310c we saw a picture enumerator for pictures of orbits of
the action of a group on colorings. As above, we ask how many orbits
of the colorings have any given picture. We can think of a multivariable
generating function in which the letters we use to picture individual colors
are the variables, and the coefficient of a picture is the number of orbits with
that picture. Such a generating function provides an answer to our natural
question, and so it is this sort of generating function we will seek. Since the
CFB theorem was our primary tool for saying how many orbits we have,
it makes sense to think about whether the CFB theorem has an analog in
terms of pictures of orbits.

6.3.1 The Orbit-Fixed Point Theorem

•311. Suppose now we have a group G acting on a set and we have a picture
function on that set with the additional feature that for each orbit of
the group, all its elements have the same picture. In this circumstance
we define the picture of an orbit or multiorbit to be the picture of any
one of its members. The orbit enumerator Orb(G, S) is the sum of
the pictures of the orbits. (Note that this is the same as the sum of the
pictures of the multiorbits.) The fixed point enumerator Fix(G, S)
is the sum of the pictures of each of the fixed points of each of the
elements of G. We are going to construct a generating function analog
of the CFB theorem. The main idea of the proof of the CFB theorem
was to try to compute in two different ways the number of elements
(i.e. the sum of all the multiplicities of the elements) in the union
of all the multiorbits of a group acting on a set. Suppose instead we
try to compute the sum of all the pictures of all the elements in the
union of the multiorbits of a group acting on a set. By thinking about
how this sum relates to Orb(G, S) and Fix(G, S), find an analog of
the CFB theorem that relates these two enumerators. State and prove
this theorem.

Solution: Let E, for enumerator, be the sum of all the pictures of
all the elements in the union of the multiorbits of G acting on a set S.
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Recall that for any multiorbit M the picture P (M) is the picture P (x)
of any element x of M , and the number of elements of a multiorbit M
is always the size of G. This lets us write

E =
∑

M :M is a multiorbit of G

∑
x:x∈M

P (x)

=
∑

M :M is a multiorbit of G

|G|P (M)

= |G|
∑

M :M is a multiorbit of G

P (M)

= |G|Orb(G, S).

Recall also that the multiplicity of an element x in its multiorbit,
and thus in the union of the multiorbits, is |Fix(x)|. This lets us
write E =

∑
x:x∈S |Fix(x)|P (x). Now we have two possible approaches.

First, the sum we just gave for E is the sum, over all ordered pairs
(σ, x) such that σ fixes x, of P (x). But this is exactly Fix(G, S).
Second, we can get the same formula for E by using χ(σ, x) as in
Problem 300. We may write

E =
∑

x:x∈S

|Fix(x)|P (x)

=
∑

x:x∈S

∑
σ:σ∈G

χ(σ, x)P (x)

=
∑

σ:σ∈G

∑
x:σx=x

P (x)

= Fix(G, S).

Setting our two values of E equal and solving for Orb(G, S) gives us

Orb(G, S) =
1
|G|

Fix(G, S).

We will call the theorem of Problem 311 the Orbit-Fixed Point The-
orem. In order to apply the Orbit-Fixed Point Theorem, we need some
basic facts about picture enumerators.

•312. Suppose that P1 and P2 are picture functions on sets S1 and S2 in
the sense of Section 4.1.2. Define P on S1 × S2 by P (x1, x2) =
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P1(x1)P2(x2). How are EP1 , EP1 , and EP related? (You may have
already done this problem in another context!)

Solution:

EP (S1 × S2) =
∑

x1∈S1, x2∈S2

P (x1)P (x2) =
∑

x1∈S1

∑
x2∈S2

P (x1)P (x2)

=
∑

x1∈S1

P1(x1)
∑

x2∈S2

P2(x2) = EP1(S1)EP2(S2).

•313. Suppose Pi is a picture function on a set Si for i = 1, . . . , k. We
define the picture of a k-tuple (x1, x2, . . . , xk) to be the product of the
pictures of its elements, i.e.

P̂ ((x1, x2, . . . xk)) =
k∏

i=1

Pi(xi).

How does the picture enumerator E
P̂

of the set S1 × S2 × · · · × Sk of
all k-tuples with xi ∈ Si relate to the picture enumerators of the sets
Si? In the special case that Si = S for all i and Pi = P for all i, what
is E

P̂
(Sk)?

Solution: Based on the previous problem, we expect that

E
P̂
(S1 × S2 × · · · × Sk) =

k∏
i=1

EPi(Si).

To prove it, we represent a k-tuple as the ordered pair

(x1, (x2, x3, . . . , xk))

and apply induction and Problem 312. For the special case, E
P̂
(Sk) =

(EP (S))k.

•314. Use the Orbit-Fixed Point Theorem to determine the Orbit Enumer-
ator for the colorings, with two colors (red and blue), of six circles
placed at the vertices of a hexagon which is free to move in the plane.
Compare the coefficients of the resulting polynomial with the various
orbits you found in Problem 310.

Solution: Let us take the pictures of red and blue to be R and B.
Since the hexagon is free to move in the plane, our group G is the
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group R6 of rotations of a regular hexagon. There are four kinds of
elements of G: the identity, the rotation ρ through 60 degrees and
the rotation ρ5 through 300 degrees (the corresponding permutations
are six-cycles), the rotations ρ2 and ρ4 through 120 and 240 degrees
respectively (the cycle decompositions of the corresponding permuta-
tions have two three-cycles), and the rotation ρ3 through 180 degrees
(its cycle decomposition consists of three two-cycles). All 26 colorings
of the vertices of the hexagon are fixed by the identity. Since a given
vertex can be red or blue, the picture enumerator for a given vertex is
R + B. By Problem 313 the enumerator for the colorings fixed by the
identity is then (R + B)6. Only the two constant colorings (that color
every circle the same color) are fixed by ρ or ρ5. The picture enumer-
ator of each of the two constant colorings is R6 + B6. If the vertices
are numbered one through six clockwise, then the cycle decomposition
of ρ2 is (1 3 5)(2 4 6). Thus for a coloring (S, f) to be fixed by ρ2,
f(1) = f(3) = f(5) and f(2) = f(4) = f(6). In other words, the color
of vertex 1 is repeated on vertex 3 and 5, and the color of vertex 2 is
repeated on vertices 4 and 6. Therefore the picture enumerator for col-
orings fixed by ρ2 and ρ4 is R3R3+R3B3+B3R3+B3B3 = (R3+B3)2.
We can also think of this as the picture enumerator for colorings de-
fined on the cycles of the permutation. The picture of assigning red to
a three-cycle is R3 and the picture of assigning blue to a three-cycle
is B3. Since there are two possible pictures of a colored three-cycle,
R3 and B3, the picture enumerator for one three-cycle is R3 +B3. By
Problem 313, the picture enumerator for colorings defined on the two
different cycles is then (R3 + B3)2. If a coloring (S, f) is fixed by ρ3,
which has the cycle decomposition (1 4)(2 5)(3 6), then f(1) = f(4),
f(2) = f(5), and f(3) = f(6), so f is determined by the three values
f(1), f(2), and f(3). The picture enumerator for these colorings is, by
Problem 313 applied to colorings of the cycles, (R2 + B2)3. Therefore
the fixed point enumerator for the action of G on the colorings is

Fix(G, S) = (R + B)6 + (R2 + B2)3 + 2(R3 + B3) + 2(R6 + B6).

Then the orbit enumerator for the action of G on the colorings is

Orb(G, S) =
1
6

(
(R + B)6 + (R2 + B2)3 + 2(R3 + B3)2 + 2(R6 + B6)

)
.

Expanding this gives us

R6 + R5B + 3R4B2 + 4R3B3 + 3R2B4 + RB5 + B6.
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Thus we have one all-red orbit, one all-blue orbit, one orbit with five
reds and a blue, one with five blues and a red, three orbits with four
reds and two blues as well as three with two reds and four blues, and
four orbits with three reds and three blues.

315. Find the generating function (in variables R, B) for colorings of the
faces of a cube with two colors (red and blue). What does the gener-
ating function tell you about the number of ways to color the cube (up
to spatial movement) with various combinations of the two colors?

Solution: We want to think of the rotation group of the cube acting
on the faces of the cube, in order to see what kinds of colorings are left
fixed. For this purpose we note that each element of the rotation group
gives us a permutation of the faces of the cube, and if two faces are
in the same cycle of this permutation, they must have the same color,
but if they are in different cycles, they may get different colors. The
90 and 270 degree rotations around an axis through two faces have a
four-cycle and two one-cycles. The 180 degree rotation around an axis
through two faces has two two-cycles and two one-cycles. The 120 and
240 degree rotations around an axis connecting diagonally opposite
vertices have two three-cycles. The 180 degree rotations around an axis
connecting two opposite edges have three two-cycles, and the identity
has six one-cycles. A coloring is fixed by a permutation if and only if it
is constant on (i.e. assigns the same color to all elements of) each cycle
of the permutation. The picture enumerator for (constant) colorings
of an i-cycle is Ri + Bi. Thus, using Problem 313, if σ is a 90 or 270
degree rotation, its fixed point enumerator is (R4 + B4)(R + B)2, if it
is a 180 degree rotation around an axis connecting two opposite faces,
its fixed point enumerator is (R2 + B2)2(R + B)2, if it is a 180 degree
rotation around an axis connecting two opposite edges, its fixed point
enumerator is (R2 +B2)3, if it is a 120 or 240 degree rotation its fixed
point enumerator is (R3 + B3)2, and if it is the identity, then its fixed
point enumerator is (R + B)6. Therefore the generating function is

1
24

((R + B)6 + 8(R3 + B3)2 + 3(R2 + B2)2(R + B)2 +

6(R2 + B2)3 + 6(R4 + B4)(R + B)2),

which expands to

R6 + R5B + 2R4B2 + 2R3B3 + 2R2B4 + RB5 + B6.
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There is one way to color the cube all red or all blue, one way to color
it with exactly five red or exactly five blue faces, there are two ways to
color it with exactly four red or four blue faces and two ways to color
it with exactly three red (and three blue) faces.

6.3.2 The Pólya-Redfield Theorem

Pólya’s (and Redfield’s) famed enumeration theorem deals with situations
such as those in Problems 314 and 315 in which we want a generating func-
tion for the set of all colorings a set S using a set T of colors, where the
picture of a coloring is the product of the multiset of colors it uses. We are
again thinking of the colors as variables. The point of the next series of
problems is to analyze the solutions to Problems 314 and 315 in order to see
what Pólya and Redfield saw (though they didn’t see it in this notation or
using this terminology).

•316. In Problem 314 we have four kinds of group elements: the identity
(which fixes every coloring), the rotations through 60 or 300 degrees,
the rotations through 120 and 240 degrees, and the rotation through
180 degrees. The fixed point enumerator for the rotation group acting
on the colorings of the hexagon is by definition the sum of the fixed
point enumerators of colorings fixed by the identity, of colorings fixed
by 60 or 300 degree rotations, of colorings fixed by 120 or 240 degree
rotations, and of colorings fixed by the 180 degree rotation. To the
extent that you haven’t already done it in an earlier problem, write
down each of these enumerators (one for each kind of permutation)
individually and factor each one (over the integers) as completely as
you can.

Solution: In the solution to Problem 314 we wrote: “The picture
enumerator of each of the two constant colorings is R6+B6. If the ver-
tices are numbered one through six clockwise, then the cycle decompo-
sition of ρ2 is (1 3 5)(2 4 6). Thus for a coloring (S, f) to be fixed by ρ2,
f(1) = f(3) = f(5) and f(2) = f(4) = f(6). In other words, the color
of vertex 1 is repeated on vertex 3 and 5, and the color of vertex 2 is
repeated on vertices 4 and 6. Therefore the picture enumerator for col-
orings fixed by ρ2 and ρ4 is R3R3+R3B3+B3R3+B3B3 = (R3+B3)2.
We can also think of this as the picture enumerator for colorings de-
fined on the cycles of the permutation. The picture of assigning red to
a three-cycle is R3 and the picture of assigning blue to a three-cycle
is B3. Since there are two possible pictures of a colored three-cycle,
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R3 and B3, the picture enumerator for one three-cycle is R3 +B3. By
Problem 313, the picture enumerator for colorings defined on the two
different cycles is then (R3 + B3)2. If a coloring (S, f) is fixed by ρ3,
which has the cycle decomposition (1 4)(2 5)(3 6), then f(1) = f(4),
f(2) = f(5), and f(3) = f(6), so f is determined by the three values
f(1), f(2), and f(3). The picture enumerator for these colorings is,
by Problem 313 applied to colorings of the cycles, (R2 + B2)3.” In
factored form, these enumerators are R6 + B6, (R + B)6, (R3 + B3)2,
and (R2 + B2)3.

317. In Problem 315 we have five different kinds of group elements. For
each kind of element, to the extent that you haven’t already done it
in an earlier problem, write down the fixed point enumerator for the
elements of that kind. Factor the enumerators as completely as you
can.

Solution: In the solution to Problem 315, we wrote “Thus, using
Problem 313, if σ is a 90 or 270 degree rotation, its fixed point enu-
merator is (R4 + B4)(R + B)2, if it is a 180 degree rotation around
an axis connecting two opposite faces, its fixed point enumerator is
(R2 + B2)2(R + B)2, if it is a 180 degree rotation around an axis con-
necting two opposite edges, its fixed point enumerator is (R2 + B2)3,
if it is a 120 or 240 degree rotation its fixed point enumerator is
(R3 + B3)2, and if it is the identity, then its fixed point enumerator is
(R + B)6.” We just wrote the enumerators out in factored form.

•318. In Problem 316, each “kind” of group element has a “kind” of cycle
structure. For example, a rotation through 180 degrees has three cycles
of size two. What kind of cycle decomposition does a rotation through
60 or 300 degrees have? What kind of cycle decomposition does a
rotation through 120 or 240 degrees have? Discuss the relationship
between the cycle structures and the factored enumerators of fixed
points of the permutations in Problem 316.

Solution: A rotation through 60 or 300 degrees is a five-cycle; a
rotation through 120 or 240 degrees has two three-cycles. The cycle
decomposition determines the factored enumerator; a cycle of size i
gives a factor of (Ri +Bi). That is because a coloring fixed by a group
element has to be constant on the cycles of that group element. If a
cycle has size i, it contributes a summand of P i to the picture enumer-
ator for colorings of that cycle for each picture P of a possible color.
Problem 313 tells us to multiply these individual picture enumerators
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together.

Recall that we said that a group of permutations acts on a set S if, for
each member σ of G there is a permutation σ of S such that

σ ◦ ϕ = σ ◦ ϕ

for all members σ and ϕ of G. Since σ is a permutation of S, σ has a
cycle decomposition as a permutation of S (as well as whatever its cycle
decomposition is in the original permutation group G).

319. In Problem 317, each “kind” of group element has a “kind” of cy-
cle decomposition in the action of the rotation group of the cube on
the faces of the cube. For example, a rotation of the cube through
180 degrees around a vertical axis through the centers of the top and
bottom faces has two cycles of size two and two cycles of size one.
To the extent that you haven’t already done it in an earlier problem,
answer the following questions. How many such rotations does the
group have? What are the other “kinds” of group elements, and what
are their cycle structures? Discuss the relationship between the cycle
decomposition and the factored enumerator in Problem 317.

Solution: We effectively answered this question in our solution to
Problem 315. In particular, there are three rotations of 180 degrees
through the centers of opposite faces. The other kinds of group ele-
ments are as follows.

• the 90 and 270 degree rotations around an axis through two faces,
of which we have six. Their cycle decomposition consists of a
four-cycle and two one-cycles.

• the 120 and 240 degree rotations around an axis connecting two
diagonally opposite vertices. Their cycle decomposition consists
of two three-cycles. We have eight of these.

• the 180 degree rotations around an axis connecting two opposite
edges; their cycle decomposition consists of three two-cycles. We
have six of these.

• the identity, whose cycle decomposition is six one-cycles.

As we said in the solution to Problem 318, “The cycle decomposition
determines the factored enumerator; a cycle of size i gives a factor of
(Ri + Bi). That is because a coloring fixed by a group element has to
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be constant on the cycles of that group element. If a cycle has size i, it
contributes a summand of P i to the picture enumerator for colorings
of that cycle for each picture P of a possible color. Problem 313 tells
us to multiply these individual picture enumerators together.”

•320. The usual way of describing the Pólya-Redfield enumeration theorem
involves the “cycle indicator” or “cycle index” of a group acting on
a set. Suppose we have a group G acting on a finite set S. Since
each group element σ gives us a permutation σ of S, as such it has a
decomposition into disjoint cycles as a permutation of S. Suppose σ
has c1 cycles of size 1, c2 cycles of size 2, ..., cn cycles of size n. Then
the cycle monomial of σ is

z(σ) = zc1
1 zc2

2 · · · zcn
n .

The cycle indicator or cycle index of G acting on S is

Z(G, S) =
1
|G|

∑
σ:σ∈G

z(σ).

•(a) What is the cycle index for the group D6 acting on the vertices
of a hexagon?
Solution: For D6, we get

1
12

(
z6
1 + 2z6 + 2z2

3 + z3
2 + 3z3

2 + 3z2
2z

2
1

)
=

1
12

(
z6
1 + 2z6 + 2z2

3 + 4z3
2 + 3z2

1z
2
2

)

(b) What is the cycle index for the group of rotations of the cube
acting on the faces of the cube?
Solution: For the rotation group of the cube, we get

1
24

(
3z2

1z
2
2 + 6z2

1z4 + 8z2
3 + 6z2

3 + z6
1

)
=

1
24

(
3z2

1z
2
2 + 6z2

1z4 + 14z2
3 + z6

1

)

•321. How can you compute the Orbit Enumerator of G acting on colorings
of S by a finite set T of colors from the cycle index of G acting on S?



6.3. PÓLYA-REDFIELD ENUMERATION THEORY 269

(Use t, thought of as a variable, as the picture of an element t of T .)
State and prove the relevant theorem! This is Pólya’s and Redfield’s
famous enumeration theorem.

Solution: The Pólya-Redfield Theorem states the following. To
compute the orbit enumerator of G acting on functions from S to
a finite set T , we substitute

∑
t:t∈T ti for zi in the cycle index for G

acting on S. Here is the proof. By the Orbit-Fixed Point Theorem,
we need to sum the fixed point enumerators of the permutations in G.
However, if σ fixes a coloring (S, f), then f is constant on the cycles of
σ. If an i-cycle is colored by the member t of T , then the picture of the
restriction of our coloring to that cycle is ti. The picture enumerator
for all colorings defined and constant on that cycle is then

∑
t:t∈T ti.

By Problem 313 the picture enumerator for all colorings constant on
the cycles of σ, then, is the result of substituting

∑
t:t∈T ti for zi in

z(σ). This proves the Pólya-Redfield Theorem.

322. Suppose we make a necklace by stringing 12 pieces of brightly col-
ored plastic tubing onto a string and fastening the ends of the string
together. We have ample supplies of blue, green, red, and yellow tub-
ing available. Give a generating function in which the coefficient of
BiGjRkY h is the number of necklaces we can make with i blues, j
greens, k reds, and h yellows. How many terms would this generating
function have if you expanded it in terms of powers of B, G, R, and
Y ? Does it make sense to do this expansion? How many of these
necklaces have 3 blues, 3 greens, 2 reds, and 4 yellows?

Solution: We are asking for a generating function for the orbits of
a colored 12-gon under the action of D12. To apply the Pólya-Redfield
theorem we need the cycle index for D12. If ρ is a 30 degree rotation,
then ρ, ρ5, ρ7 and ρ11 are 12-cycles. The elements ρ2 and ρ10 have
two six-cycles. The elements ρ3 and ρ9 have three four-cycles. The
elements ρ4 and ρ8 have four three-cycles. The element ρ6 has six
two-cycles. The element ι = ρ0 has 12 one-cycles. There are six flips
around axes through opposite vertices; each has five two-cycles and
two one-cycles. There are six flips around axes perpendicular to two
opposite sides; each has six two-cycles. Summarizing this in the cycle
index, we write

Z(G, S) =
1
24

(
z12
1 + z6

2 + 2z4
3 + 2z3

4 + 2z2
6 + 4z12 + 6z5

2z
2
1 + 6z6

2

)
=

1
24

(
z12
1 + 7z6

2 + 2z4
3 + 2z3

4 + 2z2
6 + 4z12 + 6z5

2z
2
1

)
.
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When we substitute Bi + Gi + Ri + Y i for zi and expand, we would
get 124 terms, one for each possible term BiGjRkY h. Thus it does
not make sense to expand the polynomial. The unexpanded form is
1
24

(
(B+G+R+Y )12+7(B2+G2+R2+Y 2)6+2(B3+G3+R3+Y 3)4+

2(B4 + G4 + R4 + Y 4)3 + 2(B6 + G6 + R6 + Y 6)2 +
4(B12 +G12 +R12 +Y 12)+6((B2 +G2 +R2 +Y 2)5)(B+G+R+Y )2

)
.

We can compute the coefficient of B3G3R2Y 4 by computing the con-
tribution of each term of the sum to the coefficient. We get

1
24

((
12

3, 3, 2, 4

)
+ 6

(
5

1, 1, 1, 2

)(
2

1, 1

))
=

12!
24 · 3!3!2!4!

+
6 · 5!2!
24 · 2!

=
11!

2 · 3!3!2!4!
+ 5 · 3 · 2

= 11 · 5 · 3 · 2 · 7 · 5 + 30
= 11, 550 + 30 = 11, 580.

•323. What should we substitute for the variables representing colors in the
orbit enumerator of G acting on the set of colorings of S by a set T of
colors in order to compute the total number of orbits of G acting on
the set of colorings? What should we substitute into the variables in
the cycle index of a group G acting on a set S in order to compute the
total number of orbits of G acting on the colorings of S by a set T?
Find the number of ways to color the faces of a cube with four colors.

Solution: Substitute the number one for each color (variable) in the
picture enumerator. Substitute |T | for each variable in the cycle index.
The cycle index for the rotation group of the cube acting on the faces
is

1
24

(
3z2

1z
2
2 + 6z2

1z4 + 14z2
3 + z6

1

)
.

Substituting 4 for each variable gives us 1
24

(
3 · 44 + 6 · 43 + 14 · 42 + 46

)
= 228.

324. We have red, green, and blue sticks all of the same length, with a dozen
sticks of each color. We are going to make the skeleton of a cube by
taking eight identical lumps of modeling clay and pushing three sticks
into each lump so that the lumps become the vertices of the cube.
(Clearly we won’t need all the sticks!) In how many different ways
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could we make our cube? How many cubes have four edges of each
color? How many have two red, four green, and six blue edges?

Solution: For this problem we are interested in the action of the
rotation group of the cube on the edges. Now we think of the group
elements as permutations of the edges and analyze their cycle struc-
ture.

• The identity has 12 one-cycles.

• A 90 or 270 degree rotation around an axis perpendicular to two
opposite faces has three four-cycles.

• A 180 degree rotation around an axis perpendicular to two oppo-
site faces has six two-cycles.

• A 180 degree rotation around an axis perpendicular to two oppo-
site edges has five two-cycles and two one-cycles.

• A 120 degree rotation around an axis connecting two diagonally
opposite vertices has four three-cycles.

Thus the cycle index is

1
24

(
z12
1 + 6z3

4 + 3z6
2 + 6z5

2z
2
1 + 8z4

3

)
.

We substitute the number three for each of the variables to get

1
24

(
312 + 6 · 33 + 3 · 36 + 6 · 37 + 8 · 34

)
= 22815

ways to make the cube. To compute the number of ways to make the
cube with four sticks of each color, we need to apply the Pólya-Redfield
theorem. Substituting Ri + Bi + Gi for zi in the cycle index gives us
1
24

(
(R + B + G)12 + (R4 + B4 + G4)3 + 3(R2 + B2 + G2)6 +

6(R2 + B2 + B2)5(R + B + G)2 + 8(R3 + B3 + G3)4
)
.

The coefficient of R4B4G4 is

1
24

((
12

4, 4, 4

)
+ 6

(
3

1, 1, 1

)
+ 3

(
6

2, 2, 2

)
+ 6

(
3
1

)(
5

2, 2, 1

)(
2

2, 0, 0

))

=
1
24

(
12!

4!4!4!
+ 6 · 3! + 3

6!
2!2!2!

+ 6 · 3 5!
2!2!1!

)
= 1479.
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The coefficient of R2B4G6 is

1
24

((
12

2, 4, 6

)
+ 3

(
6

1, 2, 3

)
+ 6

((
5

0, 2, 3

)
+

(
5

1, 1, 3

)
+

(
5

1, 2, 2

)))

=
1
24

(
12!

2!4!6!
+ 3

6!
1!2!3!

+ 6
(

5!
2!3!

+
5!

1!1!3!
+

5!
1!2!2!

))
= 600.

325. How many cubes can we make in Problem 324 if the lumps of modeling
clay can be any of four colors?

Solution: We can first consider all ways of coloring the vertices of
the cube with the four colors; once those vertices are in place, the
number of ways to put the sticks in is the result of Problem 324, so
by the product principle the number of ways to choose the colors of
the vertices and edges is the product of the number of ways to choose
each. Thus we just need to consider the action of the rotation group
of the cube on the vertices:

• The identity is the product of eight one-cycles.

• A 90 or 270 degree rotation around an axis perpendicular to two
opposite faces has two four-cycles.

• A 180 degree rotation around an axis perpendicular to two oppo-
site faces has four two-cycles.

• A 180 degree rotation around an axis joining two opposite edges
has four two-cycles.

• A 120 or 240 degree rotation around an axis through two diago-
nally opposite vertices has two three-cycles and two one-cycles.

Thus the cycle index for this action is

1
24

(
z8
1 + 6z2

4 + 9z4
2 + 8z2

3z
2
1

)
.

Substituting 4 for each variable gives us

1
24

(
48 + 6 · 42 + 9 · 44 + 8 · 42 · 42

)
= 2916.

Thus we have 22815 · 2916 = 66, 528, 540 possible colored cubes.
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Figure 6.9: A possible computer network.

1 2

3

45

6

∗326. In Figure 6.9 we see a graph with six vertices. Suppose we have three
different kinds of computers that can be placed at the six vertices of
the graph to form a network. In how many different ways may the
computers be placed? (Two graphs are not different if we can redraw
one of the graphs so that it is identical to the other one.) This is
equivalent to permuting the vertices in some way so that when we
apply the permutation to the endpoints of the edges to get a new edge
set, the new edge set is equal to the old one. Such a permutation is
called an automorphism of the graph. Then two computer placements
are the same if there is an automorphism of the graph that carries one
to the other.

Solution: The computer placements are colorings of the vertices of
the graph by the set of three kinds of computers, say {A,B, C}. Thus
we are asking for the number of orbits of the automorphism group of
the graph on colorings of the vertices with the colors {A,B, C}. To find
this number we need to compute the cycle index of the automorphism
group. An automorphism will send vertices 1, 2, and 3 to three vertices
that are mutually connected; i.e. a triangle. Further, each of vertices
4, 5, and 6 is adjacent to exactly two of vertices of 1, 2, and 3. In
fact, for any of the eight triangles in the graph, each vertex not in
the triangle is adjacent to exactly two vertices of the triangle (and a
different two for each vertex). Therefore we can send the vertices 1,
2, and 3, to any of the eight triangles in any of six orders, and this
completely determines an automorphism. Thus there are 6 · 8 = 48
elements in the group of automorphisms. The dihedral group D6 is
a subgroup of the group of automorphisms. The permutations with
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four one-cycles and the two-cycle (1 4), (2 5), or (3 6) are also in the
group of automorphisms. (For example, 1 is adjacent to everything
but 4, and 4 is adjacent to everything but 1, so interchanging them
leaves us with exactly the same edges.) We use the notation (i i) not
only to stand for a two-cycle, but also to stand for the permutation
with four one-cycles and the two-cycle (i, j). We will write out the
cycle decomposition of each element of D6, and then do the same for
the set (1 4)D6 = {(1 4)σ|σ ∈ D6}, and from those we will be able to
get the cycle index of the automorphism group acting on the vertices.
The cycle decompositions of the elements of D6 are

(1 2 3 4 5 6) (1 3 5)(2 4 6) (1 4)(2 5)(3 6) (1 5 3)(2 6 4)
(1 6 5 4 3 2) (1)(2)(3)(4)(5)(6) (1)(4)(2 6)(3 5) (2)(5)(1 3)(4 6)

(3)(6)(1 5)(2 4) (1 2)(3 6)(4 5) (1 6)(2 5)(3 4) (1 4)(2 3)(5 6)

and the cycle decompositions of the elements of (1 4)D6 are

(1 2 3)(4 5 6) (1 3 5 4 6 2) (1)(4)(2 5)(3 6) (1 5 3 4 2 6)
(1 6 5)(2 4 3) (1 4)(2)(3)(5)(6) (1 4)(2 6)(3 5) (2)(5)(1 3 4 6)
(3)(6)(1 5 4 2) (1 2 4 5)(3 6) (1 6 4 3)(2 5) (1)(4)(2 3)(5 6).

Notice that neither (2 5) nor (3 6) is in either of our sets. From this, it
is a straightforward series of steps to show that our group is the union

D6 ∪ (1 4)D6 ∪ (2 5)D6 ∪ (3 6)D6.

But by symmetry, the cycle decomposition of (1 4)D6, (2 5)D6 and
(3 6)D6 will be the same, so the cycle index for our group is

1
48

(
Z6

1 + 8Z2
3 + 8z1

6 + 7z3
2 + 9z2

1z
2
2 + 3z4

1z2 + 6z2z4 + 6z2
1z4

)
.

Since we have three kinds of computers, we substitute 3 for each vari-
able to get

1
48

(
36 + 8 · 32 + 8 · 31 + 7 · 33 + 9 · 34 + 3 · 35 + 6 · 32 + 6 · 33

)
= 56.

327. Two simple graphs on the set [n] = {1, 2, . . . , n} with edge sets E and
E′ (which we think of as sets of two-element sets for this problem)
are said to be isomorphic if there is a permutation σ of [n] which, in
its action of two-element sets, carries E to E′. We say two graphs
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are different if they are not isomorphic. Thus the number of different
graphs is the number of orbits of the set of all sets of two-element
subsets of [n] under the action of the group Sn. We can represent an
edge set by its characteristic function (as in problem 33). That is, we
define

χE({u, v}) =

{
1 if {u, v} ∈ E
0 otherwise.

Thus we can think of the set of graphs as a set of colorings with colors
0 and 1 of the set of all two-element subsets of [n]. The number of
different graphs with vertex set [n] is thus the number of orbits of this
set of colorings under the action of the symmetric group Sn on the set
of two-element subsets of [n]. Use this to find the number of different
graphs on five vertices.

Solution: For this problem we need the cycle index for the action of
the symmetric group on five letters acting on two-element subsets of
those five letters. Each way of partitioning the number five describes
the cycle decomposition of an element of S5 acting on [5]. The cycle
decomposition of a permutation σ on the two-element subsets of [5]
will be determined by its cycle decomposition on [5]. The partitions
of five and the cycle structures they give on two-element subsets are:

• (1, 1, 1, 1, 1) = 15 is the cycle structure of the identity; acting
on two-element subsets the identity has

(5
2

)
= 10 one-cycles. Of

course there is only one identity permutation.

• A permutation with cycle structure of the form 2113 will fix the
two element set in the two-cycle and each pair of the three ele-
ments outside for a total of four one-cycles; each pair of an ele-
ment in the two-cycle and an element not in the two-cycle will be
in a two-cycle. There are 6 such pairs and thus three two-cycles,
so such a permutation has 3 two-cycles and four one-cycles. There
are

(5
2

)
= 10 such permutations.

• A permutation with cycle structure of the form 2211 will have a
one-cycle of two-sets for each two-cycle, any other two-set will be
in a two-cycle. There are 4 + 2 + 2 = 8 such two-sets and thus
four two-cycles, so such a permutation has four two-cycles and
two one-cycles. There are

(5
2

)(3
2

)
/2 = 15 such permutations.

• A permutation with cycle structure of the form 3112 will have one
cycle of size 1 on two-sets from the two one-element cycles of the
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original action; each other two-element subset will be in a three-
cycle. There are

(3
2

)
+ 3 · 2 = 9 such pairs, and so there are three

three-cycles of two-element subsets. Thus such a permutation
has one one-cycle and three three-cycles in its action of two-sets.
There are 2

(5
3

)
= 20 such permutations.

• A permutation with cycle structure of the form 3121 will have one
one-cycle on two-sets from the two-cycle of the original action, it
will have

(3
2

)
two-sets in three-cycles, and will have six two-sets

in six-cycles, and so will have just one six-cycle of two-sets. Thus
such a permutation has one one-cycle, one three-cycle and one
six-cycle when it acts on two-sets. There are 2

(5
3

)
= 20 such

permutations.

• A permutation with cycle structure of the form 4111 has a four-
cycle of two-subsets and one two-cycle of two-subsets from its
own four-cycle and another four-cycle of pairs of members of the
four-cycle and one-cycle. Thus it has two four-cycles and two
one-cycles. There are 6

(5
4

)
= 30 such permutations.

• A permutation with cycle structure of the form 51 will have two
five-cycles in its action on two-sets. There are 4! = 24 such
permutations.

Thus for the group S5 acting on pairs from [5], the cycle index is

1
120

(
z10
1 + 10z3

2z
4
1 + 15z4

2z2 + 20z3
3z1 + 20z6z3z1 + 30z2

4z2 + 24z2
5

)
.

Substituting 2 for each variable gives us that there are

1
120

(
210 + 10 · 27 + 15 · 25 + 20 · 24 + 20 · 23 + 30 · 23 + 24 · 22

)
= 30

graphs on five vertices.

6.4 Supplementary Problems

1. Show that a function from S to T has an inverse (defined on T ) if and
only if it is a bijection.

2. How many elements are in the dihedral group D3? The symmetric
group S3? What can you conclude about D3 and S3?

Solution: Six, six. D3 and S3 are the same group.
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3. A tetrahedron is a three-dimensional geometric figure with four ver-
tices, six edges, and four triangular faces. Suppose we start with a
tetrahedron in space and consider the set of all permutations of the
vertices of the tetrahedron that correspond to moving the tetrahedron
in space and returning it to its original location, perhaps with the
vertices in different places.

(a) Explain why these permutations form a group.

(b) What is the size of this group?

(c) Write down in two row notation a permutation that is not in this
group.

4. Find a three-element subgroup of the group S3. Can you find a differ-
ent three-element subgroup of S3?

Solution: {ι, (1 2 3), (1 3 2). This is the only three-element sub-
group because the other elements of S3 are two cycles, so one of them
forms a two-element subgroup with ι, and two of them together with ι
are not a subgroup. Since a subgroup acts on S3 by composition, any
subgroup must have 1, 2, 3, or 6 elements, because S3 is a union of
orbits of that group and the orbits all have the same size.

5. Prove true or demonstrate false with a counterexample: “In a permu-
tation group, (σϕ)n = σnϕn.”

6. If a group G acts on a set S, and if σ(x) = y, is there anything
interesting we can say about the subgroups Fix(x) and Fix(y)?

Solution: They have the same size; in fact
σFix(x) = {σ ◦ τ |τ ∈ Fix(x)} = Fix(y)

7. (a) If a group G acts on a set S, does σ(f) = f ◦ σ define a group
action on the functions from S to a set T? Why or why not?
Solution: No, because στ(f) = f ◦σ◦τ , but σ◦τ(f) = f ◦τ ◦σ.
Thus if our group is not commutative, this is not a group action.

(b) If a group G acts on a set S, does σ(f) = f ◦ σ−1 define a group
action on the functions from S to a set T? Why or why not?
Solution: Yes, because the action gives a permutation of the
functions and στ(f) = f◦(σ◦τ)−1 = f◦τ−1◦σ−1, while σ◦τ(f) =
f ◦ τ−1 ◦ σ−1. Thus this is a group action.
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(c) Is either of the possible group actions essentially the same as the
action we described on colorings of a set, or is that an entirely
different action?
Solution: The action proposed in part (b) is the same as our
action on colorings. To see why, if

{(1, g(1), (2, g(2), . . . , (n, g(n))}
= {(σ(1), f(1)), (σ(2, f(2)), . . . , (σ(n)f(n))},

and i = σ(j), then j = σ−1(i) and so

(i, g(i)) = (σ(j), f(j)) = (σ(σ−1(i)), f(σ−1(i)) = (i, f(σ−1(i)).

Therefore, g = f ◦ σ−1.

8. Find the number of ways to color the faces of a tetrahedron with two
colors.

9. Find the number of ways to color the faces of a tetrahedron with four
colors so that each color is used.

10. Find the cycle index of the group of spatial symmetries of the tetrahe-
dron acting on the vertices. Find the cycle index for the same group
acting on the faces.

11. Find the generating function for the number of ways to color the faces
of the tetrahedron with red, blue, green and yellow.

12. Find the generating function for the number of ways to color the faces
of a cube with four colors so that all four colors are used.

13. How many different graphs are there on six vertices with seven edges?

14. Show that if H is a subgroup of the group G, then H acts on G by
σ(τ) = σ ◦ τ for all σ in H and τ in G. What is the size of an orbit of
this action? How does the size of a subgroup of a group relate to the
size of the group?

Solution: Composition of the elements of a permutation group on
the left by σ permutes the elements of the group, so σ is a permutation
of G. The size of an orbit is the size of the subgroup, because if
σ ◦ τ1 = σ ◦ τ2, then τ1 = τ2. Since G is the union of the orbits of H
and these orbits all have the same size, by the quotient principle the
size of H divides the size of G.
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Relations

A.1 Relations as Sets of Ordered Pairs

A.1.1 The relation of a function

328. Consider the functions from S = {−2,−1, 0, 1, 2} to T = {1, 2, 3, 4, 5}
defined by f(x) = x + 3, and g(x) = x5 − 5x3 + 5x + 3. Write down
the set of ordered pairs (x, f(x)) for x ∈ S and the set of ordered pairs
(x, g(x)) for x ∈ S. Are the two functions the same or different?

Solution: We get {(−2, 1), (−1, 2), (0, 3), (1, 4), (2, 5)} in both cases,
so the functions are the same.

Problem 328 points out how two functions which appear to be different
are actually the same on some domain of interest to us. Most of the time
when we are thinking about functions it is fine to think of a function casually
as a relationship between two sets. In Problem 328 the set of ordered pairs
you wrote down for each function is called the relation of the function. When
we want to distinguish between the casual and the careful in talking about
relationships, our casual term will be “relationship” and our careful term
will be “relation.” So relation is a technical word in mathematics, and as
such it has a technical definition. A relation from a set S to a set T is a set
of ordered pairs whose first elements are in S and whose second elements
are in T . Another way to say this is that a relation from S to T is a subset
of S × T .

A typical way to define a function f from a set S, called the domain of
the function, to a set T , called the range, is that f is a relationship from S
to T that relates one and only one member of T to each element of X. We
use f(x) to stand for the element of T that is related to the element x of

279
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S. If we wanted to make our definition more precise, we could substitute
the word “relation” for the word “relationship” and we would have a more
precise definition. For our purposes, you can choose whichever definition
you prefer. However, in any case, there is a relation associated with each
function. As we said above, the relation of a function f : S → T (which
is the standard shorthand for “f is a function from S to T” and is usually
read as f maps S to T ) is the set of all ordered pairs (x, f(x)) such that x
is in S.

329. Here are some questions that will help you get used to the formal idea
of a relation and the related formal idea of a function. S will stand
for a finite set of size s and T will stand for a finite set of size t.

(a) What is the size of the largest relation from S to T?
Solution: st because that is the size of the relation that has all
the ordered pairs (x, y) with x ∈ S and y ∈ T .

(b) What is the size of the smallest relation from S to T?
Solution: 0, because the empty set of ordered pairs is a rela-
tion.

(c) The relation of a function f : S → T is the set of all ordered
pairs (x, f(x)) with x ∈ S. What is the size of the relation of a
function from S to T? That is, how many ordered pairs are in
the relation of a function from S to T?
Solution: The size of the relation of f : S → T is s.

(d) We say f is a one-to-one1 function or injection from S to T if
each member of S is related to a different element of T . How
many different elements must appear as second elements of the
ordered pairs in the relation of a one-to-one function (injection)
from S to T?
Solution: s different elements must appear, one for each ele-
ment of S.

(e) A function f : S → T is called an onto function or surjection if
each element of T is f(x) for some x ∈ S. What is the minimum
size that S can have if there is a surjection from S to T?
Solution: In order to have a surjection from S to T , the size of
S must be at least t.

1The phrase one-to-one is sometimes easier to understand when one compares it to the
phrase many-to-one. John Fraliegh, an author of popular textbooks in abstract and linear
algebra, suggests that two-to-two might be a better name that one-to-one.
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330. When f is a function from S to T , the sets S and T play a big role
in determining whether a function is one-to-one or onto (as defined in
Problem 329). For the remainder of this problem, let S and T stand
for the set of nonnegative real numbers.

(a) If f : S → T is given by f(x) = x2, is f one-to-one? Is f onto?
Solution: With S as domain and T as range, f is both one-to-
one and onto.

(b) Now assume for the rest of the problem that S′ is the set of all real
numbers and g : S′ → T is given by g(x) = x2. Is g one-to-one?
Is g onto?
Solution: The function g is not one-to-one, but it is onto.

(c) Assume for the rest of the problem that T ′ is the set of all real
numbers and h : S → T ′ is given by h(x) = x2. Is h one-to-one?
Is h onto?
Solution: The function h is one-to-one but not onto.

(d) And if the function j : S′ → T ′ is given by j(x) = x2, is j
one-to-one? Is j onto?
Solution: The function j is neither one-to-one nor onto.

331. If f : S → T is a function, we say that fmaps x to y as another way
to say that f(x) = y. Suppose S = T = {1, 2, 3}. Give a function
from S to T that is not onto. Notice that two different members of
S have mapped to the same element of T . Thus when we say that f
associates one and only one element of T to each element of S, it is
quite possible that the one and only one element f(1) that f maps 1
to is exactly the same as the one and only one element f(2) that f
maps 2 to.

Solution: The function given by f(x) = 1 for all x in S is not onto.

A.1.2 Directed graphs

We visualize numerical functions like f(x) = x2 with their graphs in Carte-
sian coordinate systems. We will call these kinds of graphs coordinate graphs
to distinguish them from other kinds of graphs used to visualize relations
that are non-numerical. In Figure A.1 we illustrate another kind of graph,
a “directed graph” or “digraph” of the “comes before in alphabetical order”
relation on the letters a, b, c, and d. To draw a directed graph of a relation
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Figure A.1: The alphabet digraph.

a

b

c

d

on a finite2 set S, we draw a circle (or dot, if we prefer), which we call a
vertex, for each element of the set, we usually label the vertex with the set
element it corresponds to, and we draw an arrow from the vertex for a to
that for b if a is related to b, that is, if the ordered pair (a, b) is in our rela-
tion. We call such an arrow an edge or a directed edge. We draw the arrow
from a to b, for example, because a comes before b in alphabetical order. We
try to choose the locations where we draw our vertices so that the arrows
capture what we are trying to illustrate as well as possible. Sometimes this
entails redrawing our directed graph several times until we think the arrows
capture the relationship well.

332. Draw the digraph of the “is a proper subset of” relation on the set of
subsets of a two element set. How many arrows would you have had
to draw if this problem asked you to draw the digraph for the subsets
of a three-element set?

Solution:

2We could imagine a digraph on an infinite set, but we could never draw all the vertices
and edges, so people sometimes speak of digraphs on infinite sets. One just has to be more
careful with the definition to make sure it makes sense for infinite sets.
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Ø

{2}{1}

{1,2}

We would need to draw 19 arrows, some of them curved, for the subsets
of a three-element set.

We also draw digraphs for relations from a finite set S to a finite set T ;
we simply draw vertices for the elements of S (usually in a row) and vertices
for the elements of T (usually in a parallel row) and draw an arrow from x
in S to y in T if x is related to y. Notice that instead of referring to the
vertex representing x, we simply referred to x. This is a common shorthand.

333. Draw the digraph of the relation from the set {A, M, P, S} to the set
{Sam, Mary, Pat, Ann, Polly, Sarah} given by “is the first letter of.”

Solution:

S a m M a r y P a t A n n P o l l y S a r a h

A M P S

334. Draw the digraph of the relation from the set {Sam, Mary, Pat, Ann,
Polly, Sarah} to the set {A, M, P, S} given by “has as its first letter.”

Solution:

S a m M a r y P a t A n n P o l l y S a r a h

A M P S
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335. Draw the digraph of the relation on the set {Sam, Mary, Pat, Ann,
Polly, Sarah} given by “has the same first letter as.”

Solution:

S a m

M a r y

P a tA n n

P o l l yS a r a h

A.1.3 Digraphs of Functions

336. When we draw the digraph of a function f , we draw an arrow from
the vertex representing x to the vertex representing f(x). One of the
relations you considered in Problems 333 and 334 is the relation of a
function.

(a) Which relation is the relation of a function?
Solution: It is the relation of Problem 334.

(b) How does the digraph help you visualize that one relation is a
function and the other is not?
Solution: In Problem 334, each vertex representing a name has
just one arrow leaving it. This means exactly one letter is related
to each name, so this relation is the relation of a function from the
set of names to the set of letters. In Problem 333, the vertex P
has two arrows leaving it. Therefore two elements are associated
with the letter P, so this relation is not the relation of a function
from the set of letters to the set of names.

337. Digraphs of functions help us to visualize whether or not they are onto
or one-to-one. For example, let both S and T be the set {−2,−1, 0, 1, 2}
and let S′ and T ′ be the set {0, 1, 2}. Let f(x) = 2− |x|.

(a) Draw the digraph of the function f assuming its domain is S and
its range is T . Use the digraph to explain why or why not this
function maps S onto T .
Solution:
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-2 0 1 2-1

-2 0 1 2-1

The function is not onto because there are vertices in the range
that do not have an arrow going to them.

(b) Use the digraph of the previous part to explain whether or not
the function is one-to one.
Solution: The function is not one-to-one because there are two
arrows entering vertex 0 and two arrows entering vertex 1.

(c) Draw the digraph of the function f assuming its domain is S and
its range is T ′. Use the digraph to explain whether or not the
function is onto.
Solution:

-2 -1 0 1 2

0 1 2

The function is onto because each vertex in the range that has at
least one arrow going to it.

(d) Use the digraph of the previous part to explain whether or not
the function is one-to-one.
Solution: The function is not one-to-one because there are two
arrows entering vertex 0 and two arrows entering vertex 1.

(e) Draw the digraph of the function f assuming its domain is S′ and
its range is T ′. Use the digraph to explain whether the function
is onto.
Solution:

0 1 2

0 1 2
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The function is onto because each vertex in the range has an
arrow entering it.

(f) Use the digraph of the previous part to explain whether the func-
tion is one-to-one.
Solution: The function is one-to-one because each element of
the range has at most one arrow entering it.

(g) Suppose that the function f has domain S′ and range T . Draw
the digraph of f and use it to explain whether f is onto.
Solution:

0 1 2

-2 0 1 2-1

The function is not onto because there are vertices in the range
that do not have an arrow entering them.

(h) Use the digraph of the previous part to explain whether f is one-
to-one.
Solution: f is one-to-one because each vertex of T has at most
one arrow entering it.

A one-to-one function from a set X onto a set Y is frequently called
a bijection, especially in combinatorics. Your work in Problem 337 should
show you that a digraph is the digraph of a bijection from X to Y

• if the vertices of the digraph represent the elements of X and Y ,

• if each vertex representing an element of X has one ond only one arrow
leaving it, and

• each vertex representing an element of Y has one and only one arrow
entering it.

338. If we reverse all the arrows in the digraph of a bijection f , we get
the digraph of another function g. Is g a bijection? What is f(g(x))?
What is g(f(x))?

Solution: g is a bijection, because each vertex representing an ele-
ment of Y has one arrow leaving it and each vertex representing an
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element of X has one arrow entering it. For both of the next questions,
the answer is x.

If f is a function from S to T , if g is a function from T to S, and if
f(g(x)) = x for each x in T and g(f(x)) = x for each x in S, then we say
that g is an inverse of f (and f is an inverse of g).

More generally, if f is a function from a set R to a set S, and g is
a function from S to T , then we define a new function f ◦ g, called the
composition of f and g, by f ◦ g(x) = f(g(x)). Composition of functions
is a particularly important operation in subjects such as calculus, where we
represent a function like h(x) =

√
x2 + 1 as the composition of the square

root function and the square and add one function in order to use the chain
rule to take the derivative of h.

The function ι (the Greek letter iota is pronounced eye-oh-ta) from a
set S to itself, given by the rule ι(x) = x for every x in S, is called the
identity function on S. If f is a function from S to T and g is a function
from T to S such that g(f(x)) = x for every x in S, we can express this
by saying that g ◦ f = ι, where ι is the identity function of S. Saying that
f(g(x)) = x is the same as saying that f ◦ g = ι, where now ι stands for
the identity function on T . We use the same letter for the identity function
on two different sets when we can use context to tell us on which set the
identity function is being defined.

339. If f is a function from S to T and g is a function from T to S such that
g(f(x)) = x, how can we tell from context that g ◦ f is the identity
function on S and not the identity function on T?

Solution: Since f has S as its domain, g ◦ f must have S as its
domain as well, so that it is possible to compute f(x)) in order to
compute g(f(x)). Thus g ◦ f is the identity function on S.

340. Explain why a function that has an inverse must be a bijection.

Solution: Suppose the function f from S to T has an inverse g. If
f(x) = f(y), then g(f(x)) = g(f(y)) and so x = y. Therefore f is
one-to-one. If y is in T , then f(g(y)) = y, and so g(y) is an element x
of S such that f(x) = y. Therefore f is a bijection.

341. Is it true that the inverse of a bijection is a bijection?

Solution: If f is the inverse of g, then g is the inverse of f (because
the definition is symmetric in f and g). Thus the inverse of a bijection
has an inverse and therefore by Problem 340 it is a bijection as well.
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342. If g and h are inverses of f , then what can we say about g and h?

Solution: They must be equal. To see why, notice first that each
element y of T must be f(x) for some x in S, because f is a bijection.
But then since h(f(x)) = x = g(f(x)), we have h(y) = g(y) for every
y in T .

343. Explain why a bijection must have an inverse.

Solution: From the point of view of digraphs, if f is a bijection, we
can get the digraph of an inverse by reversing all the arrows in the
digraph of f . If you prefer to use the definitions directly, suppose f
is a bijection. For each y in T , let g(y) be the x such that f(x) = y.
(There must be such an x because f is a bijection.) Then g(f(x)) = x
by definition. To compute f(g(y)), we have to take f(x), where x
is the unique element of S such that f(x) = y. Thus f(g(y)) = y.
Therefore g is an inverse to f .

Since a function with an inverse has exactly one inverse g, we call g the
inverse of f . From now on, when f has an inverse, we shall denote its inverse
by f−1. Thus f(f−1(x)) = x and f−1(f(x)) = x. Equivalently f ◦ f−1 = ι
and f−1 ◦ f = ι.

A.2 Equivalence Relations

So far we’ve used relations primarily to talk about functions. There is
another kind of relation, called an equivalence relation, that comes up in the
counting problems with which we began. In Problem 8 with three distinct
flavors, it was probably tempting to say there are 12 flavors for the first
pint, 11 for the second, and 10 for the third, so there are 12 · 11 · 10 ways
to choose the pints of ice cream. However, once the pints have been chosen,
bought, and put into a bag, there is no way to tell which is first, which is
second and which is third. What we just counted is lists of three distinct
flavors—one-to-one functions from the set {1, 2, 3} in to the set of ice cream
flavors. Two of those lists become equivalent once the ice cream purchase
is made if they list the same ice cream. In other words, two of those lists
become equivalent (are related) if they list same subset of the set of ice
cream flavors. To visualize this relation with a digraph, we would need one
vertex for each of the 12 · 11 · 10 lists. Even with five flavors of ice cream,
we would need one vertex for each of 5 · 4 · 3 = 60 lists. So for now we will
work with the easier to draw question of choosing three pints of ice cream
of different flavors from four flavors of ice cream.
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344. Suppose we have four flavors of ice cream, V(anilla), C(hocolate),
S(trawberry) and P(each). Draw the directed graph whose vertices
consist of all lists of three distinct flavors of the ice cream, and whose
edges connect two lists if they list the same three flavors. This graph
makes it pretty clear in how many “really different” ways we may
choose 3 flavors out of four. How many is it?

Solution:

C S V

S C V

C V S

S V C

V C S

V S C

P S V

S P V

S V P

V P S

V S P

C P V

V P C

V C P

P V C

P C V

C V P

C P S

S P C

S C P

P S C

P C S

C S P

P V S

We used double-headed arrows in place of one arrow going in each
direction to reduce the clutter in the picture. Note that there is an
arrow from each vertex to itself. We may choose 3 flavors in four
ways.

345. Now suppose again we are choosing three distinct flavors of ice cream
out of four, but instead of putting scoops in a cone or choosing pints,
we are going to have the three scoops arranged symmetrically in a
circular dish. Similarly to choosing three pints, we can describe a
selection of ice cream in terms of which one goes in the dish first,
which one goes in second (say to the right of the first), and which one
goes in third (say to the right of the second scoop, which makes it to
the left of the first scoop). But again, two of these lists will sometimes
be equivalent. Once they are in the dish, we can’t tell which one went
in first. However, there is a subtle difference between putting each
flavor in its own small dish and putting all three flavors in a circle in
a larger dish. Think about what makes the lists of flavors equivalent,
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and draw the directed graph whose vertices consist of all lists of three
of the flavors of ice cream and whose edges connect two lists between
which we cannot distinguish as dishes of ice cream. How many dishes
of ice cream can we distinguish from one another?

Solution:

C S V

V C SS V C

C V S

S C VV S C

P V S

S P VV S P

P S V

V P SS V P

C P V

V C PP C V

C P S

S C PP S C

C S P

P C SS P C

C V P

V P CP V C

We can distinguish eight different dishes of ice cream.

346. Draw the digraph for Problem 38 in the special case where we have
four people sitting around the table.

Solution:

A B D C C A B D

D C A BB D C A

A D B C C A D B

B C A DD B C A

A B C D D A B C

C D A BB C D A

C B A D D C B A

A D C BB A D C

B A C D D B A C

C D B AA C D B

A C B D D A C B

B D A CC B D A

In Problems 344, 345, and 346 (as well as Problems 34c, 38, and 39d)
we can begin with a set of lists, and say when two lists are equivalent as
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representations of the objects we are trying to count. In particular, in
Problems 344, 345, and 346 you drew the directed graph for this relation of
equivalence. Your digraph had an arrow from each vertex (list) to itself (or
else you want to go back and give it these arrows). This is what we mean
when we say a relation is reflexive. Whenever you had an arrow from one
vertex to a second, you had an arrow from the second back to the first. This
is what we mean when we say a relation is symmetric.

When people sit around a round table, each list is equivalent to itself:
if List1 and List2 are identical, then everyone has the same person to the
right in both lists (including the first person in the list being to the right
of the last person). To see the symmetric property of the equivalence of
seating arrangements, if List1 and List2 are different, but everyone has the
same person to the right when they sit according to List2 as when they sit
according to List1, then everybody better have the same person to the right
when they sit according to List1 as when they sit according to List2.

In Problems 344, 345 and 346 there is another property of those relations
you may have noticed from the directed graph. Whenever you had an arrow
from L1 to L2 and an arrow from L2 to L3, then there was an arrow from
L1 to L3. This is what we mean when we say a relation is transitive. You
also undoubtedly noticed how the directed graph divides up into clumps
of mutually connected vertices. This is what equivalence relations are all
about. Let’s be a bit more precise in our description of what it means for a
relation to be reflexive, symmetric or transitive.

• If R is a relation on a set X, we say R is reflexive if (x, x) ∈ R for
every x ∈ X.

• If R is a relation on a set X, we say R is symmetric if (x, y) is in R
whenever (y, x) is in R.

• If R is a relation on a set X, we say R is transitive if whenever (x, y)
is in R and (y, z) is in R, then (x, z) is in R as well.

Each of the relations of equivalence you worked with in the Problem 344,
345 and 346 had these three properties. Can you visualize the same three
properties in the relations of equivalence that you would use in Problems 34c,
38, and 39d? We call a relation an equivalence relation if it is reflexive,
symmetric and transitive.

After some more examples, we will see how to show that equivalence
relations have the kind of clumping property you saw in the directed graphs.
In our first example, using the notation (a, b) ∈ R to say that a is related
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to B is going to get in the way. It is really more common to write aRb to
mean that a is related to b. For example, if our relation is the less than
relation on {1, 2, 3}, you are much more likely to use x < y than you are
(x, y) ∈ <, aren’t you? The reflexive law then says xRx for every x in X,
the symmetric law says that if xRy, then yRx, and the transitive law says
that if xRy and yRz, then xRz.

347. For the necklace problem, Problem 43, our lists are lists of beads.
What makes two lists equivalent for the purpose of describing a neck-
lace? Verify explicitly that this relationship of equivalence is reflexive,
symmetric, and transitive.

Solution: Two lists are equivalent if I can get one from the other
by some combination of cyclic permutation (putting the last thing in
the list at the front and moving everything else one place right) and
reversals. The combination could include no operation at all. Since
it is possible to have no operation, the relation is reflexive. (Even
without the opportunity to do no operation, if we do two reversals to
a list we get the original list back so it is equivalent to itself.) Suppose
we have n beads. Then if I can get from list A to list B with a cyclic
permutation, then n− 1 more cyclic permutations give us the original
list. Also if I get from a list A to a list B by a reversal, then another
reversal takes B to A. Thus any sequence of cyclic permutations and
reversals can be undone. Therefore if list A is equivalent to list B, then
list B is equivalent to list A. Following one combination of operations
with another one still gives a combination of operations, so our relation
is transitive.

348. Which of the reflexive, symmetric and transitive properties does the
< relation on the integers have?

Solution: It is transitive, but not reflexive or symmetric.

349. A relation R on the set of ordered pairs of positive integers that you
learned about in grade school in another notation is the relation that
says (m,n) is related to (h, k) if mk = hn. Show that this relation
is an equivalence relation. In what context did you learn about this
relation in grade school?

Solution: mn = mn so the relation is reflexive. If mk = hn, then
hn = mk, so if (m,n) is related to (h, k), then (h, k) is related to
(m,n). If (m,n) is related to (h, k) and (h, k) is related to (p, q), then
mk = hn and hq = pk, which gives us mkhq = hnpk, and cancelling h
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and k gives us mq = np = pn, so (m,n) is related to (p, q). Therefore,
the relation is transitive. This is the relation of equality of the fractions
m
n and h

k .

350. Another relation that you may have learned about in school, perhaps
in the guise of “clock arithmetic,” is the relation of equivalence modulo
n. For integers (positive, negative, or zero) a and b, we write

a ≡ b (mod n)

to mean that a− b is an integer multiple of n, and in this case, we say
that a is congruent to b modulo n. Show that the relation of congruence
modulo n is an equivalence relation.

Solution: a− a = 0 = 0 · n, so a ≡ a (mod n). Thus the relation is
reflexive. If a− b = kn for some integer k, then b− a = −kn, and −k
is an integer, so if a ≡ b (mod n), then b ≡ a (mod n). If a − b = kn
and b− c = jn, then a− b + b− c = kn + jn, so a− c = (k + j)n and
since k + j is an integer this means that a ≡ c (mod n). Therefore the
relation of congruence mod n is an equivalence relation.

351. Define a relation on the set of all lists of n distinct integers chosen
from {1, 2, . . . , n}, by saying two lists are related if they have the same
elements (though perhaps in a different order) in the first k places,
and the same elements (though perhaps in a different order) in the
last n− k places. Show this relation is an equivalence relation.

Solution: The relation is reflexive, for a list L has the same elements
as the list L in the first k places and the last n− k places. If L1 and
L2 have the same elements in the first k places and have the same
elements in the last k places, then L2 and L1 have the same elements
in the first k places and have the same elements in the last n−k places,
so our relation is symmetric. If L1 and L2 have the same elements in
the first k places and L2 and L3 have the same elements in the first k
places, then L1 and L3 have the same elements in the first k places.
Similarly with the last n−k places. Therefore our relation is transitive,
and so it is an equivalence relation.

352. Suppose that R is an equivalence relation on a set X and for each
x ∈ X, let Cx = {y|y ∈ X and yRx}. If Cx and Cz have an element
y in common, what can you conclude about Cx and Cz (besides the
fact that they have an element in common!)? Be explicit about what
property(ies) of equivalence relations justify your answer. Why is every
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element of X in some set Cx? Be explicit about what property(ies)
of equivalence relations you are using to answer this question. Notice
that we might simultaneously denote a set by Cx and Cy. Explain why
the union of the sets Cx is X. Explain why two distinct sets Cx and
Cz are disjoint. What do these sets have to do with the “clumping”
you saw in the digraph of Problem 344 and 345?

Solution: If Cx and Cy have the element z in common, then by
symmetry and transitivity, all elements in Cx are related to z and by
symmetry and transitivity, all elements in Cy are related to z. Then
by symmetry and transitivity again, all elements of Cy are related to
x, so Cy ⊆ Cx. By the same kind of reasoning, Cx ⊆ Cy. Therefore,
Cx = Cy. Every element x is in the set Cx by reflexivity. Thus the
union of the sets Cx is X. The sets Cx and Cy are disjoint if they
are different, because if they have a common element z then they are
equal. By definition, the sets Cx form a partition of X. The clumps
that we saw in those problems are the blocks of the partition.

In Problem 352 the sets Cx are called equivalence classes of the equiva-
lence relation R. You have just proved that if R is an equivalence relation
of the set X, then each element of X is in exactly one equivalence class of
R. Recall that a partition of a set X is a set of disjoint sets whose union is
X. For example, {1, 3}, {2, 4, 6}, {5} is a partition of the set {1, 2, 3, 4, 5, 6}.
Thus another way to describe what you proved in Problem 352 is the fol-
lowing:

Theorem 10 If R is an equivalence relation on X, then the set of equiva-
lence classes of R is a partition of X.

Since a partition of S is a set of subsets of S, it is common to call the
subsets into which we partition S the blocks of the partition so that we
don’t find ourselves in the uncomfortable position of referring to a set and
not being sure whether it is the set being partitioned or one of the blocks of
the partition.

353. In each of Problems 38, 39d, 43, 344, and 345, what does an equivalence
class correspond to? (Five answers are expected here.)

Solution: In Problem 38 the equivalence classes correspond to seat-
ing arrangements. In Problem 39d the equivalence classes correspond
to the k-element subsets of our n-element set S. In Problem 43, the
equivalence classes correspond to necklaces. In Problem 344 the equiv-
alence classes correspond to choices of three flavors of ice cream out of
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a possible four flavors. In Problem 345 the equivalence classes corre-
spond to the ways we can choose scoops of ice cream of three different
flavors out of four and put them into a dish in a symmetric fashion.

354. Given the partition {1, 3}, {2, 4, 6}, {5} of the set {1, 2, 3, 4, 5, 6}, de-
fine two elements of {1, 2, 3, 4, 5, 6} to be related if they are in the same
part of the partition. That is, define 1 to be related to 3 (and 1 and
3 each related to itself), define 2 and 4, 2 and 6, and 4 and 6 to be
related (and each of 2, 4, and 6 to be related to itself), and define 5 to
be related to itself. Show that this relation is an equivalence relation.

Solution: We have said for each element of our set that it is related
to itself, so the relation is reflexive. If x and y are in a given one of
those sets, then y and x are in that same given set. If x and y are in
the same set, and if y and z are in the same set, then x and z must
be in the same set because there is one and only one set that y is in.
Thus the relation is an equivalence relation.

355. Suppose P = {S1, S2, S3, . . . , Sk} is a partition of S. Define two ele-
ments of S to be related if they are in the same set Si, and otherwise
not to be related. Show that this relation is an equivalence relation.
Show that the equivalence classes of the equivalence relation are the
sets Si.

Solution: Each element is in a set Si with itself, so the relation is
reflexive. If x and y are in a given one of those sets Si, then y and x
are in that same set Si. Therefore the relation is symmetric. If x and
y are in the same set Si, and if y and z are in the same set Sj , then Si

must equal Sj because y is in one and only one block of the partition.
Therefore, x and z must be in the same set Si. Thus the relation is
an equivalence relation. If x ∈ Si, then by definition Si consists of all
elements related to x, so it is the equivalence class containing x.

In Problem 355 you just proved that each partition of a set gives rise
to an equivalence relation whose classes are just the parts of the partition.
Thus in Problem 352 and Problem 355 you proved the following Theorem.

Theorem 11 A relation R is an equivalence relation on a set S if and only
if S may be partitioned into sets S1, S2, . . . , Sn in such a way that x and y
are related by R if and only if they are in the same block Si of the partition.

In Problems 344, 345, 38 and 43 what we were doing in each case was
counting equivalence classes of an equivalence relation. There was a special
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structure to the problems that made this somewhat easier to do. For exam-
ple, in 344, we had 4 · 3 · 2 = 24 lists of three distinct flavors chosen from
V, C, S, and P. Each list was equivalent to 3 · 2 · 1 = 3! = 6 lists, including
itself, from the point of view of serving 3 small dishes of ice cream. The
order in which we selected the three flavors was unimportant. Thus the set
of all 4 · 3 · 2 lists was a union of some number n of equivalence classes, each
of size 6. By the product principle, if we have a union of n disjoint sets,
each of size 6, the union has 6n elements. But we already knew that the
union was the set of all 24 lists of three distinct letters chosen from our four
letters. Thus we have 6n = 24, so that we have n = 4 equivalence classes.

In Problem 345 there is a subtle change. In the language we adopted for
seating people around a round table, if we choose the flavors V, C, and S,
and arrange them in the dish with C to the right of V and S to the right of
C, then the scoops are in different relative positions than if we arrange them
instead with S to the right of V and C to the right of S. Thus the order
in which the scoops go into the dish is somewhat important—somewhat,
because putting in V first, then C to its right and S to its right is the same
as putting in S first, then V to its right and C to its right. In this case, each
list of three flavors is equivalent to only three lists, including itself, and so
if there are n equivalence classes, we have 3n = 24, so there are 24/3 = 8
equivalence classes.

356. If we have an equivalence relation that divides a set with k elements
up into equivalence classes each of size m, what is the number n of
equivalence classes? Explain why.

Solution: The number of equivalence classes is k/m, because by the
product principle, mn = k.

357. In Problem 351, what is the number of equivalence classes? Explain
in words the relationship between this problem and the Problem 39d.

Solution: There are n! lists, and each is in an equivalence class of size
k!(n− k)!, so the number of equivalence classes is n!

k!(n−k)! by Problem
356. This is a way of computing the number of k-element subsets that
shows why the final answer we got in Problem 39d is symmetric in k
and n− k.

358. Describe explicitly what makes two lists of beads equivalent in Prob-
lem 43 and how Problem 356 can be used to compute the number of
different necklaces.
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Solution: Two lists are equivalent if I can get one from the other by
some combination of cyclic shifts and reversals. A cyclic shift on the
list a1, a2, . . . , an−1, an gives either the list an, a1, a2, . . . , an−1 or the
list a2, . . . , an−1, an, a1. There are n possible results of repeated cyclic
shifts, and each of them may be reversed to give a new list if n ≥ 3.
Further, these are the only lists we can get from shifts and reversals.
(a1 must go to one of n places, and that leaves two choices for where
a2 goes. Then the rest of the list is determined.) Thus we can get
exactly 2n lists from combinations of cyclic shifts and reversals. We
define two lists to be equivalent if they give the same necklace; we’ve
seen that this is an equivalence relation and that it has 2n elements
per equivalence class. Since there are n! lists, this gives us (n− 1)!/2
equivalence classes, or necklaces.

359. What are the equivalence classes (write them out as sets of lists) in
Problem 45, and why can’t we use Problem 356 to compute the number
of equivalence classes?

Solution: The equivalence classes are

{RRBB, BRRB, BBRR, RBBR} and {RBRB, BRBR}.

We can’t use Problem 356 to compute the number of equivalence
classes because the equivalence classes don’t have the same size.

In Problem 356 you proved our next theorem. In Chapter 1 (Problem 42)
we discovered and stated this theorem in the context of partitions and called
it the Quotient Principle.

Theorem 12 If an equivalence relation on a set of size k has equivalence
classes each of size m, then the number of equivalence classes is k/m.
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Appendix B

Mathematical Induction

B.1 The Principle of Mathematical Induction

B.1.1 The ideas behind mathematical induction

There is a variant of one of the bijections we used to prove the Pascal
Equation that comes up in counting the subsets of a set. In the next problem
it will help us compute the total number of subsets of a set, regardless of their
size. Our main goal in this problem, however, is to introduce some ideas that
will lead us to one of the most powerful proof techniques in combinatorics
(and many other branches of mathematics), the principle of mathematical
induction.

360. (a) Write down a list of the subsets of {1, 2}. Don’t forget the empty
set! Group the sets containing containing 2 separately from the
others.
Solution: ∅, {1}, {2}, {1, 2}.

(b) Write down a list of the subsets of {1, 2, 3}. Group the sets con-
taining 3 separately from the others.
Solution: ∅, {1}, {2}, {1, 2}, {3}, {1, 3}, {2, 3}, {1, 2, 3}.

(c) Look for a natural way to match up the subsets containing 2 in
Part (a) with those not containing 2. Look for a way to match
up the subsets containing 3 in Part (b) containing 3 with those
not containing 3.
Solution: Adjoin 2 to each subset not containing 2 and you get
each set containing 2. Adjoin 3 to each subset not containing 3,
and you get each subset containing 3.

299
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(d) On the basis of the previous part, you should be able to find
a bijection between the collection of subsets of {1, 2, . . . , n} con-
taining n and those not containing n. (If you are having difficulty
figuring out the bijection, try rethinking Parts (a) and (b), per-
haps by doing a similar exercise with the set {1, 2, 3, 4}.) Describe
the bijection (unless you are very familiar with the notation of
sets, it is probably easier to describe to describe the function in
words rather than symbols) and explain why it is a bijection.
Explain why the number of subsets of {1, 2, . . . , n} containing n
equals the number of subsets of {1, 2, . . . , n− 1}.
Solution: If we adjoin n to the subsets not containing n we get
the subsets containing n. This is a bijection because if we start
with two different sets, adjoining n to them can’t make them the
same, and every subset S containing n must arise in this way
from the set S − {n} not containing n.

(e) Parts (a) and (b) suggest strongly that the number of subsets of
a n-element set is 2n. In particular, the empty set has 20 subsets,
a one-element set has 21 subsets, itself and the empty set, and
in Parts a and b we saw that two-element and three-element sets
have 22 and 23 subsets respectively. So there are certainly some
values of n for which an n-element set has 2n subsets. One way
to prove that an n-element set has 2n subsets for all values of
n is to argue by contradiction. For this purpose, suppose there
is a nonnegative integer n such that an n-element set doesn’t
have exactly 2n subsets. In that case there may be more than
one such n. Choose k to be the smallest such n. Notice that
k − 1 is still a positive integer, because k can’t be 0, 1, 2, or
3. Since k was the smallest value of n we could choose to make
the statement “An n-element set has 2n subsets” false, what do
you know about the number of subsets of a (k − 1)-element set?
What do you know about the number of subsets of the k-element
set {1, 2, . . . , k} that don’t contain k? What do you know about
the number of subsets of {1, 2, . . . , k} that do contain k? What
does the sum principle tell you about the number of subsets of
{1, 2, . . . , k}? Notice that this contradicts the way in which we
chose k, and the only assumption that went into our choice of k
was that “there is a nonnegative integer n such that an n-element
set doesn’t have exactly 2n subsets.” Since this assumption has
led us to a contradiction, it must be false. What can you now
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conclude about the statement “for every nonnegative integer n,
an n-element set has exactly 2n subsets?”
Solution: We know that the number of subsets of a (k − 1)-
element set is 2k−1. The number of subsets of {1, 2, . . . , k} that
do not contain k is the number of subsets of the k−1-element set
{1, 2, . . . , k− 1}, so we know this number is 2k−1. We know that
the number of subsets that do contain k equals the number that
don’t, so the number that do contain k is also 2k−1. The sum
principle tells us that the number os subsets of {1, 2, . . . , k} is
2k−1 +2k−1 = 2k. We can conclude that the statement “for every
nonnegative integer n, an n-element set has exactly 2n subsets”
is true.

361. The expression
1 + 3 + 5 + · · ·+ 2n− 1

is the sum of the first n odd integers (notice that the nth odd integer
is 2n − 1). Experiment a bit with the sum for the first few positive
integers and guess its value in terms of n. Now apply the technique of
Problem 360 to prove that you are right.

Solution: We guess that 1 + 3 + 5 + · · · + 2n − 1 = n2. Clearly
this is true when n is 1, 2, or 3. Suppose there is an n for which
this formula is not true, and let k be the smallest such n. Then
1+3+5+· · ·+2(k−1)−1 = (k−1)2. Simplifying, 1+3+5+· · ·+2k−3 =
(k − 1)2. Now suppose we add 2k − 1 to both sides of this equation.
Then we get

1+3+5+· · ·+2k−3+2k−1 = (k−1)2+2k−1 = k2−2k+1+2k−1 = k2.

But this is a contradiction, because we assumed that k was the smallest
value of n for which the sum on the left is not n2. Therefore the
assumption that there is an n for which 1 + 3 + 5 + · · ·+ 2n− 1 6= n2

must be false, so the equation 1 + 3 + 5 + · · · + 2n − 1 = n2 must be
true for all positive integers n.

In Problems 360 and 361 our proofs had several distinct elements. We
had a statement involving an integer n. We knew the statement was true
for the first few nonnegative integers in Problem 360 and for the first few
positive integers in Problem 361. We wanted to prove that the statement
was true for all nonnegative integers in Problem 360 and for all positive
integers in Problem 361. In both cases we used the method of proof by
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contradiction; for that purpose we assumed that there was a value of n for
which our formula wasn’t true. We then chose k to be the smallest value of
n for which our formula wasn’t true.1 This meant that when n was k − 1,
our formula was true, (or else that k − 1 wasn’t a nonnegative integer in
Problem 360 or that k− 1 wasn’t a positive integer in Problem 361). What
we did next was the crux of the proof. We showed that the truth of our
statement for n = k − 1 implied the truth of our statement for n = k. This
gave us a contradiction to the assumption that there was an n that made
the statement false. In fact, we will see that we can bypass entirely the use
of proof by contradiction. We used it to help you discover the central ideas
of the technique of proof by mathematical induction.

The central core of mathematical induction is the proof that the truth
of a statement about the integer n for n = k − 1 implies the truth of the
statement for n = k. For example, once we know that a set of size 0 has
20 subsets, if we have proved our implication, we can then conclude that
a set of size 1 has 21 subsets, from which we can conclude that a set of
size 2 has 22 subsets, from which we can conclude that a set of size 3 has 23

subsets, and so on up to a set of size n having 2n subsets for any nonnegative
integer n we choose. In other words, although it was the idea of proof by
contradiction that led us to think about such an implication, we can now do
without the contradiction at all. What we need to prove a statement about
n by this method is a place to start, that is a value b of n for which we know
the statement to be true, and then a proof that the truth of our statement
for n = k − 1 implies the truth of the statement for n = k whenever k > b.

B.1.2 Mathematical induction

The principle of mathematical induction states that

In order to prove a statement about an integer n, if we can

1. Prove the statement when n = b, for some fixed integer b

2. Show that the truth of the statement for n = k − 1 implies
the truth of the statement for n = k whenever k > b,

then we can conclude the statement is true for all integers n ≥ b.

As an example, let us return to Problem 360. The statement we wish to
prove is the statement that “A set of size n has 2n subsets.”

1The fact that every set of positive integers has a smallest element is called the Well-
Ordering Principle. In an axiomatic development of numbers, one takes the Well-Ordering
Principle or some equivalent principle as an axiom.
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Our statement is true when n = 0, because a set of size 0 is the
empty set and the empty set has 1 = 20 subsets. (This step of
our proof is called a base step.)

Now suppose that k > 0 and every set with k − 1 elements has
2k−1 subsets. Suppose S = {a1, a2, . . . ak} is a set with k ele-
ments. We partition the subsets of S into two blocks. Block B1

consists of the subsets that do not contain an and block B2 con-
sists of the subsets that do contain an. Each set in B1 is a subset
of {a1, a2, . . . ak−1}, and each subset of {a1, a2, . . . ak−1} is in B1.
Thus B1 is the set of all subsets of {a1, a2, . . . ak−1}. Therefore
by our assumption in the first sentence of this paragraph, the
size of B1 is 2k−1. Consider the function from B2 to B1 which
takes a subset of S including an and removes an from it. This
function is defined on B2, because every set in B2 contains an.
This function is onto, because if T is a set in B1, then T ∪ {ak}
is a set in B2 which the function sends to T . This function is
one-to-one because if V and W are two different sets in B2, then
removing ak from them gives two different sets in B1. Thus we
have a bijection between B1 and B2, so B1 and B2 have the
same size. Therefore by the sum principle the size of B1 ∪B2 is
2k−1 + 2k−1 = 2k. Therefore S has 2k subsets. This shows that
if a set of size k− 1 has 2k−1 subsets, then a set of size k has 2k

subsets. Therefore by the principle of mathematical induction,
a set of size n has 2n subsets for every nonnegative integer n.

The first sentence of the last paragraph is called the inductive hypothesis.
In an inductive proof we always make an inductive hypothesis as part of
proving that the truth of our statement when n = k− 1 implies the truth of
our statement when n = k. The last paragraph itself is called the inductive
step of our proof. In an inductive step we derive the statement for n =
k from the statement for n = k − 1, thus proving that the truth of our
statement when n = k − 1 implies the truth of our statement when n = k.
The last sentence in the last paragraph is called the inductive conclusion.
All inductive proofs should have a base step, an inductive hypothesis, an
inductive step, and an inductive conclusion.

There are a couple details worth noticing. First, in this problem, our
base step was the case n = 0, or in other words, we had b = 0. However,
in other proofs, b could be any integer, positive, negative, or 0. Second, our
proof that the truth of our statement for n = k− 1 implies the truth of our
statement for n = k required that k be at least 1, so that there would be an
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element ak we could take away in order to describe our bijection. However,
condition (2) of the principle of mathematical induction only requires that
we be able to prove the implication for k > 0, so we were allowed to assume
k > 0.

362. Use mathematical induction to prove your formula from Problem 361.

Solution: Our formula says that 1+3+5+ · · ·+2n−1 = n2. When
n = 1, this formula says 1 = 1, so our formula holds when n = 1. Now
in order to prove that the truth of the formula when n = k− 1 implies
its truth when n = k, assume that k > 1 and 1+3+5+· · ·+2(k−1)−1 =
(k − 1)2. Then by addition of 2k − 1 to both sides of the equation,
1+3+5+ · · ·+2k− 1 = (k− 1)2 +2k− 1 = k2− 2k +1+2k− 1 = k2.
Therefore the truth of the formula for n = k − 1 implies its truth for
n = k. Thus, by the principle of mathematical induction, the formula
holds for all positive n.

B.1.3 Proving algebraic statements by induction

363. Use mathematical induction to prove the well-known formula that for
all positive integers n,

1 + 2 + · · ·+ n =
n(n + 1)

2
.

Solution: When n = 0, 0 = 0(0 + 1)/2, so our formula holds. Now
suppose that k > 0 and that our formula holds when n = k − 1, so
that 1 + 2 + · · · + k − 1 = (k − 1)k/2. Add k to both sides of this
equation to get

1 + 2 + · · ·+ (k − 1) + k = (k − 1)k/2 + k

= k2/2− k/2 + k

= k2/2 + k/2
= k(k + 1)/2.

Thus the truth of our formula for n = k − 1 implies its truth for
n = k. Therefore by the principle of mathematical induction, our
formula holds for all nonnegative integers n.

364. Experiment with various values of n in the sum

1
1 · 2

+
1

2 · 3
+

1
3 · 4

+ · · ·+ 1
n · (n + 1)

=
n∑

i=1

1
i · (i + 1)

.
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Guess a formula for this sum and prove your guess is correct by induc-
tion.

Solution: We guess the formula
n∑

i=1

1
i(i + 1)

=
n

n + 1
.

When n = 1 this formula says that 1
1·2 = 1

1·2 , so our formula holds
when n = 1. Now assume that k > 1 and that our formula holds when
n = k − 1. Then

k−1∑
i=1

1
i(i + 1)

=
k − 1

k
.

Adding 1
k(k+1) to both sides of this equation gives us

k−1∑
i=1

1
i(i + 1)

+
1

k(k + 1)
=

k − 1
k

+
1

k(k + 1)
k∑

i=1

1
i(i + 1)

=
(k − 1)(k + 1)

k(k + 1)
+

1
k(k + 1)

=
k2 − 1 + 1
k(k + 1)

=
k

k + 1
.

Thus whenever our formula is true with n = k − 1, it is true with
n = k as well. Therefore by the principle of mathematical induction,
our formula is true for all positive integers.

365. For large values of n, which is larger, n2 or 2n? Use mathematical
induction to prove that you are correct.

Solution: We note that 02 = 0, while 20 = 1, that 12 = 1, while
21 = 2, that 22 = 4, while 22 = 4, that 32 = 9 while 23 = 8, that
42 = 16 while 24 = 16, and 52 = 25 while 25 = 32. We suspect
that 2n > n2 for n ≥ 5, so we try to prove this by induction. We
have already shown that 25 > 52. Now suppose that k > 5 and
2k−1 > (k − 1)2. Then 2k = 2 · 2k−1 > 2(k − 1)2 = 2k2 − 4k + 1.
Now since k > 5, k2 > 5k, so that k2 − 4k + 1 = k2 + k2 − 4k + 1 >
k2 + 5k − 4k + 1 = k2 + k + 1 > k2. Thus for k > 5, the statement
2k−1 > (k − 1)2 implies the statement 2k > k2. Therefore, by the
principle of mathematical induction, 2n > n2 for all n ≥ 5.
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366. What is wrong with the following attempt at an inductive proof that
all integers in any consecutive set of n integers are equal for every
positive integer n? For an arbitrary integer i, all integers from i to i
are equal, so our statement is true when n = 1. Now suppose k > 1
and all integers in any consecutive set of k− 1 integers are equal. Let
S be a set of k consecutive integers. By the inductive hypothesis, the
first k − 1 elements of S are equal and the last k − 1 elements of S
are equal. Therefore all the elements in the set S are equal. Thus by
the principle of mathematical induction, for every positive n, every n
consecutive integers are equal.

Solution: One possible value of k that is greater than 1 is 2. When
we have a set S of two elements and we argue that the first k − 1
elements are equal and the last k − 1 elements are equal, we cannot
conclude from those equalities that all elements of S are equal, because
there is no overlap among the first k − 1 = 1 elements of S and the
last k − 1 = 1 elements of S. Thus our inductive step does not cover
the possibility that k = 2. Therefore our inductive step does not show
that the truth of our statement for n = k − 1 implies the truth of our
statement for n = k for all integers n > 1. Therefore the principle of
mathematical induction does not apply.

B.2 Strong Induction

One way of looking at the principle of mathematical induction is that it
tells us that if we know the “first” case of a theorem and we can derive each
other case of the theorem from a smaller case, then the theorem is true in all
cases. However, the particular way in which we stated the theorem is rather
restrictive in that it requires us to derive each case from the immediately
preceding case. This restriction is not necessary, and removing it leads us to
a more general statement of the principle of mathematical induction which
people often call the strong principle of mathematical induction. It
states:

In order to prove a statement about an integer n if we can

1. prove our statement when n = b and

2. prove that the statements we get with n = b, n = b + 1,
. . .n = k − 1 imply the statement with n = k,

then our statement is true for all integers n ≥ b.
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367. What postage do you think we can make with five and six cent stamps?
Do you think that there is a number N such that if n ≥ N , then we
can make n cents worth of postage?

Solution: We can make 10, 11, and 12 cents in postage, but not 13
cents. We can also make 15, 16, 17, and 18, but not 19 cents. However,
when we try starting with 20 cents, we can make 20, 21, 22, 23, 24,
25, 26, 27,...cents, and so it seems for all n ≥ 20, we can make n cents
in stamps. Once we know we can make 20 cents through 24 cents, by
adding 5 cents to each of these we can get 25 through 29 cents, and
so we expect to be able to keep going. However, making 29 cents does
not depend on our ability to make 28 cents; rather we know we can
make 29 cents because we know we can make 24 cents and 24+5 = 29
or we know we can make 23 cents and 23 + 6 = 29. Thus it certainly
seems as if for all n ≥ 20 we can make n cents in postage.

You probably see that we can make n cents worth of postage as long
as n is at least 20. However, you didn’t try to make 26 cents in postage
by working with 25 cents; rather you saw that you could get 20 cents and
then add six cents to that to get 26 cents. Thus if we want to prove by
induction that we are right that if n ≥ 20, then we can make n cents worth
of postage, we are going to have to use the strong version of the principle of
mathematical induction.

We know that we can make 20 cents with four five-cent stamps. Now we
let k be a number greater than 20, and assume that it is possible to make
any amount between 20 and k − 1 cents in postage with five and six cent
stamps. Now if k is less than 25, it is 21, 22, 23, or 24. We can make 21
with three fives and one six. We can make 22 with two fives and two sixes,
23 with one five and three sixes, and 24 with four sixes. Otherwise k − 5
is between 20 and k − 1 (inclusive) and so by our inductive hypothesis, we
know that k − 5 cents can be made with five and six cent stamps, so with
one more five cent stamp, so can k cents. Thus by the (strong) principle of
mathematical induction, we can make n cents in stamps with five and six
cent stamps for each n ≥ 20.

Some people might say that we really had five base cases, n = 20, 21, 22,
23, and 24, in the proof above and once we had proved those five consecutive
base cases, then we could reduce any other case to one of these base cases by
successively subtracting 5. That is an appropriate way to look at the proof.
In response, a logician might say that it is also the case that, for example,
by proving we could make 22 cents, we also proved that if we can make 20
cents and 21 cents in stamps, then we could also make 22 cents. We just
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didn’t bother to use the assumption that we could make 20 cents and 21
cents! On the other hand a computer scientist might say that if we want
to write a program that figures out how to make n cents in postage, we use
one method for the cases n = 20 to n = 24, and then a general method for
all the other cases. So to write a program it is important for us to think
in terms of having multiple base cases. How do you know what your base
cases are? They are the ones that you solve without using the inductive
hypothesis. So long as one point of view or the other satisfies you, you are
ready to use this kind of argument in proofs.

368. A number greater than one is called prime if it has no factors other
than itself and one. Show that each positive number is either a power
of a prime (remember what p0 and p1 are) or a product of powers of
prime numbers.

Solution: We note that 1 = 20, so 1 is a power of a prime. Now
suppose that all positive numbers less than n are primes, powers of
primes, or products of powers of primes. If n has no proper factors,
it is a prime. If it does have proper factors, say n = mk, both factors
are less than n and greater than 1. Therefore each factor is a prime,
a power of a prime, or a product of powers of primes. When we
multiply m and k together, the result will still be a power of a prime
or a product of powers of primes. Thus the statement that all positive
numbers less than n are primes, powers of primes, or products of
powers of primes implies the statement that n is a prime, a power of
a prime, or a product of powers of primes. Therefore by the strong
principle of mathematical induction, all positive numbers are either
primes, powers of primes, or products of powers of primes.

369. Show that the number of prime factors of a positive number n ≥ 2 is
less than or equal to log2 n. (If a prime occurs to the kth power in
a factorization of n, you can consider that power as k prime factors.)
(There is a way to do this by induction and a way to do it without
induction. It would be ideal to find both ways.)

Solution: First, we will prove this by induction. The number of
prime factors of 2 is 1, which is less than or equal to log2 2 = 1. Now
assume that the number of prime factors of any number k greater
than 1 and less than n is no more than log2 k. If n is prime, then its
number of prime factors is less than or equal to log2 n. Otherwise n is
a product of two factors, n = mk. Then by our inductive hypothesis,
the number of prime factors of m is less than or equal to log2 m and
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the number of prime factors of k is less than or equal to log2 k. But
the number of prime factors of the product is the sum of the number
of prime factors of each factor, so the number of prime factors of n is
no more than log2 m + log2 k = log2 mk = log2 n. Thus the statement
that “the number of prime factors of any number k between 2 and
n−1 inclusive is no more than log2 k” implies the statement that “the
number of prime factors of n is no more than log2 n.” Therefore, by
the principle of mathematical induction, the number of prime factors
of n is less than or equal to log2 n for all integers n ≥ 2.

For a noninductive proof, note that all factors of n are at least 2. If n
is a power of two, then the number of times 2 is a factor of n is exactly
log2 n. But if n is not a power of 2, we still have that 2log2 n = n, so
the product of dlog2 ne numbers including some greater than 2 must
be greater than n. Therefore, the number of prime factors of n is no
more than log2 n. Thus for all n ≥ 2, the number of prime factors of
n must be less than or equal to log2 n.

370. One of the most powerful statements in elementary number theory is
Euclid’s Division Theorem2. This states that if m and n are positive
integers, then there are unique nonnegative intergers q and r with
0 ≤ r < n, such that m = nq + r. The number q is called the quotient
and the number r is called the remainder. In computer science it is
common to denote r by m mod n. In elementary school you learned
how to use long division to find q and r. However, it is unlikely that
anyone ever proved for you that for any pair of positive intgers, m and
n, there is such a pair of nonnegative numbers q and r. You now have
the tools needed to prove this. Do so.

Solution: We prove our result by induction on m. If m = 1, then
either n = 1 and we can choose q = 1 and r = 0, or n > 1 and we can
choose q = 0 and r = 1. Furthermore, if m = 1 and n = 1, then r
must equal zero (to be less than 1), and so q must equal 1. In m = 1

2In a curious twist of language, mathematicians have long called The Division Algo-
rithm or Euclid’s Division Algorithm. However as computer science has grown in impor-
tance, the word algorithm has gotten a more precise definition: an algorithm is now a
method to do something. There is a method (in fact there are more than one) to get the
q and r that Euclid’s Division Theorem gives us, and computer scientists would call these
methods algorithms. Your author has chosen to break with mathematical tradition and
restrict his use of the word algorithm to the more precise interpretation as a computer
scientist probably would. We aren’t giving a method here, so this is why the name used
here is “Euclid’s Division Theorem.”
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and n > 1, then we must choose q = 0 (because otherwise nq+r would
have to be bigger than m) and therefor must choose r = m. Therefore
Euclid’s theorem is true when m = 1. Now assume that m > 1 and
that for any positive integer m′ < m, there are unique nonnegative
integers q′ and r′ such that m′ = q′n + r′, with 0 ≤ r′ < n. If m < n,
then we can let q = 0 and r = m, and we have our q and r. If m = n,
we may choose q = 1 and r = 0 and we have our q and r again.
Therefore we may assume that m > n. In this case, m−n is a positive
integer, and so since m−n < n, we have that, for unique nonnegative
integers q′ and r′,

m− n = q′n + r′,

with 0 ≤ r < n. But then adding n to both sides of the equation
gives us m = (q′ + 1)n + r′, with 0 ≤ r′ < n. Therefore if we take
q = q′+1 and r = r′ we have that m = qn+r, with 0 ≤ r < n. On the
other hand, q′ and r′ are unique by our inductive hypothesis. Thus if
m = qn + r, subtracting n from both sides of the equations gives us
m−n = (q−1)n+ r. This tells us that q must equal q′+1 and r must
equal r′. Therefore by the strong principle of mathematical induction,
Euclid’s Theorem holds for all positive integers m.



Appendix C

Exponential Generating
Functions

C.1 Indicator Functions

When we introduced the idea of a generating function, we said that the
formal sum ∞∑

i=0

aix
i

may be thought of as a convenient way to keep track of the sequence ai. We
then did quite a few examples that showed how combinatorial properties of
arrangements counted by the coefficients in a generating function could be
mirrored by algebraic properties of the generating functions themselves. The
monomials xi are called indicator polynomials. (They indicate the position
of the coefficient ai.) One example of a generating function is given by

(1 + x)n =
∞∑
i=0

(
n

i

)
xi.

Thus we say that (1 + x)n is the generating function for the binomial coef-
ficients

(n
i

)
. The notation tells us that we are assuming that only i varies

in the sum on the right, but that the equation holds for each fixed integer
n. This is implicit when we say that (1 + x)n is the generating function for(n

i

)
, because we haven’t written i anywhere in (1 + x)n, so it is free to vary.
Another example of a generating function is given by

xn =
∞∑
i=0

s(n, i)xi.

311
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Thus we say that xn is the generating function for the Stirling numbers of
the first kind, s(n, i). There is a similar equation for Stirling numbers of the
second kind, namely

xn =
∞∑
i=0

S(n, i)xi.

However, with our previous definition of generating functions, this equation
would not give a generating function for the Stirling numbers of the second
kind, because S(n, i) is not the coefficient of xi. If we were willing to consider
the falling factorial powers xi as indicator polynomials, then we could say
that xn is the generating function for the numbers S(n, i) relative to these
indicator polynomials. This suggests that perhaps different sorts of indicator
polynomials go naturally with different sequences of numbers.

The binomial theorem gives us yet another example.

◦371. Write (1 + x)n as a sum of multiples of xi

i! rather than as a sum of
multiples of xi.

Solution:

(1 + x)n =
∞∑
i=0

(
n

i

)
xi =

∞∑
i=0

n!
i!(n− i)!

xi =
∞∑
i=0

n!
(n− i)!

xi

i!
=

∞∑
i=0

ni x
i

i!
.

This example suggests that we could say that (1 + x)n is the generating
function for the falling factorial powers ni relative to the indicator polynomi-
als xi

i! . In general, a sequence of polynomials is called a family of indicator
polynomials if there is one polynomial of each nonnegative integer degree
in the sequence. Those familiar with linear algebra will recognize that this
says that a family of indicator polynomials forms a basis for the vector
space of polynomials. This means that each polynomial can be expressed
as a sum of numerical multiples of indicator polynomials in one and only
one way. One could use the language of linear algebra to define indicator
polynomials in an even more general way, but a definition in such generality
would not be useful to us at this point.

C.2 Exponential Generating Functions

We say that the expression
∑∞

i=0 ai
xi

i! is the exponential generating func-
tion for the sequence ai. It is standard to use EGF as a shorthand for expo-
nential generating function. In this context we call the generating function
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∑n
i=0 aix

i that we originally studied the ordinary generating function
for the sequence ai. You can see why we use the term exponential generating
function by thinking about the exponential generating function (EGF) for
the all ones sequence,

∞∑
i=0

1
xi

i!
=

∞∑
i=0

xi

i!
= ex,

which we also denote by exp(x). Recall from calculus that the usual defi-
nition of ex or exp(x) involves limits at least implicitly. We work our way
around that by defining ex to be the power series

∑∞
i=0

xi

i! .

◦372. Find the EGF (exponential generating function) for the sequence an =
2n. What does this say about the EGF for the number of subsets of
an n-element set?

Solution:
∑∞

i=0 2i xi

i! = e2x. It says that the EGF for subsets of an
n-element set is e2x.

◦373. Find the EGF (exponential generating function) for the number of
ways to paint the n streetlight poles that run along the north side of
Main Street in Anytown, USA using five colors.

Solution: The number of ways to paint n streetlight poles is 5n, so
the EGF is

∑∞
n=0 5n xn

n! = e5x.

374. For what sequence is ex−e−x

2 = coshx the EGF (exponential generating
function)?

Solution: For the sequence 1−(−1)n

2 which, starting with n = 0 is
the alternating sequence 0,1,0,1. . . of zeros and ones.

·375. For what sequence is ln( 1
1−x) the EGF? (The notation ln(y) stands for

the natural logarithm of y. People often write log(y) instead.) Hint:
Think of the definition of the logarithm as an integral, and don’t worry
at this stage whether or not the usual laws of calculus apply, just use
them as if they do! We will then define ln(1− x) to be the power series
you get.1

1It is possible to define the derivatives and integrals of power series by the formulas

d

dx

∞∑
i=0

bix
i =

∞∑
i=1

ibix
i−1
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Solution:

ln(
1

1− x
) = − ln(1− x) =

∫ x

0

1
1− t

dt

=
∫ x

0
(1 + t + t2 + · · ·)dt

=
∞∑
i=1

xi

i

=
∞∑
i=1

(i− 1)!
xi

i!

so the sequence is an = (n− 1)!.

·376. What is the EGF for the number of permutations of an n-element set?

Solution: 1
1−x .

·377. What is the EGF for the number of ways to arrange n people around
a round table? Try to find a recognizable function represented by the
EGF. Notice that we may think of this as the EGF for the number of
permutations on n elements that are cycles.

Solution: Since there are (n− 1)! seatings of n people, our EGF is∑∞
i=1

(n−1)!
n! xn. By Problem 375 the EGF is ln 1

1−x .

·378. What is the EGF
∑∞

n=0 p2n
x2n

(2n)! for the number of ways p2n to pair up
2n people to play a total of n tennis matches (as in Problems 12a and
44)? Try to find a recognizable function represented by the EGF.

Solution: Recall that p2n = (2n− 1)(2n− 3) · · · 1 = (2n)!
2nn! . Thus

∞∑
n=0

p2n
x2n

(2n)!
=

∞∑
n=0

x2n

2nn!
=

∞∑
n=0

(x2/2)n

n!
= ex2/2.

and ∫ x

0

∞∑
i=0

bix
i =

∞∑
i=0

bi

i + 1
xi+1

rather than by using the limit definitions from calculus. It is then possible to prove that
the sum rule, product rule, etc. apply. (There is a little technicality involving the meaning
of composition for power series that turns into a technicality involving the chain rule, but
it needn’t concern us at this time.)
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◦379. What is the EGF for the sequence 0, 1, 2, 3, . . .? You may think of this
as the EGF for the number of ways to select one element from an n
element set. What is the EGF for the number of ways to select two
elements from an n-element set?

Solution:
∑∞

n=0
nxn

n! =
∑∞

n=1
xn

(n−1)! = x
∑∞

n=1
xn−1

(n−1)! = xex.∑∞
n=0

n(n−1)xn

2(n!) =
∑∞

i=2
xn

2(n−2)! = x2ex/2.

·380. What is the EGF for the sequence 1, 1, · · · , 1, · · ·? Notice that we may
think of this as the EGF for the number of identity permutations on
an n-element set, which is the same as the number of permutations
of n elements whose cycle decomposition consists entirely of 1-cycles,
or as the EGF for the number of ways to select an n-element set (or,
if you prefer, an empty set) from an n-element set. As you may have
guessed, there are many other combinatorial interpretations we could
give to this EGF.

Solution: ex.

◦381. What is the EGF for the number of ways to select n distinct elements
from a one-element set? What is the EGF for the number of ways
to select a positive number n of distinct elements from a one-element
set? Hint: When you get the answer you will either say “of course,”
or “this is a silly problem.”

Solution: 1 + x, x.

·382. What is the EGF for the number of partitions of a k-element set into
exactly one block? (Hint: is there a partition of the empty set into
exactly one block?)

Solution: There is one way to partition a set into one block, unless
the set is empty, in which case it has no partition into one block. Thus
our EGF is ex − 1.

·383. What is the EGF for the number of ways to arrange k books on one
shelf (assuming they all fit)? What is the EGF for the number of ways
to arrange k books on a fixed number n of shelves, assuming that all
the books can fit on any one shelf? (Remember Problem 122e.)

Solution:
∑∞

k=0 k!x
k

k! = 1
1−x ,

∑∞
k=0

(n+k−1
k

)
k!x

k

k! = (1− x)−n.
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C.3 Applications to Recurrences.

We saw that ordinary generating functions often play a role in solving recur-
rence relations. We found them most useful in the constant coefficient case.
Exponential generating functions are useful in solving recurrence relations
where the coefficients involve simple functions of n, because the n! in the
denominator can cancel out factors of n in the numerator.

◦384. Consider the recurrence an = nan−1 + n(n − 1). Multiply both sides
by xn

n! , and sum from n = 2 to ∞. (Why do we sum from n = 2 to
infinity instead of from n = 1 or n = 0?) Letting y =

∑∞
i=0 ai

xi

i! , show
that the left-hand side of the equation is y − a0 − a1x. Express the
right hand side in terms of y, x, and ex. Solve the resulting equation
for y and use the result to get an equation for an. (A finite summation
is acceptable in your answer for an.)

Solution:
∞∑

n=2

an
xn

n!
=

∞∑
n=2

an−1
xn

(n− 1)!
+

∞∑
n=2

xn

(n− 2)!

= x

( ∞∑
n=0

an
xn

n!
− a0

)
+ x2

∞∑
n=0

xn

n!

= x

( ∞∑
n=0

an
xn

n!

)
− a0x + x2ex

We sum from n = 2 because otherwise we would have a factorial of a
negative number in the denominator. Thus

∑∞
n=0 an

xn

n! − a0 − a1x =
x
(∑∞

n=0 an
xn

n!

)
− a0x + x2ex, or

(1− x)
∞∑

n=0

an
xn

n!
= a0 + a1x− a0x + x2ex.

This gives us

∞∑
n=0

an
xn

n!
=

1
1− x

(a0 + a1x− a0x + x2ex).

Computing the coefficient of an gives us an = a1 +
∑n−2

i=0
1
i! .

·385. The telephone company in a city has n subscribers. Assume a tele-
phone call involves exactly two subscribers (that is, there are no calls
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to outside the network and no conference calls), and that the con-
figuration of the telephone network is determined by which pairs of
subscribers are talking. Notice that we may think of a configuration
of the telephone network as a permutation whose cycle decomposition
consists entirely of one-cycles and two-cycles, that is, we may think of
a configuration as an involution in the symmetric group Sn.

(a) Give a recurrence for the number cn of configurations of the net-
work. (Hint: Person n is either on the phone or not.)
Solution: cn = (n− 1)cn−2 + cn−1. (The first term counts the
number of network configurations in which person n is in a phone
call with someone else, and the second term counts the number of
network configurations in which person n is not in a phone call.)

(b) What are c0 and c1?
Solution: c0 = 1 and c1 = 1, because there is only one config-
uration of a network with 0 or one phones.

(c) What are c2 through c6?
Solution: Using our recurrence and the values of c0 and c1, we
get c2 = 2, c3 = 2·1+2 = 4, c4 = 3·2+4 = 10, c5 = 4·4+10 = 26,
and c6 = 5 · 10 + 26 = 76.

·386. Recall that a derangement of [n] is a permutation of [n] that has no
fixed points, or equivalently is a way to pass out n hats to their n
different owners so that nobody gets the correct hat. Use dn to stand
for the number of derangements of [n]. We can think of a derangement
of [n] as a list of 1 through n so that i is not in the ith place for any n.
Thus in a derangement, some number k different from n is in position
n. Consider two cases: either n is in position k or it is not. Notice that
in the second case, if we erase position n and replace n by k, we get
a derangement of [n− 1]. Based on these two cases, find a recurrence
for dn. What is d1? What is d2? What is d0? What are d3 through
d6?

Solution: dn = (n − 1)dn−1 + (n − 1)dn−2. d1 = 0 and d2 = 1.
Thus d0 must be 1 for our recurrence to be valid. (For those familiar
with functions as sets of ordered pairs, the empty function is not only
a permutation, but it does not map i to i for any integer i, so it is a
derangement as well! Thus the definition of a derangement also gives
us that d0 = 1.) d3 = 2, d4 = 3 · 1 + 3 · 2 = 9, d5 = 4 · 2 + 4 · 9 = 44,
and d6 = 5 · 9 + 5 · 44 = 256.
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C.3.1 Using calculus with exponential generating func-
tions

·387. Your recurrence in Problem 385 should be a second order recurrence.

(a) Assuming that the left hand side is cn and the right hand side in-
volves cn−1 and cn−2, decide on an appropriate power of x divided
by an appropriate factorial by which to multiply both sides of the
recurrence. Using the fact that the derivative of xn

n! is xn−1

(n−1)! , write

down a differential equation for the EGF T (x) =
∑∞

i=0 ci
xi

i! . Note
that it makes sense to substitute 0 for x in T (x). What is T (0)?
Solve your differential equation to find an equation for T (x).
Solution:

∞∑
n=2

cn
xn−1

(n− 1)!
=

∞∑
n=2

(n− 1)cn−2
xn−1

(n− 1)!
+

∞∑
n=2

cn−1
xn−1

(n− 1)!
∞∑

n=1

cn
xn−1

(n− 1)!
− c1 = x

∞∑
n=2

cn−2
xn−2

(n− 2)!
+

∞∑
n=0

cn
xn

n!
− c0

T ′(x) = xT (x) + T (x)

T (0) = c0 = 1. Then T ′(x)
T (x) = x+1, giving ln T (x) = x2/2+x+k,

and T (x) = ekex+x2/2 = ex+x2/2, since T (0) = 1.

(b) Use your EGF to compute a formula for cn.
Solution: T (x) =

∑∞
i=0(x + x2/2)i/i!. By the binomial theo-

rem, this gives

T (x) =
∞∑
i=0

∑i
j=0

(i
j

)
xj(x2

2 )i−j

i!
=

∞∑
i=0

∑i
j=0

(i
j

)
x2i−j2j−i

i!
.

Then the coefficient cn of xn is the sum over all i and j with
2i−j = n and j ≤ i of

(i
j

)
n!
i! 2

j−i. But if 2i−j = n, then j = 2i−n,

and if 2i−n ≤ i, then i ≤ n, so that cn = n!
2n

∑n
i=0

( i
2i−n

)
2i

i! . Note
that

( i
2i−n

)
is the same as

( i
n−i

)
, which is 0 unless i ≥ n/2, which

reduces our sum to cn = n!
2n

∑n
i=dn/2e

( i
n−i

)
2i

i! .

·388. Your recurrence in Problem 386 should be a second order recurrence.

(a) Assuming that the left-hand side is dn and the right hand side
involves dn−1 and dn−2, decide on an appropriate power of x
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divided by an appropriate factorial by which to multiply both
sides of the recurrence. Using the fact that the derivative of xn

n!

is xn−1

(n−1)! , write down a differential equation for the EGF D(x) =∑∞
i=0 di

xi

i! . What is D(0)? Solve your differential equation to find
an equation for D(x).

(b) Use the equation you found for D(x) to find an equation for dn.
Compare this result with the one you computed by inclusion and
exclusion.
Solution:

∞∑
n=2

dn
xn−1

(n− 1)!
=

∞∑
n=2

dn−1
xn−1

(n− 2)!
+

∞∑
n=2

dn−2
xn−1

(n− 2)!
∞∑

n=1

dn
xn−1

(n− 1)!
− d1 = x

∞∑
n=2

dn−1
xn−2

(n− 2)!
+ xD(x)

D′(x)− d1 = xD′(x) + xD(x)
D′(x)(1− x) = xD(x)

D′(x)
D(x)

=
x

1− x

This gives us ln D(x) = − ln(1 − x) − x + c, so that D(x) =
1

1−xe−xec. Since d0 = 1, we have d(0) = 1, so c = 0 and

D(x) =
e−x

1− x

=
∞∑
i=0

(−1)i x
i

i!
·
∞∑

j=0

xj =
∞∑
i=0

 i∑
j=0

(−1)j

j!

xi.

Thus dn = n!
∑n

j=0
(−1)j

j! , as we computed by inclusion and ex-
clusion.

C.4 The Product Principle for EGFs

One of our major tools for ordinary generating functions was the product
principle. It is thus natural to ask if there is a product principle for ex-
ponential generating functions. In Problem 383 you likely found that the
EGF for the number of ways of arranging n books on one shelf was exactly
the same as the EGF for the number of permutations of [n], namely 1

1−x or
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(1−x)−1. Then using our formula from Problem 122e and the ordinary gen-
erating function for multisets, you probably found that the EGF for number
of ways of arranging n books on some fixed number m of bookshelves was
(1−x)−m. Thus the EGF for m shelves is a product of m copies of the EGF
for one shelf.

◦389. In Problem 373 what would the exponential generating function have
been if we had asked for the number of ways to paint the poles with just
one color of paint? With two colors of paint? What is the relationship
between the EGF for painting the n poles with one color of paint and
the EGF for painting the n poles with five colors of paint? What is the
relationship among the EGF for painting the n poles with two colors
of paint, the EGF for painting the poles with three colors of paint, and
the EGF for painting the poles with five colors of paint?

Solution: With one color of paint, there would have been one way to
paint each pole so our EGF would be

∑∞
n=0

xn

n! , or ex. With two colors
of paint, it would be e2x by analogy with the solution to Problem 373.
Thus the EGF for two colors of paint would be the square of the EGF
for one color of paint. The EGF for five colors of paint is the fifth
power of the EGF for one color of paint and is also the product of the
EGF for two colors of paint with the EGF for three colors of paint.

In Problem 385 you likely found that the EGF for the number of network
configurations with n customers was ex+x2/2 = ex · ex2/2. In Problem 380
you saw that the EGF for the number of permutations on n elements whose
cycle decompositions consist of only one-cycles was ex, and in Problem 378
you likely found that the EGF for the number of tennis pairings of 2n peo-
ple, or equivalently, the number of permutations of 2n objects whose cycle
decomposition consists of n two-cycles is ex2/2.

·390. What can you say about the relationship among the EGF for the
number of permutations whose cycle structure consists of disjoint two-
cycles and one-cycles, i.e., which are involutions, the exponential gen-
erating function for the number of permutations whose cycle decompo-
sition consists of disjoint two-cycles only and the EGF for the number
of permutations whose cycle decomposition consists of of disjoint one-
cycles only (these are identity permutations on their domain)?

Solution: The EGF for involutions is the product of the EGF for the
permutations whose cycle decomposition consists of only two-cycles
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and the EGF for permutations whose cycle decomposition consists of
only one-cycles.

In Problem 388 you likely found that the EGF for the number of per-
mutations of [n] that are derangements is e−x

1−x . But every permutation is
a product of a derangement and a permutation whose cycle decomposition
consists of one-cycles, because the permutation that sends i to i is a one-
cycle, so that when you find the cycle decomposition of a permutation, the
cycles of size greater than one are the cycle decomposition of a derangement
(of the set of elements moved by the permutation), and the elements not
moved by the permutation are one-cycles.

·391. If we multiply the EGF for derangements times the EGF for the num-
ber of permutations whose cycle decompositions consist of one-cycles
only, what EGF do we get? For what set of objects have we found the
EGF?

Solution: We get the EGF 1
1−x for all permutations of [n]. Notice

that any permutation is a product of a derangement of the elements
not fixed by the permutation times a permutation whose cycle decom-
position consists of one-cycles.

We now have four examples in which the EGF for a sequence or a pair
of objects is the product of the EGFs for the individual objects making up
the sequence or pair.

·392. What is the coefficient of xn

n! in the product of two EGFs
∑∞

i=0 ai
xi

i!

and
∑∞

j=0 bj
xj

j! ? (A summation sign is appropriate in your answer.)

Solution: ∑
i,j: i+j=n

n!
ai

i!
bj

j!
,

which can be better written as
n∑

i=0

n!
i!(n− i)!

aibn−i =
n∑

i=0

(
n

i

)
aibn−i.

In the case of painting streetlight poles in Problem 389, let us examine
the relationship among the EGF for painting poles with two colors, the EGF
for painting poles with three colors, and the EGF for painting poles with
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five colors, e5x. To be specific, the EGF for painting poles red and white is
e2x and the EGF for painting poles blue, green, and yellow is e3x. To decide
how to paint poles with red, white, blue, green, and yellow, we can decide
which set of poles is to be painted with red and white, and which set of
poles is to be painted with blue, green and yellow. Notice that the number
of ways to paint a set of poles with red and white depends only on the size
of that set, and the number of ways to paint a set of poles with blue, green,
and yellow depends only on the size of that set.

·393. Suppose that ai is the number of ways to paint a set of i poles with
red and white, and bj is the number of ways to paint a set of j poles
with blue, green and yellow. In how many ways may we take a set
N of n poles, divide it up into two sets I and J (using i to stand for
the size of I and j to stand for the size of the set J , and allowing i
and j to vary) and paint the poles in I red and white and the poles in
J blue, green, and yellow? (Give your answer in terms of ai and bj .
Don’t figure out formulas for ai and bj to use in your answer; that will
make it harder to get the point of the problem!) How does this relate
to Problem 392?

Solution:
(n

i

)
aibj . You could also write the first answer as

(n
i

)
aibn−i

or in some other form. This shows that the coefficient of xn

n! in the
EGF for painting poles with five colors is the coefficient of xn

n! in the
product of the EGF for painting poles with two colors and the EGF
for painting poles with three colors.

Problem 393 shows that the formula you got for the coefficient of xn

n! in
the product of two EGFs is the formula we get by splitting a set N of poles
into two parts and painting the poles in the first part with red and white and
the poles in the second part with blue, green, and yellow. More generally,
you could interpret your result in Problem 392 to say that the coefficient
of xn

n! in the product
∑∞

i=0 ai
xi

i!

∑∞
j=0 bj

xj

j! of two EGFs is the sum, over all
ways of splitting a set N of size n into an ordered pair of disjoint sets I of
size i and J of size j, of the product aibj .

There seem to be two essential features that relate to the product of
exponential generating functions. First, we are considering structures that
consist of a set and some additional mathematical construction on or rela-
tionship among the elements of that set. For example, our set might be a set
of light poles and the additional construction might be a coloring function
defined on that set. Other examples of additional mathematical construc-
tions or relationships on a set could include a permutation of that set; in
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particular an involution or a derangement, a partition of that set, a graph
on that set, a connected graph on that set, an arrangement of the elements
of that set around a circle, or an arrangement of the elements of that set
on the shelves of a bookcase. In fact a set with no additional construction
or arrangement on it is also an example of a structure. Its additional con-
struction is the empty set! When a structure consists of the set S plus the
additional construction, we say the structure uses S. What all the examples
we have mentioned in our earlier discussion of exponential generating func-
tions have in common is that the number of structures that use a given set
is determined by the size of that set. We will call a family F of structures a
species of structures on subsets of a set X if structures are defined on finite
subsets of X and if the number of structures in the family using a finite set
S is finite and is determined by the size of S (that is, if there is a bijection
between subsets S and T of X, the number of structures in the family that
use S equals the number of structures in the family that use T ). We say a
structure is an F-structure if it is a member of the family F .

·394. In Problem 383, why is the family of arrangements of sets of books on
a single shelf (assuming they all fit) a species?

Solution: Because the number of ways to put a set S of books onto
a shelf is the same (namely |S|!) for all sets S of the same size.

·395. In Problem 385, why is the family of sets of people actually making
phone calls (assuming nobody is calling outside the telephone network)
at any given time, with the added relationship of who is calling whom,
a species? Why is the the family of sets of people who are not using
their phones a species (with no additional construction needed)?

Solution: Because the number of ways to break a given set of 2n
people into two-cycles depends only on n and not the particular set of
2n people we choose. The number of ways to break up a set of size
k into one-cycles is one, so it doesn’t depend on which set of size k
we are breaking up. (In fact it doesn’t depend on k either, but that
is irrelevant here.) Of course since these people are doing nothing,
the structure of one-cycles is just another way to say that our species
consists of sets with no additional structure.

The second essential feature of our examples of products of EGFs is that
products of EGFs seem to count structures on ordered pairs of two disjoint
sets (or more generally on k-tuples of mutually disjoint sets). For example,
we can determine a five coloring of a set S by partitioning it in all possible
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ways into two sets and coloring the first set in the pair with our first two
colors and our second pair with the last three colors. Or we can partition our
set in all possible ways into five parts and color part i with our ith color. We
don’t have to do the same thing to each part of our partition; for example,
we could define a derangement on one part and an identity permutation on
the other; this defines a permutation on the set we are partitioning, and we
have already noted that every permutation arises in this way.

Our combinatorial interpretation of EGFs will involve assuming that the
coefficient of xi

i! counts the number of structures on a particular set of of size
i in a species of structures on subsets of a set X. Thus in order to give
an interpretation of the product of two EGFs we need to be able to think
of ordered pairs of structures on disjoint sets or k-tuples of structures on
disjoint sets as structures themselves. Thus given a structure on a set S and
another structure on a disjoint set T , we define the ordered pair of structures
(which is a mathematical construction!) to be a structure on the set S ∪ T .
We call this a pair structure on S ∪ T . We can get many structures on a set
S ∪ T in this way, because S ∪ T can be divided into many other pairs of
disjoint sets. In particular, the set of pair structures whose first structure
comes from F and whose second element comes from G is denoted by F · G.

396. Show that if F and G are species of structures on subsets of a set X,
then the pair structures of F · G form a species of structures.

Solution: We must show that if S and S′ are finite subsets of X with
the same size, then the number of pair structures on S and the number
of pair structures on S′ are the same. To get a pair structure on S we
partition S into two parts, S1 and S2, take an F structure on S1 and a
G structure on S2 and form the ordered pair of these structures. The
number of ways to partition S into sets of size s1 and s2 is the same as
the number of ways to partition S′ into sets S′

1 and S′
2 of size s1 and

s2 (there are intentionally no primes on the lower case s1 and s2) and
the number of ways to choose an F-structure on S′

1 and a G-structure
on S′

2 is the number of ways to make the same choices on S1 and S2.
Therefore the number of pairs of structures on the disjoint sets S1 and
S2 whose union is S is the same as the number of pairs of structures
on the disjoint sets S′

1 and S′
2 whose union is S′. Summing over all

ways to partition S or S′ into two sets, we find that the number of
pair structures on S equals the number of pair structures on S′. Thus
the pair structure of F · G forms a species of structures.
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Given a species F of structures, the number of structures using any
particular set of size i is the same as the number of structures in the family
using any other set of size i. We can thus define the exponential generating
function (EGF) for the family as the power series

∑∞
i=1 ai

xi

i! , where ai is the
number of structures of F that use one particular set of size i. In Problems
372, 373, 376, 377, 378, 380, 381, 382, 383, 387, and 388 we were computing
EGFs for species of subsets of some set.

397. If F and G are species of subsets of X, how is the EGF for F ·G related
to the EGFs for F and G? Prove you are right.

Solution: Let f(x), g(x) and h(x) be, respectively, the EGFs for
the species F , G and F · G. Suppose f(x) =

∑∞
i=0 ai

xi

i! and g(x) =∑∞
j=0 bj

xj

j! . Then the coefficient of xn in f(x)g(x) is
∑n

k=0
akbn−k

i!j(n−k)! , so
the coefficient of xn

n! is

n!
n∑

k=0

akbn−k

i!(n− k)!
=

n∑
k=0

(
n

k

)
akbn−k.

But
(n
k

)
akbn−k is the number of ways to partition a set of size n into

a first set of size k and a second set of size n − k and to choose a
structure for each of them. That is, it is the number of pair structures
on an ordered pair of sets of size k and n− k. Thus the coefficient of
xn

n! in h(x) is the number of F · G pair structures on a subset of X of
size n. This proves that h(x) = f(x)g(x).

398. Without giving the proof, how can you compute the EGF f(x) for the
number of structures using a set of size n in the species F1 · F2 · · · Fk

of structures on k-tuples of subsets of of X from the EGFs fi(x) for
Fi for each i from 1 to k? (Here we are using the natural extension of
the idea of the pair structure to the idea of a k-tuple structure.)

Solution: f(x) =
∏k

i=1 fi(x).

The result of Problem 398 will be of enough use to us that we will state
it formally along with two useful corollaries.

Theorem 13 If F1, F2, . . . , Fk are species set X and Fi has EGF fi(x),
then the family of k-tuple structures F1 · F2 · · · Fn has EGF

∏n
i=1 fi(x).

We call Theorem 13 the General Product Principle for Exponential
Generating Functions. We give two corollaries; the proof of the second
is not immediate though not particularly difficult.
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Corollary 3 If F is a species of structures on subsets of X and f(x) is the
EGF for F , then f(x)k/ is the EGF for the k-tuple structures on k-tuples
of F-structures using disjoint subsets of X.

Our next corollary uses the idea of a k-set structure. Suppose we have
a species F of structures on nonempty subsets of X, that is, a species of
structures which assigns no structures to the empty set. Then we can define
a new species F (k) of structures, called “k-set structures,” using nonempty
subsets of X. Given a fixed positive integer k, a k-set structure on a subset
Y of X consists of a k-element set of nonempty disjoint subsets of X whose
union is Y and an assignment of an F-structure to each of the disjoint
subsets. This is a species on the set of subsets of X; the subset used by a k-
set structure is the union of the sets of the structure. To recapitulate, the set
of k-set structures on a subset Y of X is the set of all possible assignments
of F-structures to k nonempty disjoint sets whose union is Y . (You can also
think of the k-set structures as a family of structures defined on blocks of
partitions of subsets of X into k blocks.)

Corollary 4 If F is a species of structures on nonempty subsets of X and
f(x) is the EGF for F , then for each positive integer k, f(x)k

k! is the EGF
for the family F (k) of k-set structures on subsets of X.

399. Prove Corollary 4.

Solution: Since the sets of a k-set structure are nonempty and dis-
joint, the k-element set of sets can be arranged as a k-tuple in k! ways.
Thus the number of k-set structures on a given set is 1

k! times the
number of k-tuple structures on that set. Therefore the EGF for k-set
structures is 1

k! times the EGF for k-tuple structures. By Corollary 3

the EGF for k-set structures is thus f(x)k

k! .

·400. Use the product principle for EGFs to explain the results of Problems
390 and 391.

Solution: Every involution has a cycle decomposition as disjoint
two-cycles and one-cycles, so we can think of it as an ordered pair
whose first element is a set of disjoint two-cycles and whose second
element is a set of disjoint one-cycles. The family of permutations
whose cycle decomposition consists entirely of two-cycles and the fam-
ily of permutations whose cycle decomposition consists entirely of one-
cycles are both species. By the product principle for EGFs, the EGF
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for involutions is the product of the EGF for permutations whose cy-
cle decomposition consists of only disjoint two-cycles and the EGF
for permutations whose cycle decomposition consists of only disjoint
one-cycles (i.e. identity permutations).

We noted in the solution to Problem 391 that every permutation has
a cycle decomposition consisting of the cycle decomposition of a de-
rangement (on the elements that are not fixed by the permutation)
and the cycle decomposition of an identity (on the elements that are
fixed by the permutation). Thus we can think of every permutation
as an ordered pair consisting of a derangement and an identity (on
complementary domains), and the product principle tells us that the
EGF for all permutations is the product of the EGF for derangements
and the EGF for identity permutations.

·401. Use the general product principle for EGFs or one of its corollaries
to explain the relationship between the EGF for painting streetlight
poles in only one color and the EGF for painting streetlight poles in 5
colors in Problems 373 and 389. What is the EGF for the number pn

of ways to paint n streetlight poles with some fixed number k of colors
of paint?

Solution: We can think of a painting of a set of street poles as
a five-tuple of sets, the sets painted each of the five colors. Then
Corollary 3 tells us that the EGF for such five-tuples is the fifth power
of the EGF for the number of ways to paint streetlight poles with one
color. The EGF for painting streetlight poles with k colors of paint is
ekx.

·402. Use the general product principle for EGFs or one of its corollaries to
explain the relationship between the EGF for arranging books on one
shelf and the EGF for arranging books on n shelves in Problem 383.

Solution: An arrangement of books on n shelves may be thought
of as a n-tuple of arrangements of books on one shelf. More pre-
cisely, structures of arrangements of books on a shelf or, similarly, the
arrangements of books on n shelves are species of structures on the
subsets of the set of available books. Corollary 3 tells us that the EGF
for arrangements on n shelves is the nth power of the EGF for arrang-
ing books on one shelf, which is the EGF for permutations. Thus the
EGF for arranging books on n shelves is (1− x)−n.

403. (Optional) Our very first example of exponential generating functions
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used the binomial theorem to show that the EGF for k-element per-
mutations of an n element set is (1 + x)n. Use the EGF for k-element
permutations of a one-element set and the product principle to prove
the same thing. Hint: Review the alternate definition of a function in
Section 3.1.2.

Solution: In Section 3.1.2 we remarked that an alternate definition
of a function from S to T is that it is an assignment of disjoint subsets
of S to elements of T so that the union of the subsets is S. Thus a
function from [k] to [n] may be thought of as an n-tuple of disjoint
subsets of S whose union is [k]. In particular, an injection from [k]
to [n] (which is a k-element permutation of [n]) can be thought of
as a n-tuple of disjoint singleton sets and empty sets whose union is
[n]. The number of such n-tuples is therefore the number of k-element
permutations of [n]. If n = 1, the possible n-tuples are (∅) and ({1}),
and so the EGF for such n-tuples is 1 + x. (Note that the family of
structures here has no additional construction; it simply consists of the
empty set and the set {1}, which is a “trivial” example of a species of
structures on the subsets of {1}.) Then by Corollary 3, the EGF for
the number of n-tuples (1 + x)n. Thus this is the EGF for k-element
permutations of [n].

404. What is the EGF for the number of ways to paint n streetlight poles
red, white, blue, green and yellow, assuming an even number of poles
must be painted green and an even number of poles must be painted
yellow? Give a formula for the number of ways to paint n poles. (Don’t
forget the factorial!)

Solution: By the product principle for exponential generating func-
tions it is

e3x

(
1 +

(2x)2

2!
+

(2x)4

4!
+ · · ·

)
= e3x e2x − e−2x

2
= e3x cosh(2x).

Since cosh(2x) =
∑∞

i=0
x2i

(2i)! and e3x is
∑∞

i=0 3i xi

i! , we have that the co-

efficient of xn is
∑bn/2c

i=0
3n−2i

(n−2i)!
22i

(2i)! , and so the number of ways to paint

n lightpoles is n! times this, which simplifies to
∑bn/2c

i=0

(n
2i

)
3n−2i22i.

·405. What is the EGF for the number of functions from an n-element set
onto a one-element set? (Can there be any functions from the empty
set onto a one-element set?) What is the EGF for the number cn
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of functions from an n-element set onto a k element set (where k is
fixed)? Use this EGF to find an explicit expression for the number of
functions from a k-element set onto an n-element set and compare the
result with what you got by inclusion and exclusion.

Solution: There are no onto functions from a 0-element set to a 1-
element set; otherwise there is exactly one function from an n-element
set onto a one-element set so the EGF for functions from an n-element
set onto a one-element set is ex − 1. A function from an n-element
set onto a k-element set may be thought of as a k-tuple of functions
(from disjoint subsets whose union is the n-element set) onto the one-
element subsets of the k-element set. Therefore by Corollary 3 to the
product principle for EGFs the EGF for functions from an n-element
set onto a k-element set is (ex − 1)k. By the binomial theorem, this is

k∑
i=0

(
k

i

)
(−1)k−ieix =

k∑
i=0

(
k

i

)
(−1)k−i

∞∑
j=0

(ix)j

j!
=

k∑
i=0

(−1)k−i

(
k

i

) ∞∑
j=0

ij
(x)j

j!
.

Thus cn =
∑k

i=0(−1)k−i
(k

i

)
ni, which is consistent with the formula we

got by inclusion and exclusion.

·406. In Problem 142 you showed that the Bell Numbers Bn satisfy the equa-
tion Bn+1 =

∑n
k=0

(n
k

)
Bn−k (or a similar equation for Bn). Multiply

both sides of this equation by xn

n! and sum from n = 0 to infinity. On
the left hand side you have a derivative of a certain EGF we might call
B(x). On the right hand side, you have a product of two EGFs, one
of which is B(x). What is the other one? What differential equation
involving B(x) does this give you? Solve the differential equation for
B(x). This is the EGF for the Bell numbers!

Solution:

∞∑
n=0

Bn+1
xn

n!
=

∞∑
n=0

(
n

k

)
Bn−k

xn

n!
=

∞∑
i=0

Bi
xi

(i)!

∞∑
j=0

xj

j!
.

Thus B′(x) = B(x)ex, which gives us ln B(x) = ex + c, or B(x) =
eex+c = ece(ex). Since B0 = B(0) and B0 = 1, we have c = −1 and
B(x) = exp(ex − 1).

407. Prove that n2n−1 =
∑n

k=1

(n
k

)
k by using EGFs.



330 APPENDIX C. EXPONENTIAL GENERATING FUNCTIONS

Solution: By the product principle for EGFs, the EGF for the right
hand side is

ex · xex = xe2x = x
∞∑
i=o

(2x)i

i!
=

∞∑
j=1

2j−1 xj

(j − 1)!
=

∞∑
j=1

j2j−1 xj

j!
.

Thus the coefficient of xn

n! is n2n−1, as well as
∑n

k=1

(n
k

)
k.

·408. In light of Problem 382, why is the EGF for the Stirling numbers
S(n, k) of the second kind (with n fixed and k allowed to vary) not
(ex − 1)n? What is it equal to instead?

Solution: Notice that a one block partition is the same thing as a
function from that block onto a one-element set. However, a parti-
tion with n blocks is not an n-tuple of blocks, but rather a set of n
blocks. An n-tuple of blocks corresponds to a function from the union
of the blocks onto an n-element set, and n! different onto functions
correspond to the same partition into n blocks. Thus the EGF for
partitions of an n-element set into k parts (where n is fixed but k
varies) is 1

n!(e
x − 1)n. We could also use Corollary 4 directly.

C.5 The Exponential Formula

Exponential generating functions turn out to be quite useful in advanced
work in combinatorics. One reason why is that it is often possible to give
a combinatorial interpretation to the composition of two exponential gener-
ating functions. In particular, if f(x) =

∑n
i=0 ai

xi

i! and g(x) =
∑∞

j=1 bj
xj

j! , it
makes sense to form the composition f(g(x)) because in so doing we need
add together only finitely many terms in order to find the coefficient of xn

n! in
f(g(x)) (since in the EGF g(x) the dummy variable j starts at 1). Since our
study of combinatorial structures has not been advanced enough to give us
applications of a general formula for the compositions of EGFs, we will not
give here the combinatorial interpretation of composition in general. How-
ever, we have seen some examples where one particular composition can be
applied. Namely, if f(x) = ex = exp(x), then f(g(x)) = exp(g(x)) is well
defined when b0 = 0. We have seen three examples in which an EGF is
ef(x) where f(x) is another EGF. There is a fourth example in which the
exponential function is slightly hidden.

·409. If f(x) is the EGF for the number of partitions of an n-set into one
block, and g(x) is the EGF for the total number of partitions of an
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n-element set, that is, for the Bell numbers Bn, how are the two EGFs
related?

Solution: The EGF for one-block partitions is ex − 1 and for the
Bell numbers is exp(ex−1), and so the EGF for the Bell numbers is the
composition of the exponential function with the EGF for one-block
partitions.

·410. Let f(x) be the EGF for the number of permutations of an n-element
set with one cycle of size one or two and no other cycles, including no
other one-cycles. What is f(x)? What is the EGF g(x) for the number
of permutations of an n-element set all of whose cycles have size one
or two, that is, the number of involutions in Sn, or the number of
configurations of a telephone network? How are these two exponential
generating functions related?

Solution: There is one permutation with one cycle of size 1, and
one permutation with one cycle of size 2. Therefore the EGF for such
permutations is x+ x2

2! = x+x2/2. The EGF for involutions is ex+x2/2.
Thus g(x) = exp(f(x)).

·411. Let f(x) be the EGF for the number of permutations of an n-element
set whose cycle decomposition consists of exactly one two-cycle and no
other cycles (this includes having no one-cycles). Let g(x) be the EGF
for the number of permutations whose cycle decomposition consists of
two-cycles only, that is, for tennis pairings. What is f(x)? What is
g(x)? How are these two exponential generating functions related?

Solution: The EGF f(x) for permutations of an n-element set that
have exactly one two-cycle (and no other cycles) is x2

2! . By Problem
378, the EGF for permutations whose cycle structure consists of two-
cycles only is exp(x2/2). Thus g(x) = exp(f(x)) = ex2/2.

·412. Let f(x) be the EGF for the number of permutations of an n-element
set that have exactly one cycle. Notice that if n > 1 this means they
have no one-cycles. (This is the same as the EGF for the number of
ways to arrange n people around a round table.) Let g(x) be the EGF
for the total number of permutations of an n-element set. What is
f(x)? What is g(x)? How are f(x) and g(x) related?

Solution: In Problem 377 we showed that f(x) = ln
(

1
1−x

)
. In

Problem 376 we showed that g(x) = 1
1−x . Therefore g(x) = exp(f(x)).
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There was one element that our last four problems had in common. In
each case our EGF f(x) involved the number of structures of a certain type
(partitions, telephone networks, tennis pairings, permutations) that used
only one set of an appropriate kind. (That is, we had a partition with
one part, a telephone network consisting either of one person or two peo-
ple connected to each other, a tennis pairing of one set of two people, or
a permutation with one cycle.) Our EGF g(x) was the number of struc-
tures of the same “type” (we put type in quotation marks here because we
don’t plan to define it formally) that could consist of any number of sets
of the appropriate kind. Notice that the order of these sets was irrelevant.
For example, we don’t order the blocks of a partition or the cycles in a
cycle decomposition of a permutation. Thus we were relating the EGF for
structures which were somehow “building blocks” to the EGF for structures
which were sets of building blocks. For a reason that you will see later,
it is common to call the building blocks connected structures. Notice that
our connected structures were all based on nonempty sets, so we had no
connected structures whose value was the empty set. Thus in each case,
if f(x) =

∑∞
i=0 ai

xi

i! , we would have a0 = 0. The relationship between the
EGFs was always g(x) = ef(x). We now give a combinatorial explanation
for this relationship.

·413. Suppose that F is a species of structures on subsets of a set X with
no structures on the empty set. Let f(x) be the EGF for F .

(a) In the power series

ef(x) = 1 + f(x) +
f(x)2

2!
+ · · ·+ f(x)k

k!
+ · · · =

∞∑
k=0

f(x)k

k!
,

what does Corollary 4 tell us about the coefficient of xn

n! in f(x)k

k! ?
Solution: It tells us that the coefficient of xn

n! is the number
of k-set structures using a particular set with n elements.

(b) What does the coefficient of xn

n! in ef(x) count?
Solution: It counts the total number of sets of disjoint struc-
tures which together use a particular set with n elements.

In Problem 413 we proved the following theorem, which is called the expo-
nential formula.

Theorem 14 Suppose that F is a species of structures on subsets of a set
X with no structures on the empty set. Let f(x) be the EGF for F . Then
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the coefficient of xn

n! in ef(x) is the number of sets of structures on disjoint
sets whose union is a particular set of size n.

Let us see how the exponential formula applies to the examples in Prob-
lems 409, 410, 411 and 412. In Problem 382 our family F should consist of
one-block partitions of finite subsets of a set, say the set of natural numbers.
Since a partition of a set is a set of blocks whose union is S, a one block
partition whose block is B is the set {B}. Then any nonempty finite subset
of the natural numbers is the set used by exactly one structure in F . (There
is no one block partition of the empty set, so we have no structures using
the empty set.) As you showed in Problem 382 the EGF for partitions with
just one block is ex − 1. Thus by the exponential formula, exp(ex − 1) is
the EGF for sets of disjoint subsets of the positive integers whose union is
any particular set N of size n. This set of disjoint sets partitions the set N .
Thus exp(ex−1) is the EGF for partitions of sets of size n. (As we wrote our
description, it is the EGF for partitions of n-element subsets of the positive
integers, but any two n-element sets have the same number of partitions.)
In other words, exp(ex − 1) is the exponential generating function for the
Bell numbers Bn.

·414. Explain how the exponential formula proves the relationship we saw
in Problem 412.

Solution: We take F to be the species of permutations of finite
sets of positive integers whose cycle decomposition consists of exactly
one cycle. The number of cycles using any given n-element set of
positive integers is (n − 1)!, so we have defined a species. Then by
the exponential formula, if f(x) is the EGF for permutations with one
cycle, exp(f(x)) = g(x) is the EGF in which the coefficient of xn

n! is
the number of sets of cycles that partition any given set N of size n.
That is, the coefficient of xn

n! in g(x) is the number of permutations
whose cycles partition any given set N . Therefore, g(x) is the EGF
for permutations of N .

·415. Explain how the exponential formula proves the relationship we saw
in Problem 411.

Solution: We let F be the family of permutations of finite sets of
positive integers whose cycle decomposition consists of exactly one
two-cycle. Since the number of two-cycle structures on a two-element
set is one and the number on a set of any other size is 0, we have
a species of structures on the finite subsets of the positive integers.
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We saw in Problem 411 that the EGF for permutations whose cy-
cle decomposition consists of exactly one two-cycle is x2/2. By the
exponential formula, the EGF for finite sets of disjoint two-cycles is
exp(x2/2). But sets of disjoint two-cycles correspond bijectively with
permutations of finite subsets of the positive integers whose cycle de-
compositions consist of two-cycles (only), and this confirms the result
of Problem 378.

·416. Explain how the exponential formula proves the relationship we saw
in Problem 410.

Solution: We let the family F be the set of permutations of subsets
of the positive integers whose cycle decomposition is either one one-
cycle or one two-cycle. Then F is a species of structures on the finite
subsets of the positive integers. We saw in Problem 410 that the EGF
for F is x + x2/2. By the exponential formula, the EGF for sets of
disjoint one and two-cycles is ex+x2/2. But there is a bijection between
the sets of disjoint one and two-cycles and permutations whose cycle
decomposition consists of disjoint one and two-cycles. This confirms
the result of Problem 387.

·417. In Problem 373 we saw that the EGF for the number of ways to use five
colors of paint to paint n light poles along the north side of Main Street
in Anytown was e5x. We should expect an explanation of this EGF
using the exponential formula. Let F be the family of all one-element
sets of light poles with the additional construction of an ordered pair
consisting of a light pole and a color. Thus a given light pole occurs
in five ordered pairs. Put no structure on any other finite set. Show
that this is a species of structures on the finite subsets of the positive
integers. What is the exponential generating function f(x) for F?
Assuming that there is no upper limit on the number of light poles,
what subsets of S does the exponential formula tell us are counted by
the coefficient of xn in ef(x)? How do the sets being counted relate to
ways to paint light poles?

Solution: Since each one-element set has five structures on it and
each set of any other size has no structures on it, F is a species. The
EGF for F is 5x, because there are five ordered pairs using any given
one-element set and none using any other set. Note that a set of
ordered pairs whose first elements partition a set N of light poles is
exactly a function from the set N of light poles to the set of colors.
Then by the exponential formula, the EGF for the number of ways to
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paint n light poles with five colors is e5x.

One of the most spectacular applications of the exponential formula is
also the reason why, when we regard a combinatorial structure as a set of
building block structures, we call the building block structures connected. In
Chapter 2 we introduced the idea of a connected graph and in Problem 104
we saw examples of graphs which were connected and were not connected.
A subset C of the vertex set of a graph is called a connected component
of the graph if

• every vertex in C is connected to every other vertex in that set by a
walk whose vertices lie in C, and

• no other vertex in the graph is connected by a walk to any vertex in
C.

In Problem 241 we showed that each connected component of a graph con-
sists of a vertex and all vertices connected to it by walks in the graph.

·418. Show that every vertex of a graph lies in one and only one connected
component of a graph. (Notice that this shows that the connected
components of a graph form a partition of the vertex set of the graph.)

Solution: Let C be the set of all vertices connected by a walk to a
vertex x. Then

• Each pair of vertices u and v in C is connected by the walk that
goes from u to x and then from x to v.

• If a vertex w is connected by a walk to a vertex v in C, then it is
connected to x by the walk that goes from w to v and then from
v to x. Thus no vertex w in the graph other than a member of
C is connected by a walk to any vertex in C.

Therefore C is a connected component containing x. If a connected
component D contained x, then every vertex in D would be connected
by a walk to x and then by a walk from x to v for each other vertex
v in C. Similarly, each vertex in C would be connected to each vertex
in D. Thus by the definition of connected component, C and D would
have to be the same set. Therefore each vertex lies in one and only
one connected component.

·419. Explain why no edge of the graph connects two vertices in different
connected components.
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Solution: If an edge connected two vertices in different connected
components, that edge would give a walk from a vertex in one of the
connected components to a vertex in the other connected component,
and thus not in the first component, violating the second part of the
definition of a connected component.

·420. Explain why it is that if C is a connected component of a graph and
E′ is the set of all edges of the graph that connect vertices in C, then
the graph with vertex set C and edge set E′ is a connected graph. We
call this graph a connected component graph of the original graph.

Solution: Given a walk between two vertices in a connected compo-
nent, all edges of the walk must connect two vertices in the connected
component, because if there were an edge in the walk that did not do
so, it would violate the second part of the definition of a connected
component. Since, for each pair of vertices in the connected component
there is a walk between them, there is such a walk in our connected
component graph.

The last sequence of problems shows that we may think of any graph as
the set of its connected component graphs. (Once we know them, we know
all the vertices and all the edges of the graph.) Notice that a graph is
connected if and only if it has exactly one connected component. Since
the connected components form a partition of the vertex set of a graph,
the exponential formula will relate the EGF for the number of connected
graphs on n vertices with the EGF for the number of graphs (connected
or not) on n vertices. However, because we can draw as many edges as we
want between two vertices of a graph, there are infinitely many graphs on
n vertices, and so the problem of counting them is uninteresting. We can
make it interesting by considering simple graphs, namely graphs in which
each edge has two distinct endpoints and no two edges connect the same two
vertices. It is because connected simple graphs form the building blocks for
viewing all simple graphs as sets of connected components that we refer to
the building blocks for structures counted by the EGFs in the exponential
formula as connected structures.

·421. Suppose that f(x) =
∑∞

n=0 cn
xn

n! is the exponential generating function
for the number of simple connected graphs on n vertices and g(x) =∑∞

i=0 ai
xi

i! is the exponential generating function for the number of
simple graphs on i vertices. From this point onward, any use of the
word graph means simple graph.



C.5. THE EXPONENTIAL FORMULA 337

(a) Is f(x) = eg(x), is f(x) = eg(x)−1, is g(x) = ef(x)−1 or is g(x) =
ef(x)?
Solution: To apply the exponential formula, we must take the
exponential function of an EGF whose constant term is zero, or in
other words, for a species of structures that has no structures that
use the empty set. We can let F be the set structures consisting of
finite subsets of a set and (all) connected graphs on the nonempty
sets. (Technically, the graph with the empty set of vertices and
the empty set of edges is connected. That is why we consider only
connected graphs on the nonempty sets.) Therefore f(x)−1 is the
EGF for F . By the exponential formula, g(x) = ef(x)−1 because
a simple graph may be thought of as a set of simple connected
graphs, namely its connected component graphs. (Note that g(x)
has 1 for its constant term, which corresponds to thinking of
the empty graph as having an empty set of nonempty connected
components.)

(b) One of ai and cn can be computed by recognizing that a simple
graph on a vertex set V is completely determined by its edge set
and its edge set is a subset of the set of two-element subsets of
V . Figure out which it is and compute it.
Solution: To specify a simple graph on a vertex set V , we have
to specify its set of edges. The possible sets of edges thus cor-
respond bijectively to sets of two-element subsets of V . But if
V has size i the set of all two-element subsets of V has

(i
2

)
ele-

ments. Thus the number of sets of two-element subsets of V is
2(i

2). Therefore ai = 2(i
2).

(c) Write g(x) in terms of the natural logarithm of f(x) or f(x) in
terms of the natural logarithm of g(x).
Solution: Since g(x) = ef(x)−1, f(x) = 1 + ln g(x).

(d) Write log(1 + y) as a power series in y.
Solution:

log(1 + y) =
∫ y

0

1
1 + x

dx =
∫ y

0

∞∑
i=0

(−1)ixi =
∞∑

j=1

(−1)j−1 yj

j
.

(e) Why is the coefficient of x0

0! in g(x) equal to one? Write f(x) as
a power series in g(x)− 1.
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Solution: The coefficient of x0

0! is 1 because there is one graph
on the empty set; the one with no edges.

f(x) = 1 + ln(1 + (g(x)− 1)) = 1 +
∞∑

j=1

(−1)j−1 (g(x)− 1)j

j
.

(f) You can now use the previous parts of the problem to find a
formula for cn that involves summing over all partitions of the
integer n. (It isn’t the simplest formula in the world, and it isn’t
the easiest formula in the world to figure out, but it is nonetheless
a formula with which one could actually make computations!)
Find such a formula.
Solution:

f(x) = 1+
∞∑

j=1

(−1)j−1 (g(x)− 1)j

j
= 1+

∞∑
j=1

(−1)j−1 (
∑∞

i=1 2(i
2) xi

i! )
j

j
.

From the right-hand expression, we get a term involving xn when-
ever we have an xn term in the jth power of

∑∞
i=1 2(i

2) xi

i! . So the
coefficient of xn

n! is the sum over all j and all sequences i1, i2, . . . , ij
with i1 + i2 + · · ·+ ij = n of terms of the form

n!
j

(−1)j
j∏

k=1

2(ik
2 )

ik!
,

where each ik > 0. Notice that reordering the numbers i1, i2,
. . . ik does not change the value of the expression. The sequence
of iks is a composition of n into positive parts. If we knew how
many compositions of n into j parts correspond to one partition
of n into j parts, we could sum over a much smaller set of terms.
If we use the type vector notation for a partition, namely that it
has p1 parts of size 1, p2 parts of size 2, . . . , pn parts of size n, then
the number of compositions corresponding to that partition, i.e.,
the number of compositions with the type vector (p1, p2, . . . , pn)
is the number of ways to take j places in a vector and label p1

of them with 1, p2 of them with 2, and so on until we label
pn of them with n. This number is the multinomial coefficient( j
p1,p2,...,pn

)
. Thus our sum over all j and all compositions of n
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into j parts becomes

n∑
j=1

n!
j

(−1)j
∑

p1,p2,...,pn:
∑n

r=1
rpr=n

and∑n

r=1
pr=j

(
j

p1, p2, . . . , pn

)
n∏

r=1

2
(r
2)pr

(r!)pr
.

We can remove one of the summation signs and the condition
that

∑n
r=1 pr = j by substituting

∑n
r=1 pr for j, and we get

∑
p1,p2,...,pn:

∑n

r=1
rpr=n

n!(−1)
∑n

r=1
pr

(
n∑

r=1

pr − 1

)
!

n∏
r=1

2
(r
2)pr

(r!)prpr!

for the number of connected graphs on n vertices. If we want to
shorten the appearance of the formula we can keep j in our sum
and explain its value afterwards, as in

∑
p1,p2,...,pn:

∑n

r=1
rpr=n

n!(−1)j(j − 1)!
n∏

r=1

2
(r
2)pr

(r!)prpr!
,

where j =
∑n

r=1 pr.

The point to the last problem is that we can use the exponential formula
in reverse to say that if g(x) is the EGF for the number of (nonempty)
connected structures of size n in a given family of combinatorial structures
and f(x) is the EGF for all the structures of size n in that family, then not
only is f(x) = eg(x), but g(x) = ln(f(x)) as well. Further, if we happen to
have a formula for either the coefficients of f(x) or the coefficients of g(x),
we can get a formula for the coefficients of the other one!

C.6 Supplementary Problems

1. Use product principle for EGFs and the idea of coloring a set in two
colors to prove the formula ex · ex = e2x.

2. Find the EGF for the number of ordered functions from a k-element
set to an n-element set.

3. Find the EGF for the number of ways to string n distinct beads onto
a necklace.



340 APPENDIX C. EXPONENTIAL GENERATING FUNCTIONS

4. Find the exponential generating function for the number of broken
permutations of a k-element set into n parts.

5. Find the EGF for the total number of broken permutations of a k-
element set.

6. Find the EGF for the number of graphs on n vertices in which every
vertex has degree 2.

7. Recall that a cycle of a permutation cannot be empty.

(a) What is the EGF for the number of cycles on an even number of
elements (i.e. permutations of an even number n of elements that
form an n-cycle)? Your answer should not have a summation sign
in it. Hint: If y =

∑∞
i=0

x2i

2i , what is the derivative of y?

(b) What is the EGF for the number of permutations on n elements
whose cycle decomposition consists of even cycles?

(c) What is the EGF for the number of cycles on an odd number of
elements?

(d) What is the EGF for the number of permutations on n elements
whose cycle decomposition consists of odd cycles?

(e) How do the EGFs in parts (b) and (d) of this problem relate to
the EGF for all permutations on n elements?
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conjugate of, 124
decreasing list, 123
Ferrers diagram, 124
into n parts, 122
self-conjugate, 125
type vector, 123
Young diagram, 124

partitions of a set
number of, 113

Pascal’s Triangle, 19
path

lattice, 31
diagonal, 32

length of, 90
permutation

k-element, 12
as a bijection, 17
broken, 109
cycle of, 232, 233
two row notation, 223

permutation group, 220
multiorbit of, 245

Pi notation, 13
picture enumerator, 147
picture enumerators

product principle for, 148
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pigeonhole principle, 41
generalized, 42

Principle
Product

for EGFs, 325
principle

bijection, 17
product, 7, 8

general, 9
quotient, 297
sum, 7, 8

for multisets, 248
principle of inclusion and exclusion,

191, 198
for unions of sets, 195

principle of mathematical induc-
tion, 53, 302

probabilistic method, 66
product

Cartesian, 8
product notation, 13
product principle, 7, 8

general, 9, 11, 60
picture enumerators, 148

Product Principle for EGFs, 325
product principle for generating func-

tions, 153
product principle for multisets, 248
progression

arithmetic, 72
geometric, 75

proper coloring of a graph, 204

quotient principle, 28, 297
quotient principle for multisets, 248

range (of a function), 279
recurrence, 69

constant coefficient, 173, 175
deletion-contraction, 89

linear, 73, 173, 175
linear homogeneous, 73
second order, 173, 175
solution to, 69
two variable, 110

recurrence relation, 69
recursive definition, 57
reflexive, 291
relation, 279

equivalence, 291, 295
of a function, 279
recurrence, 69
reflexive, 291
transitive, 291

rising factorial power, 105
rotation group, 220

second order recurrence, 173
self-conjugate partition, 125
series

arithmetic, 73
geometric, 75, 154

set
colorings of

action of a group on, 242
sets

disjoint, 6
mutually disjoint, 6

simple graph, 336
space of polynomials, 117
spanning tree, 85

cost of, 86
minimum cost, 86

species, 323
exponential generating function

for, 325
standard notation for a coloring,

241
Stirling Number

first kind, 118
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second kind, 110, 203
Stirling’s formula for n!, 31
Stirling’s triangle

first kind, 118
second kind, 111

strong double induction, 62
structure

pair, 324
using a set, 323

subgroup, 231
sum principle, 7, 8, 191
surjection, 16, 280
surjections

number of, 202
symmetric, 291
symmetric group, 223

transitive, 291
tree, 79

spanning, 85
cost of, 86
minimum cost, 86

Twentyfold Way, 100
two row notation, 223
type vector for a partition of an

integer, 123
type vector of a partition of a set,

112

union of multisets, 247
uses

a structure using a set, 323

vertex, 44, 77, 282
degree of, 77
of a complete graph, 44, 282

vertex of a digraph, 14

Young diagram, 124


