
Logarithmic Functions

Logarithmic Functions and Their Properties

We now shift our attention back to classes of functions and their derivatives. Today we study logarithmic
functions. A logarithmic function is a function of the form

f(x) = loga x,

where a is a positive real number not equal to 1. The logarithmic function loga x takes an element of the
domain x and gives back the unique number b = loga x such that ab = x. Notice that logarithmic functions
are only defined for positive real numbers x, so the domain of a logarithmic function is

Dom(loga x) = {x ∈ R : x > 0}.

The most important logarithmic function is the natural logarithmic function

f(x) = ln x.

Let us graph the natural logarithmic function using the numerical table below (with values given to the
nearest hundredth:

x ln x

0.25 −1.39
0.50 −0.70
1.00 0.00
2.00 0.70
4.00 1.39

The graph that we get has several important properties. First, since the domain of lnx is all positive
real numbers, the graph lies entirely to the right of the y-axis. Second, were we to plot points closer and
closer to the y-axis, we see that the graph of the natural logarithmic function has a right negative vertical
asymptote, that is

lim
x→0+

ln x = −∞.

Third, the graph of the natural logarithmic function crosses the x-axis at the point (1, 0), which makes sense,
because the natural logarithm (or any logarithm) of a number is 0, then that number equals e0 (or a0), which
we know is 1. Fourth, the graph of the natural logarithmic function is an increasing function everywhere,
and, were we to plot the natural logarithm of larger and larger positive numbers, we would see that the
function would got to positive infinity, but very slowly, much slower than any other function we have seen
in this class. This makes sense: e10 is about 22026, and yet it only has a natural log of 10. Natural log can
get as big as you want it to be, but you have to input very very large numbers in order to get large numbers
as your output.

In general, the logarithmic functions loga x have the following properties:

• Positive Domain: As stated before, all logarithmic functions are defined only for positive numbers.
For completeness, we state this again in set notation:

Dom(loga x) = {x ∈ R : x > 0}.

• Horizontal Intercept: For all positive numbers a, we know that a0 = 1. Therefore for all logarithmic
functions loga x, the only solution to the equation loga x = 0 is x = 1. Thus we have that all logarithmic
functions intersect have a horizontal intercept (that is, have an x-intercept) of 1. So the graphs of all
logarithmic function intersect at (1, 0).

1



• Right Vertical Asymptote: All logarithmic functions have a right vertical asymptote at x = 0.
Whether that right vertical asymptote is positive or negative depends on whether a > 1 or a < 1. If
a > 1 then, as we saw with the natural logarithm, for which a = e > 1, we have that

lim
x→0+

loga x = −∞.

For a < 1, we have the opposite:
lim

x→0+
loga x = +∞.

Sketch out the graph of log0.5 x to confirm this.

• Slow Growth: When a > 1, the function loga x will get larger and larger, approaching positive
infinity, but it will do so very slowly. Likewise, when a < 1, the function loga x will get more and more
negative, approaching negative infinity, but it too will do so very slowly.

Differentiating Logarithmic Functions

If you look at the graph of lnx, you will notice the slope of the graph is always positive, and gets closer
and closer to 0 as x gets more and more positive. Thus we can expect that the derivative of the natural
logarithm function will have a right horizontal asymptote to the line y = 0, and indeed this is the case.

Let f(x) = loga x, where a is a positive number not equal to 1. The derivative of f(x) is then

df

dx
=

1
(ln a)x

.

In particular, if we take a = e, then the derivative of the natural logarithmic function is given by

d
dx

(lnx) =
1

(ln e)x
=

1
x

.

So, apparently, logarithmic functions and negative power functions are somehow related to each other. This
formula explains why, as x gets more and more positive, the slope of the graph of the natural logarithmic
function approaches 0.

There is one point we need to make about this formula for the derivative of logarithmic functions, and
that is that this formula is only defined where the logarithmic functions are defined, which is for positive
real numbers x. So, when drawing the graph of the derivative of ln x, you only draw the right half of the
graph of x−1. If you draw the part of the graph of x−1 which is to the left of the y-axis, then you are saying
that ln x has a derivative for negative values of x, and since ln x is not defined for negative values of x, you
would be wrong. Be careful!

Let us do some examples. Let f(x) = log10 x. Then the formula above tells us that

f ′(x) =
1

(ln 10)x
.

If we took g(x) = log0.5 x, then we would have that

g′(x) =
1

(ln0.5)x
.

The natural log of 0.5 is a negative number, so this tells us that the derivative of g(x) is always negative.
Based on your sketch of log0.5 x, is this what you expected?

Now let us do a couple of examples of using the Chain Rule with logarithmic functions. Let h(x) = ln(x2).
First, let us examine the domain of this composition. The outside function is lnx, and we know that to be
in the domain of lnx, x must be a positive number. This tells us that the only x which can be in the domain
of ln(x2) are those for which x2 is a positive number. The function x2 is positive as long as x 6= 0, so we get
that

Dom(h) = {x ∈ R : x 6= 0}.
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Now we take the derivative using the Chain Rule:

h′(x) =
1
x2
· 2x =

2x

x2
.

This formula for the derivative is defined everywhere on the domain of h(x), and so h(x) is differentiable
everywhere. Incidentally, you can leave this formula for h′(x) as it stands now, or you can note that, since
x 6= 0, we can divide by x and simplify the expression to

h′(x) =
2
x

.

Whether you do so or not is your choice.
For our next example, take k(x) = ln(sin x). Again, let us find the domain of this composition first, and

then take its derivative. To find the domain of this composition, we start with the domain of the outside
function, which, again, is ln x. The domain of ln x is all positive real numbers, so this tells us that if x is
in the domain of k(x), then sin x must be positive. Where is sin x a positive function? Looking at our unit
circle, we see that it is positive on the open interval 0 < x < π, but also for 2π < x < 3π, and −2π < x < −π,
and an assortment of other open intervals. This is a difficult domain to write down: one way we can write
it in set notation is

Dom(k) = {x ∈ R : nπ < x < (n + 1)π, where n is an even integer}.
Now let us use the Chain Rule to find the derivative of k(x):

k′(x) =
1

sin x
· cos x =

cos x

sin x
= cot x.

So the derivative of k(x), where it is defined, is equal to the cotangent of x. The function cot x is defined
everywhere except where sin x = 0. There are no values of x in the domain of k(x) for which sinx = 0, and
so k(x) is differentiable everywhere it is defined. What does the graph of k′(x) look like, and how does it
compare to the graph of cot x? Can you think of a way to get a function whose derivative is tanx everywhere
it is defined?

Let us do one more example: take j(x) = ln |x|. First we find its domain: the domain of the outside
function ln x tells us that for x to be in the domain of j(x), we must have that |x| > 0. This inequality is
true for all x except 0, so the domain of j(x) is

Dom(j) = {x ∈ R : x 6= 0}.
Now we find the derivative of j(x) using the Chain Rule:

j′(x) =
1
|x| ·

d
dx

(|x|).

To finish off this formula, we need to use the case-by-case definition of the absolute value function:

|x| =





x x > 0
0 x = 0
−x x < 0

.

This tells us that the derivative of |x| is 1 when x > 0 and −1 when x < 0 (since 0 is not in the domain of
j(x), we are unconcerned about |x| not having a derivative at x = 0). So we break up our formula for j′(x)
into cases: when x > 0, we have that

j′(x) =
1
|x| ·

d
dx

(|x|) =
1
x
· 1 =

1
x

,

and when x < 0, we get that

j′(x)
1
|x| ·

d
dx

(|x|) =
1
−x

· (−1) =
1
x

.
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So, for all x in the domain of j(x), we have that

j′(x) =
1
x

.

So, while the derivative of ln x is x−1 restricted to the positive real numbers, the derivative of ln |x| is x−1

everywhere that it is defined. You will use this derivative for ln |x| very often when you study integration
next term.

4


