Chapter 7

The Law of Small Numbers

It sounds silly, but many otherwise-very-smart people, given a puzzle with num-
bers in it, treat those numbers as if underlined in a sacred text. This is math—
you're allowed to change the numbers and see what happens! If the numbers
in a puzzle are dauntingly large, replace them with small ones. How small? As
small as possible, without making the puzzle trivial; if that doesn’t give you
enough insight, make them gradually bigger.

Domino Task

An 8x8 chessboard is tiled arbitrarily with 32 2x1 dominoes. A new square is
added to the right-hand side of the board, making the top row length 9.

At any time you may move a domino from its current position to a new one,
provided that after the domino is lifted, there are two adjacent empty squares
to receive it.

Can you retile the augmented board so that all the dominoes are horizontal?

Solution:

Yes. Let T be the “snake” tiling obtained by placing four vertical tiles on the
left column, three on the right column (missing the top and bottom squares),
and filling in all but the lower right square with horizontal dominoes. Our goal
is to create this tiling and then shift it to get the desired horizontal tiling of the
chessboard.

We construct the snake tiling from the top. Since the 32 dominoes cover
64 of the 65 squares of our extended board, there is always one uncovered
square, which we call the “hole.” Suppose the dominoes covering the remaining
squares in the hole’s row are not all horizontal; then we can move the vertical
tile nearest the hole on either side to a horizontal position after shifting some
horizontal dominoes. Let’s call this process “flattening.”

Since flattening increases the number of horizontal dominoes, it must even-
tually terminate with the hole on a row containing only horizontal dominoes.
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But that must be the top row, since only the top row has an odd number of
squares.

By shifting the top-row dominoes and filling the top-left square with a ver-
tical domino, we create the top row of the snake. Now we return to flattening
(but not touching the vertical tile at the upper left); this winds up with the hole
on the second row, and now we can shift to make that row match the snake.

We repeat until the whole snake is created; flattening the snake concludes
the whole process. How to find this curious algorithm? Try the problem first
on a 4 x 4 board!

Spinning Switches

Four identical, unlabeled switches are wired in series to a light bulb. The
switches are simple buttons whose state cannot be directly observed, but can be
changed by pushing; they are mounted on the corners of a rotatable square. At
any point, you may push, simultaneously, any subset of the buttons, but then
an adversary spins the square. Is there an algorithm that will enable you to
turn on the bulb in at most a fixed number of spins?

Solution:

Looking at a simpler version of this puzzle is crucial. Consider the two-switch
version, where all you've got are two buttons on diagonally opposite corners of
the square. Pushing both buttons will ascertain whether the two switches were
both in the same state, since then the bulb will light (if it wasn’t already lit).
Otherwise, push one button, after which they will be in the same state, and at
worst one more operation of pushing both buttons will turn on the bulb. So
three operations suffice.

Back to the four-switch case. Name the buttons N, E; S, and W after the
compass directions, although of course the botton you're calling N now might
be the button you will call E, W or S after a spin. Suppose that at the start,
diagonally opposite switches (N and S, E and W) are in the same state—both
on or both off. Then you can treat opposite pairs as a single button and use
the two-button solution: push both pairs (i.e., all four switches); then one pair
(which may as well be N-S); then both pairs again, and you’re done. So begin
with those three operations; if the light doesn’t go on, then one or both of
the opposite pairs must have been mismatched. Try flipping two neighboring
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switches, say N and E, then going back through your three-move two-button
solution. Then you're fine if both pairs were mismatched. If not, push just one
button; that’ll either make both opposite pairs match, or both mismatch. Run
through the two-button solution a third time. If the bulb is still off, push N and
E again and now you know both opposite pairs match, and a fourth application
of the two-button solution will get that bulb turned on.

In conclusion, pushing buttons NESW, NS, NESW, NE, NESW, NS, NESW,
N, NESW, NS, NESW, NE, NESW, NS, NESW, will at some point turn the light
on—fifteen operations. No sequence of fewer than 15 operations can be guar-
anteed to work because there are 2* = 16 possible states for the four switches,
and they all must be tested; you get to test one state (the starting state) for
free.

Seeing the solution for four buttons, you can generalize to the case where the
number of buttons is any power of two; if there are 2F buttons, the solution will
take, and require, 22" 1 steps. (When there are n buttons, they are located at
the corners of a spinnable regular n-gon.)

The puzzle is insoluble when the number of buttons, n, is not a power of
2. Let’s just prove that for three buttons, no fixed number of operations can
guarantee to get that bulb on. (For general n, write n as m - 2* for some odd
number m > 1; it is m which plays the role of 3 in what follows.)

You may as well assume the switches are spun before you even make your
first move. Suppose that before they are spun, the switches are not all in the
same state. Then it is easy to check that no matter what move you planned, if
you were unlucky with the spin, then after the spin and your move, the switches
will still not all be in the same state.

It follows that you can never be sure that you have ever had all the switches
in the same state, so no fixed sequence of moves can guarantee to light the bulb.
It’s curious that you can solve the problem for 32 buttons (albeit in about 136
years, at one second per operation), but not for just three buttons.

Candles on a Cake

It’s Joanna’s 18th birthday and her cake is cylindrical with 18 candles on its 18"
circumference. The length of any arc (in inches) between two candles is greater
than the number of candles on the arc, excluding the candles at the ends.

Prove that Joanna’s cake can be cut into 18 equal wedges with a candle on
each piece.

Solution:

The conditions give some assurance that the candles are fairly evenly spaced;
one way to say that is that as we move around the circumference from some fixed
origin 0, the number of candles we encounter is not far from the distance we
have traveled. Accordingly, let a; be the arc-distance from 0 to the ith candle,
numbered counterclockwise, and let d; = a; — 1.
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We claim that for any ¢ and j, d; and d; differ by less than 1. We may
assume 7 < j; suppose, for instance, that d; —d; < —1. Then j—i—1 > a; — a;,
but j—i—1 is the number of candles between 7 and j, contradicting the condition.
Similarly, if d; — d; > 1, then d; — d; < —1 and the same argument applies to
the other arc, counterclockwise from j to 1.

So the “discrepancies” d; all lie in some interval of length less than 1. Let
dy, be the smallest of these, and let € be some number between 0 and dy, so that
all the d;’s lie strictly between € and 1+ . Now cutting the cake at €, e+1, etc.
gives the desired result.

How are you supposed to find this proof? By trying two candles, then three,
instead of eighteen.

Lost Boarding Pass

One hundred people line up to board a full jetliner, but the first has lost his
boarding pass and takes a random seat instead. Each subsequent passenger
takes his or her assigned seat if available, otherwise a random unoccupied seat.

What is the probability that the last passenger to board finds his seat un-
occupied?

Solution:

This is a daunting problem if you insist on working out what happens with
100 passengers; the number of possiblities is astronomical. So let’s reduce the
number to something manageable. With two passengers it’s obvious that the
probability that the second (i.e., last) get her own seat is 1/2. What about
three passengers?

It’s useful to number the seats according to who was supposed to sit there. If
passenger 1 sits in seat 1, his assigned seat, then everyone will be get his or her
own seat. If he sits in seat 3, then passenger 2 will get seat 2 and passenger 3 will
get seat 1. Finally, if passenger 1 sits in seat 2, then whether passenger 3 gets
seat 3 will depend on whether passenger 2 chooses seat 1 or seat 3. Altogether,
the probability that passenger 3 gets her own seat is % + % . % = %

Interesting! Is it possible that the answer is always 1/27

We notice that in the above analysis, the last passenger never ends up in
seat 2. In fact, now that we think of it, we see that with n passengers total,
the last passenger never ends up in seat i for 1 < ¢ < n. Why? Because when
passenger ¢ came on board, either seat ¢ was already taken, or it is taken now.
Thus, seat ¢ will never be available to the last passenger. The only seats that
passenger n could end up in are seat 1 and seat n.

We can’t yet conclude that the probability that passenger n gets seat n
is 1/2—we still need to argue that seat 1 and seat n are equally likely to be
available at the end. But that’s easy, because every time someone took a random
seat, they were equally likely to choose seat 1 or seat n. Putting it another way,
seat 1 and seat n were treated identically throughout the process; thus, by
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symmetry, each has the same likelihood of being open when passenger n finally
gets on board.

Flying Saucers

A fleet of saucers from planet Xylofon has been sent to bring back the inhab-
itants of a certain randomly-selected house, for exhibition in the Xylofon Xoo.
The house happens to contain five men and eightt women, to be beamed up
randomly one at a time.

Owing to the Xylofonians’ strict sex separation policy, a saucer cannot bring
back earthlings of both sexes. Thus, it beams people up until it gets a member
of a second sex, at which point that one is beamed back down and the saucer
takes off with whatever it has left. Another saucer then starts beaming people
up, following the same rule, and so forth.

What is the probability that the last person beamed up is a woman?

Solution:

Let’s try some smaller numbers and see what happens. Obviously if the house is
all men or all women, the sex of the last person beamed up will be determined. If
there are equal numbers of men and women, then by symmetry, the probability
that the last person beamed up is a woman would be 1/2. So the simplest
interesting case is, say, one man and two women.

In that case, if the man is beamed up first (probability: 1/3), the last one
will be a woman. Suppose a woman is beamed up first; if she is followed by
a man (who is then beamed back down), we are down to the symmetric case
where the probability of ending with a woman is 1/2. Finally, if a second woman
follows the first (probability % . % = %), the man will be last to be beamed up.
Putting the cases together, we get probably 1/2 that the last person beamed up
is a woman. Is it possible that 1/2 is the answer no matter how many men and
women are present, as long as there’s at least one of each?

Looking more closely at the above analysis, it seems that the sex of the

last person beamed up is determined by the next-to-last saucer—the one that
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reduces the house to one sex. To see why this is so, it is useful to imagine
that the Xylofonian acquisition process operates the following way: Each time
a flying saucer arrives, the current inhabitants of the house arrange themselves
in a uniformly random permutation, from which they are beamed up left to
right.

For example, if the inhabitants at one saucer’s arrival consist of males m;
and mg and females fo, f3 and f5, and they arrange themselves “f3, f5, m1, fa,
mg,” then the saucer will beam up f3, f5, and m, then will beam m; back down
again and take off with just the females f3 and f5. The remaining folks, my,
mg, and fo, will now re-permute themselves in anticipation of the next saucer’s
arrival.

We see that a saucer will be the next to last just when the permutation it
encounters consists of all men followed by all women, or all women followed by
all men. But no matter how many of each sex are in the house at this point,
these two events are equally likely! Why? Because if we simply reverse the order
of a such a permutation, we go from all-men-then-all-women to all-women-then-
all-men, and vice-versa.

There’s just one more observation to make: If both men and women are
present initially, then one saucer will never do, thus there always will be a next-
to-last saucer. When that comes—even though we do not know in advance
which saucer it will be—it is equally likely to depart with the rest of the men,
or the rest of the women.

Gasoline Crisis

You need to make a long circular automobile trip during a gasoline crisis. In-
quiries have ascertained that the gas stations along the route contain just enough
fuel to make it all the way around. If you have an empty tank but can start at
a station of your choice, can you complete a clockwise round trip?

Solution:

Yes. The trick is to imagine that you begin at station 1 (say) with plenty of
fuel, then proceed around the route, emptying each station as you go. When
you return to station 1, you will have the same amount of fuel in your tank as
when you started.

As you do this, keep track of how much fuel you have left as you pull into
each station; suppose that this quantity is minimized at station k. Then, if you
start at station k& with an empty tank, you will not run out of fuel between
stations. ©

Coins on the Table

One hundred quarters lie on a rectangular table, in such a way that no more can
be added without overlapping. (We allow a quarter to extend over the edge, as
long as its center is on the table.)
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Prove that you can start all over again and cover the whole table with 400
quarters! (This time we allow overlap and overhang).

Solution:

Let us observe first that if we double the radius (say, from 1” to 2”) of each of
the original coins, the result will be to cover the whole table. Why? Well, if a
point P isn’t covered, it must be 2" or more from any coin center, thus a (small)
coin placed with its center at P would have fit into the original configuration.
(See the first two figures below for an example of an original configuration, and
what happens when the coins are expanded.)

Now, if we could replace each big coin by four small ones that cover the same
area, we’d be done—but we can’t.
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But rectangles do have the property that they can be partitioned into four
copies of themselves. So, let us shrink the whole picture (of big coins covering
the table) by a factor of two in each dimension, and use four copies (as in the
next figure) of the new picture to cover the original table!

Coins in a Row

On a table is a row of 50 coins, of various denominations. Alix picks a coin from
one of the ends and puts it in her pocket; then Bert chooses a coin from one of
the (remaining) ends, and the alternation continues until Bert pockets the last
coin.

Prove that Alix can play so as to guarantee at least as much money as Bert.

Solution:

This puzzle resists the most obvious approaches. It’s easy to check that Alix
could do quite badly by always choosing the most valuable coin, or the coin that
exposes the less valuable coin to Bert, or any combination of these. Basically,
if she only looks a move or two ahead, she’s in trouble.

In fact, for Alix to play optimally, she needs to analyze all the possible
situations that may later arise. This can be done by a technique called “dynamic
programming.”

But we were not asked to provide an optimal strategy for Alix, just a strategy
that guarantees her at least half the money. Experimenting with 4 or 6 coins
instead of 50 might lead you to the following key observation.

Suppose the coins alternate quarter, penny, quarter, penny, and so forth,
ending (since 50 is even) in a penny. Then Alix can get all the quarters! In fact,
no matter what the coins are, if we number the coins from 1 to 50 left to right,
Alix can take all the odd-numbered ones—or all the even-numbered ones.

152



But wait a minute—one of those two groups of coins must contain at least
half the money! ©

Powers of Roots

What is the first digit after the decimal point in the number (\/5 + \/3) to the
billionth power?

Solution:

If you try entering (v/2 + /3)1:000:000,000 iy, your computer, you're likely to find
that you get only the dozen or so most significant figures; that is, you don’t get
an accurate enough answer to see what happens after the decimal point.

But you can try smaller powers and see what happens. For example, the
decimal expansion of (v/2 + v/3)' begins 95049.9999895. A bit of experimen-
tation shows that each even power of (ﬁ + \/3) seems to be just a hair below
some integer. Why? And by how much?

Let’s try (\/5—1— \/5)2, which is about 9.9. If we play with 10 — (\/i + \/3)2
we discover that it’s equal to (v/3 — v/2)2. Ahal

Yes, (V3 + v2)*" + (V3 — V/2)?" is always an integer, because when you
expand it, the terms with odd powers cancel and the terms with even powers
are integers. But of course (v/3 — v/2)?" is very small, about 107", so the first
roughly n digits of (v/3 + v/2)?" after the decimal point are all 9's.

Coconut Classic

Five men and a monkey, marooned on an island, collect a pile of coconuts to be
divided equally the next morning. During the night, however, one of the men
decides he’d rather take his share now. He tosses one coconut to the monkey
and removes exactly 1/5 of the remaining coconuts for himself. A second man
does the same thing, then a third, fourth, and fifth.

The following morning the men wake up together, toss one more coconut to
the monkey, and divide the rest equally. What’s the least original number of
coconuts needed to make this whole scenario possible?

Solution:

You can solve this by considering two men instead of five, then three, then
guessing. But the following argument is irresistible, once found.

There’s an elegant “solution” to the puzzle if you allow negative numbers of
coconuts(!). The original pile has —4 coconuts; when the first man tosses the
monkey a coconut, the pile is down to —5 but when he “takes” 1/5 of this he
is actually adding a coconut, restoring the pile to -4 coconuts. Continuing this
way, come morning there are still -4 coconuts; the monkey takes one and the
men split up the remaining -5.

It’s not obvious that this observation does us any good, but let’s consider
what happens if there is no monkey; each man just takes 1/5 of the pile he
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encounters, and in the morning there’s a multiple of 5 coconuts left that the
men can split. Since each man has reduced the pile by the fraction 4/5, the
original number of coconuts must have been a multiple of 5% (which shrinks to
4° . 5 by morning).

All we need to do now is add our two pseudo-solutions, by starting with
56 — 4 = 15,621 coconuts. Then the pile reduces successively to 4 - 5° — 4
coconuts, 42 - 5% — 4, 43 . 5% — 4, 4* .52 — 4, and 4° -5 — 4. When the monkey
gets his morning coconut, we have 4% - 5 — 5 coconuts, a multiple of 5, for the
men to split. This is best possible because we needed 5° - k — 4 coconuts to start
with, just to have an integer number come morning, and to get 4 - k — 5 to be
a multiple of 5 we needed k to be a multiple of 5.

Doubtless, many theorems in mathematics were “discovered” when someone
played around with small numbers and then saw a pattern that turned out to
be a provable phenomenon.

Here’s a theorem that could well have been found that way. Suppose you
are running a dojo with an even number n of students. Each day you pair the
students up for one-on-one sparring. Can you do this in such a way that over a
period of days, each student spars with each other student exactly once?

Theorem. . For any even positive integer n there is a set of pairings (“perfect
matchings”) of the numbers {1,2,...,n} such that every pair {i,j} appears in
exactly one pairing.

A check of small numbers suggests that this seems to work: For n = 2
for instance, there is just the one pairing consisting of the pair {1,2}, and for
n =4 we can (in fact, must) take the pairings {{1,2},{3,4}}, {{1,3},{2,4}},
and {{1,4},{2,3}}.

For n = 6, though, we have choices to make. Is there a nice way to make
them?

In fact, there are several; my favorite is the following. We know student n
has to be paired with every other student; let’s put her in the middle of a circle,
with the rest of the students spaced equally around the circle. In the ith of our
n—1 pairings, student n is paired with student ¢; draw a radius from n to i. The
rest of the students are paired by line segments that run perpendicular to that
radius (see the figure below).

Since n—1 is odd, all the radii from n to other students are at different
angles; it follows that no two students are paired twice, and since the eventual

number of pairs is (n—1) x n/2 = (}), every pair is accounted for. ©
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