Difference Equations
 to
 Differential Equations

Section 4.7

More on Area

In Section 4.1 we motivated the definition of the definite integral with the idea of finding the area of a region in the plane. However, to solve the problem we restricted to a very special type of region, namely, a region lying between the graph of a function f and an interval on the x-axis. We will now consider the more general problem of the area of a region lying between the graphs of two functions.

Figure 4.7.1 Approximating the area between $y=f(x)$ and $y=g(x)$

Suppose f and g are functions defined on an interval $[a, b]$ with $g(x) \leq f(x)$ for all x in $[a, b]$. We suppose that f and g are integrable on $[a, b]$, from which it follows that the function k defined by

$$
k(x)=f(x)-g(x)
$$

is also integrable on $[a, b]$. Let R be the region lying between the graphs of f and g over the interval $[a, b]$ and let A be the area of R. In other words, A is the area of the region of the plane bounded by the curves $y=f(x), y=g(x), x=a$, and $x=b$. We begin with an approximation for A. First, we divide $[a, b]$ into n intervals of equal length

$$
\Delta x=\frac{b-a}{n}
$$

and let $a=x_{0}<x_{1}<x_{2}<x_{3}<\cdots<x_{n}=b$ be the endpoints of these intervals. Next, for $i=1,2,3, \ldots, n$, let R_{i} be the region lying between the graphs of f and g over the

Figure 4.7.2 Region bounded by the graphs of $y=2-x^{2}$ and $y=x^{2}$
interval $\left[x_{i-1}, x_{i}\right]$. If A_{i} is the area of R_{i}, then

$$
\begin{equation*}
A=\sum_{i=1}^{n} A_{i} . \tag{4.7.1}
\end{equation*}
$$

Now $f\left(x_{i}\right)-g\left(x_{i}\right)$ is the distance between the graphs of f and g at x_{i}, and so

$$
\left(f\left(x_{i}\right)-g\left(x_{i}\right)\right) \Delta x
$$

should approximate A_{i} reasonably well when Δx is small. Thus

$$
\begin{equation*}
\sum_{i=1}^{n}\left(f\left(x_{i}\right)-g\left(x_{i}\right)\right) \Delta x=\sum_{i=1}^{n} k\left(x_{i}\right) \Delta x \tag{4.7.2}
\end{equation*}
$$

will approximate A. Moreover, we should expect that this approximation will improve as Δx decreases, that is, as n increases, and so we should have

$$
\begin{equation*}
A=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} k\left(x_{i}\right) \Delta x \tag{4.7.3}
\end{equation*}
$$

But now the right-hand side of (4.7.2) is a Riemann sum, in particular, the right-hand rule sum, and so the right-hand side of (4.7.3) converges to the definite integral of k on $[a, b]$. Hence we have

$$
\begin{equation*}
A=\int_{a}^{b} k(x) d x=\int_{a}^{b}(f(x)-g(x)) d x \tag{4.7.4}
\end{equation*}
$$

Example Let R be the region bounded by the curves $y=2-x^{2}$ and $y=x^{2}$, as shown in Figure 4.7.2. Note that these curves intersect when

$$
2-x^{2}=x^{2}
$$

Figure 4.7.3 Region bounded by the graphs of $x=y^{2}$ and $x=y+2$
which implies that $2 x^{2}=2$, that is, $x=-1$ or $x=1$. Hence the two curves intersect at $(-1,1)$ and $(1,1)$, and so we may describe R as the region between the curves $y=2-x^{2}$ and $y=x^{2}$ which lies above the interval $[-1,1]$. Thus if A is the area of R, we have

$$
\begin{aligned}
A & =\int_{-1}^{1}\left(\left(2-x^{2}\right)-x^{2}\right) d x \\
& =\int_{-1}^{1}\left(2-2 x^{2}\right) d x \\
& =\left.\left(2 x-\frac{2}{3} x^{3}\right)\right|_{-1} ^{1} \\
& =\left(2-\frac{2}{3}\right)-\left(-2+\frac{2}{3}\right) \\
& =\frac{8}{3}
\end{aligned}
$$

Example Let R be the region bounded by the curves $x=y^{2}$ and $x=y+2$. These two curves intersect when

$$
y^{2}=y+2
$$

which implies that

$$
0=y^{2}-y-2=(y-2)(y+1) .
$$

Hence the two curves intersect when $y=-1$ and $y=2$, that is, at the points $(1,-1)$ and $(4,2)$. However, looking at Figure 4.7.3, we see that not all of R lies over the interval $[1,4]$. In fact, R may be broken up into two regions, R_{1} and R_{2}, where R_{1} is the region between the curves $y=\sqrt{x}$ and $y=-\sqrt{x}$ over the interval $[0,1]$ and R_{2} is the region between the curves $y=\sqrt{x}$ and $y=x-2$ over the interval $[1,4]$. Thus, if A is the area of R, A_{1} is the
area of R_{1}, and A_{2} is the area of R_{2}, then

$$
\begin{aligned}
A & =A_{1}+A_{2} \\
& =\int_{0}^{1}(\sqrt{x}-(-\sqrt{x}))+\int_{1}^{4}(\sqrt{x}-(x-2)) d x \\
& =\int_{0}^{1} 2 \sqrt{x} d x+\int_{1}^{4}(\sqrt{x}-x+2) d x \\
& =\left.\frac{4}{3} x^{\frac{3}{2}}\right|_{0} ^{1}+\left.\left(\frac{2}{3} x^{\frac{3}{2}}-\frac{1}{2} x^{2}+2 x\right)\right|_{1} ^{4} \\
& =\frac{4}{3}+\left(\frac{16}{3}-8+8\right)-\left(\frac{2}{3}-\frac{1}{2}+2\right) \\
& =\frac{9}{2} .
\end{aligned}
$$

The region R in the previous example may also be described as the region lying between the curves $x=y^{2}$ and $x=y+2$ over the interval $[-1,2]$ on the y-axis. In general, analogous to our development above, if f and g are functions defined on an interval $[c, d]$ on the y-axis with $g(y) \leq f(y)$ for all y in $[c, d]$, then the area A of the region bounded by $x=f(y)$, $x=g(y), y=c$, and $y=d$ (see Figure 4.7.4), is given by

$$
\begin{equation*}
A=\int_{c}^{d}(f(y)-g(y)) d y . \tag{4.7.5}
\end{equation*}
$$

Figure 4.7.4 Region between the curves $x=f(y)$ and $x=g(y)$

Figure 4.7.5 Region bounded by the graphs of $y=x^{3}-x$ and $y=x^{2}$

In particular, for our previous example we have

$$
\begin{aligned}
A & =\int_{-1}^{2}\left(y+2-y^{2}\right) d y \\
& =\left.\left(\frac{1}{2} y^{2}+2 y-\frac{1}{3} y^{3}\right)\right|_{-1} ^{2} \\
& =\left(2+4-\frac{8}{3}\right)-\left(\frac{1}{2}-2+\frac{1}{3}\right) \\
& =\frac{9}{2}
\end{aligned}
$$

In this case, the second method for solving the problem is a little simpler than the first; in general, it is often useful to look at a problem both ways and evaluate using the simpler of the two approaches.

Example Let R be the region bounded by the curves $y=x^{3}-x$ and $y=x^{2}$. These curves intersect when

$$
x^{3}-x=x^{2},
$$

that is, when

$$
0=x^{3}-x^{2}-x=x\left(x^{2}-x-1\right)
$$

Hence the curves intersect when $x=0$,

$$
x=\frac{1-\sqrt{5}}{2},
$$

or

$$
x=\frac{1+\sqrt{5}}{2},
$$

where the latter two values were found using the quadratic formula. From the graphs in Figure 4.7.5, we see that R may be divided into two regions, R_{1} and R_{2}, where R_{1} extends
from $x=\frac{1-\sqrt{5}}{2}$ to $x=0$ and R_{2} extends from $x=0$ to $x=\frac{1+\sqrt{5}}{2}$. Note that in R_{1} we have $x^{3}-x \geq x^{2}$, whereas $x^{2} \geq x^{3}-x$ in R_{2}. Thus, if A is the area of R, A_{1} is the area of R_{1}, and A_{2} is the area of R_{2}, then

$$
\begin{aligned}
A & =A_{1}+A_{2} \\
& =\int_{\frac{1-\sqrt{5}}{2}}^{0}\left(x^{3}-x-x^{2}\right) d x+\int_{0}^{\frac{1+\sqrt{5}}{2}}\left(x^{2}-x^{3}+x\right) d x \\
& =\left.\left(\frac{1}{4} x^{4}-\frac{1}{2} x^{2}-\frac{1}{3} x^{3}\right)\right|_{\frac{1-\sqrt{5}}{2}} ^{0}+\left.\left(\frac{1}{3} x^{3}-\frac{1}{4} x^{4}-\frac{1}{2} x^{2}\right)\right|_{0} ^{\frac{1+\sqrt{5}}{2}} \\
& =\frac{13}{12} .
\end{aligned}
$$

Problems

1. Find the area of the region bounded by the curves $y=x$ and $y=x^{2}$.
2. Find the area of the region bounded by the curves $y=\sqrt{x}$ and $y=\frac{1}{2} x$.
3. Find the area of the region bounded by the curves $y=x^{2}$ and $y=x+2$.
4. Find the area of the region bounded by the curves $y=\cos (x)$ and $y=x^{2}$.
5. Find the area of the region bounded by the curves $y=\sin (x)$ and $y=x^{2}$.
6. Find the area of one of the regions lying between the curves $y=\cos (x)$ and $y=\sin (x)$ between two consecutive points of intersection.
7. Find the area of the region in the first quadrant bounded by $y=\cos (x), y=\sin (x)$, and $x=0$.
8. Find the area of one of the regions lying between the curves $y=\cos ^{2}(x)$ and $y=\sin ^{2}(x)$ between two consecutive points of intersection.
9. Let R be the region bounded by the curves $y=x^{2}$ and $y=2-x$.
(a) Set up an integral to find the area of R using functions of x.
(b) Set up an integral to find the area of R using functions of y.
(c) Evaluate the simpler of the integrals in (a) and (b).
10. Find the area of the region bounded by the curves $x=y^{2}-1$ and $x=1-y^{2}$.
11. Find the area of the region bounded by the curves $x=y^{2}$ and $x=6-y$.
12. Find the area of the region bounded by the curves $y=x^{3}-2 x$ and $y=x^{2}$.
13. Find the area of the region bounded by the curves $y=x^{4}-4 x^{2}$ and $y=3 x^{3}$.
14. To estimate the surface area of a lake, 21 measurements of the width of the lake are made at points spaced 50 yards apart from one end of the lake to the other. Suppose the measurements are, in order, $0,50,100,120,180,240,300,250,220,295,305,265$, $240,275,225,180,120,90,63,40$, and 0 , all measured in yards. Use Simpson's rule to approximate the surface area of the lake.
