
The Sine and Cosine Functions

The Graphs of Sine and Cosine

In the last lecture, we defined the quantities sin θ and cos θ for all angles θ. Today we explore the sine and
cosine functions, their properties, their derivatives, and variations on those two functions.

By now, you should have memorized the values of sin θ and cos θ for all of the special angles. For the
purposes of completeness, we recreate the tables of these values from the last lecture below:
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Clearly, we can plot the function f(x) = sinx and the function g(x) = cos x (replacing θ with x) using
the numerical tables above. We note that
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√
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2 ≈ 0.87, π ≈ 3.14, π
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6 ≈ 0.52,
and π

3 ≈ 1.05.
The resulting graph of f(x) = sin x looks like the following: we begin at the origin and with a positive

slope of 1. As x increases, the slope of the sine function decreases, so that the derivative is 0 when we get
to the point (π

2 , 1), which is a local maximum for sin x. The function then begins to decrease, first with a
gentle slope, but by the point when the graph crosses the x-axis, at the point (π, 0), the slope of the graph
of the sine function is −1. This point is also an inflection point, so the graph, which up until now was always
concave down, now begins to be concave up. The slope of the graph starts becoming less negative, so that
at the point ( 3π

2 ,−1) the graph has zero slope. This point is at a local minimum for the sine function, so
the graph now rises again, its slope increasing, until at (2π, 0) its slope is 1 again.

Instead of continuing the graph of f(x) = sin x in both directions, let us now attempt to sketch the graph
of g(x) = cos x. We begin at the point (0, 1). Here, the slope of the cosine function will be zero, and the
function will have a local maximum, so the graph will begin to drop, first with a gentle negative slope, until
finally it reaches the point (π

2 , 0), where its slope is −1. This point is an inflection point, so now the graph
goes from concave down to concave up. The slope of the graph increases, so that at (π,−1) we have a critical
point of the function, and a local minimum. The graph now starts to rise, and by the point it reaches the
x-axis, which is ( 3π

2 , 0), the slope of the graph is 1, and we have another inflection point, this time from
concave up to concave down. The graph continues to rise, but more and more slowly, and then, at (2π, 1),
the slope is zero and we are at a local maximum again.

What about the graphs for x greater than 2π and for negative x? Here we use the fact that angles whose
arcs have the same endpoint have the same sine and cosine. This means that, every time x changes by 2π
(the number of radians in a circle), the graphs of sine and cosine repeat themselves. So we sketch in the
graphs of sin x and cos x for x greater than 2π and negative x by simply continuing the graph just as it had
started and stopped. The only new point to make here is that (0, 0) and (0, 2π) are now clearly inflection
points, where the graphs goes from concave up to concave down.

The Properties of Sine and Cosine

Let us now list in algebraic form the properties of the sine and cosine functions:

• Periodicity: Both sin x and cos x have the property that they repeat themselves every time x increases
(or decreases) by 2π. Algebraically, we write this property as

sin(x + 2π) = sin x and cos(x + 2π) = cosx.
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The length of this repeating block of values is called the period of the function. So the period for both
functions is 2π.

• Boundedness: Unlike polynomial functions (with the exception of constant functions), the function
sin x and cos x have both a maximum value and a minimum value. For both functions, the maximum
value of the function is 1, and the minimum value is −1. Both functions take all values between −1 and
1, so the range of both functions is −1 ≤ y ≤ 1. A function which has both a maximum value and a
minimum value (not just a local maximum and a local minimum) is called a bounded function. In the
case of sin x and cos x, since they are both bounded and periodic, we can talk about their amplitude,
the largest value that | sin x| and | cos x| can take, or, equivalently, the largest vertical distance the
points on the graphs of these two functions can get from the x-axis. The amplitude of both functions
is 1.

• Shifts: You may have noticed from the numerical tables of sinx and cos x, or from their graphs, that
the values of sin x seem to trail the values of cos x. Specifically, the graph of cos x is the graph of sin x
shifted backwards a distance of π

2 . We write this property algebraically as

cos x = sin
(
x +

π

2

)
.

So the functions sin x and cos x are very closely related to each other.

• Evenness and Oddness: Looking at the graph of sinx, we see that it has point symmetry at the
origin, and, specifically, that it passes through the origin. This means that sinx is an odd function,
which we write algebraically as:

sin(−x) = − sin x.

You can test this fact using the numerical tables above. As for cos x, we see that its graph has an axis
of symmetry along the y-axis, so it is an even function, which we write algebraically as:

cos(−x) = cosx.

You can also check this property using the tables above.

The Derivatives of Sine and Cosine

Since this is a calculus class, we now have the opportunity to study some more interesting properties of the
sine and cosine functions, specifically their derivatives. We are going to sketch the graph of the sine function
by hand, using the techniques of graphing derivatives that we learned earlier in the class.

First, it is worth noting that, since sinx and cos x are periodic functions, their first derivatives, and all
higher derivatives, are also periodic, of the same period. This is because as the values of the function repeat,
so do the slopes of the tangent lines to the graph. So, when sketching the derivative of sinx or cos x, we
need only sketch one interval of 2π of the derivative. We choose to do this for the interval [0, 2π].

Now sketch the function sin x from x = 0 to x = 2π. To sketch the derivative, we first need to find the
critical points. When we first sketched sinx, we noted that the slope of the graph is zero at x = π

2 and at
x = 3π

2 . So we know that the graph of the derivative of sinx touches the x-axis at these two x-values. Now
we need to find the inflection points. We noted that we have three inflection points in this closed interval:
at x = 0, x = π, and at x = 2π. We also noted that the value of the derivative of sinx is 1 at x = 0, −1
at x = π, and 1 again at x = 2π. This tells us that the graph of the derivative has a local maximum at the
point (1, 0), a local minimum at the point (π,−1), and a local maximum again at (2π, 1). We plot these
points, and then sketch the graph of the derivative of sinx using all of this information. The curve that we
get looks very familiar: it is the graph of cosx. The derivative of sin x is cos x:

d
dx

sinx = cos x.

So, apparently, the functions sinx and cos x are related in yet another way!
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Now, let us sketch the derivative of cos x. First, plot the graph of cos x over the closed interval [0, 2π].
Again, we need to find the critical points of cos x. There are three critical points on this interval: at x = 0,
x = π, and x = 2π. So the graph of the derivative of cos x touches the x-axis on this interval at three points:
(0, 0), (π, 0), and (2π, 0). Now we look for the inflection points, and we two of them on this interval: one
at x = π

2 , where the slope of the graph is apparently −1, and one at x = 3π
2 , where the derivative is 1.

So the graph of the derivative will pass through the point (π
2 ,−1), where it has a local minimum, and the

point ( 3π
2 , 1), where it has a local maximum. Now we sketch the graph of the derivative of cosx using all of

the information above, and we get a curve which looks very familiar, but not quite like any curve we have
seen before. It appears to be the mirror image of the graph of sinx in the x-axis. What does this mean
algebraically? It means that this is the graph of the function − sin x, the function that you get by reversing
the sign of all of the values of sinx. So, the derivative of cos x is − sin x:

d
dx

cos x = − sinx.

Another relationship between sinx and cos x is revealed.
Knowing the first derivatives of sin x and cos x, we can now find their higher derivatives. The second

derivative of sin x is the first derivative of cosx, which is − sinx. To get the third derivative, we apply the
constant multiple rule:

d3

dx3
sin x =

d
dx

(− sin x) = − d
dx

sin x = − cos x.

So the third derivative of sin x is − cosx. The fourth derivative of sin x also comes from an application of
the constant multiple rule:

d4

dx4
sin x =

d
dx

(− cosx) = − d
dx

cosx = −(− sin x) = sin x.

So the fourth derivative of sin x is itself. That means that its fifth derivative is cos x, its sixth derivative is
− sin x, and so on: the higher derivatives of sin x are period in yet another way. The higher derivatives of
cos x also show this periodicity, which is illustrated below:

f(x) f ′(x) f ′′(x) f (3)(x) f (4)(x)
sin x cosx − sin x − cos x sin x
cosx − sinx − cos x sin x cosx

Generalized Sine and Cosine Functions

Finally, we want to discuss more general sine and cosine functions. Specifically, a generalized sine function
is a function of the form

f(x) = A sin(kx),

and a generalized cosine function is a function of the form

g(x) = A cos(kx).

Generalized sine and cosine functions are both periodic and bounded, that is, they have an amplitude. In
the cases above, the amplitudes of these generalized sine and cosine functions are given by |A|. The periods
of these functions are given by 2π

k . Compare these formulae for amplitude and period to the amplitudes and
periods of the original sine and cosine functions, where A = 1 and k = 1. Graphically, increasing A has
the effect of stretching the graphs of sine and cosine vertically, and increasing k has the effect of shrinking
the graphs of sine and cosine horizontally. We will discuss this stretching and shrinking in a more general
context in a later class.

The derivative of the generalized sine function above is

d
dx

(A sin(kx)) = Ak cos(kx),
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and the derivative of the generalized cosine function above is

d
dx

(A cos(kx)) = −Ak sin(kx).

So, the formulae for the derivatives is similar to the original case, except that we pull a k out of the sine and
cosine functions in the process of taking the derivative.

As an example, take f(x) = −3 sin(4x). The amplitude of this generalized sine function, its maximum
vertical distance from the x-axis is | − 3| = 3. Its period is

2π

k
=

2π

4
=

π

2
,

so the graph of this sine function is much taller vertically and much narrower horizontally than the graph of
the original sine function. Finally, its derivative is

df

dx
= −3 · 4 cos(4x) = −12 cos(4x).

If you were to plot the graph of f(x) = −3 sin(4x), and then sketch its derivative, do you think you would
get the graph of the function above? Try it and find out.
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