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Abstract
As NASA, Elon Musk, and other space explora7on groups set their sights

on a manned mission to Mars, the ability to feed and sustain humans for 
extended periods of 7me outside of low-Earth orbit is cri7cal. Life support 
systems need to be strong, reliable, and will need to be able to effec7vely 
recycle nutrients, water, and gases.1 Current systems, such as the Environmental 
Control and Life Support (ECLS), are not fully closed and need to be habitually 
re-supplied in order to func7on con7nually.2 As such, self-sustaining biological 
systems, including intensive agriculture, are ac7ve areas of research for
NASA and private aerospace companies.3

Our project aOempts to model and op7mize the biomass produc7on 
systems of a closed life support system that could be used in space. By pairing 
different plant types within first a logis7c growth model and a replicator equa7on 
model, we show that food produc7on can be easily controlled in order to 
consistently support humans aboard the spacecraT, and that the use of
gases and nutrients can be balanced to maintain natural equilibria. 

Methods
While current models such as the ECLS require frequent resource 
inputs to maintain con7nuous func7on, the goal of our design was
to make our model self-sufficient.4 In such a model, once a balance is aOained, 
there is no need for either import or export of addi7onal resources. Of course, 
the system must also maintain biomass produc7on above a certain level necessary 
to maintain human life.5 Bacteria subsist alongside the plants, and provide the gases 
necessary for their survival, while the plants compete for available resources. 

Logis<c Growth Model
As a first approxima7on of the behavior of plant species in a closed system 
with a fixed maximum carrying capacity for mul7ple popula7ons, we consider a 
modified logis7c growth model, where the carrying capaci7es for a given popula7on
depend on pairwise interac7ons with the other species involved.6,11 We consider 
the consump7on of each species to be directly propor7onal to the mass of the 
species. The deriva7ves of the popula7on values for each species are given to be 
the following: 
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Intui7vely, the popula7ons will change 
un7l they achieve a sum equal to the 
total carrying capacity of the system, 
in this case scaled to be 1. We can test the stability of the equilibrium for a two 
species system in which the popula7ons sum to 1, meaning that they are at 
maximum capacity. We find that the Jacobian has one nega7ve eigenvalue and one
zero eigenvalue, making our analysis inconclusive. However, considering a
perturba7on of the popula7on system about an equilibrium point, changing one of 
the popula7ons by a small amount δ, we find that both nega7ve and posi7ve 
changes will decay back to that point. Let the k values be scaled to one for each of 
the species. Using PB=1-PA :
̇"# δ + "#, "/, "0 = ("#+δ)(1 − ("#+δ) − 1 − "# ) = −δ("# + δ)

The deriva7ve aTer a devia7on from an equilibrium point will thus always be in the 
opposite direc7on of the change that was made, restoring the state of the system. 
The equilibria are thus stable. We can establish by inspec7on that the system of 
three popula7ons will have zero deriva7ves where all three of the popula7ons sum 
to one, meaning they lie in the plane 1=PA+PB+PC. A more interes7ng case to 
consider is that of par7al overlap in resource consump7on, where each species only 
conflicts with one other.

Considering the nullclines of different combina7ons of consump7on profiles, 
we find that it is possible to create whole lines of solu7ons. If we allow for 
three species where one produces something that other two need (their 
consump7ons profiles thus looking like 3# = [1,1,-1], 3/ = [1,1,-1], and 
30 = [-1,-1,1]), we find that any combina7on of "# , and  "/ summing to .5 is 
permissible, but "0 will be fixed at .5 in order to support the other two 
popula7ons. 

We can  also find solu7ons in which the popula7ons of two of the 
species depend on the popula7on of one of them, as in the profile 
combina7on 3# = [1,1,1], 3/ = [1,1,-1], and 30 = [-1,-1,1]. The line of solu7ons 
runs in this case from PA = .5 and PB = 0 to PA = 0 and PB = .667. This is 
intriguing for the purpose of space travel in that it may allow for the control of 
the system of three species via the manipula7on of one. There are poten7ally 
energe7cally advantageous ways of doing this, for instance by varying heat or 
light access to a popula7on of bacteria or plants.

Discussion and Conclusion
While in space, any life support system must perform predictably and

reliably. Both of the models considered demonstrate the viability of a system 
of three interdependent species and provide methods for the predic7on of 
stable equilibria in that system as a func7on of the overlap in resource profiles 
for each species. With respect to a func7oning life-support 
system, each stable equilibrium represents a different combina7on of biomass 
types that could be maintained with minimal addi7onal energy on the part of 
the crew. Of par7cular note are the equilibria points that may be influenced 
easily to arrive at a desired point along a curve. We showed that in the case of 
lines of admissible solu7ons, a user of the system may easily and predictably 
change the produc7on of two plants A and B by increasing or decreasing the 
amount of popula7on C, which might for instance be a popula7on of bacteria 
producing carbon dioxide and other nutrients. In this manner, the mission’s 
food produc7on may be both planned ahead of 7me and controlled in transit, 
all without concern for hauling large amounts of food into orbit, which has 
historically represented a large por7on of non-propulsion mass.10 This analysis 
can be further expanded to more plants and more bacteria for larger variety, 
with different equilibria corresponding to each combina7on. Although our 
analysis is limited to the biomass produc7on system, further research may 
expand upon and introduce addi7onal sub-systems from waste disposal to gas 
recycling and water processing. We have found that the logis7c model in this 
case does provide an intui7ve model for the end state of the system but does 
not capture as completely the idea of compe77on for a common resource 
based on overlapping biological niches. The compara7vely more complicated 
replicator dynamics model provides a more natural implementa7on of this 
interac7on. 
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The system of equa7ons as given in (3) then has nullclines in the form 
of intersec7ng planes, iden7fied in the three equa7ons in (4).

This system has poten7al equilibria where those nullclines intersect, which will be at points where one 
popula7on is at its carrying capacity k and the other 2 are zero, or where each is at half of its carrying capacity 
(This point is evident in fig. 2). Similar plots for other pairs of dimensions show that this point is stable. We 
can compare our results from this model with those of a replicator equa7on model.  
Fitness Model and Standard Replicator Equa<on
We can use the replicator equa7on from evolu7onary game theory to understand the dynamics of 
interac7ng popula7ons all compe7ng for a common resource.8 We create a “consump7on profile” for each
species consis7ng of a vector of length m, where there are m resources of interest in the system. Each 
element of the vector for a given species indicates the rate at which they consume that par7cular resource. 
Using this model, we can consider the overlap between the consump7on profiles of two species to be
the dot product of the vectors for each popula7on. This dot product serves as a metric for the cost to each of 
the species of sharing space with the other. The replicator equa7on that we begin with is given in the 
following form, where f w indicates the the average fitness of the species involved 9: 
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If we consider as an example a system of three popula7ons, 
a, b, and c, with given consump7on vectors 3# = [1,.9,.8], 
3/ = [.8,1,.9], and 30 =[-1,-1,-1], we can establish the null-clines
of the system and then take their intersec7on to find poten7al 
equilibria. For internal points we can aOempt to find the eigenvalues
of the Jacobian at any poten7al equilibria to understand their 
stability. In this par7cular case, we find a poten7al equilibrium forms 
at very low PB and nearly equal PA and PC. The Jacobian has two nega7ve 
eigenvalues and one zero eigenvalue, sugges7ng that the point may be
stable but we cannot be sure. Ploxng the behavior in a simplex plot,8

we can see that it is indeed stable.        Fig. 3: : C1 = [1,.9,.8], C2 = [.8,1,.9], C3 = [-1,-1,-1]

As a proxy for internal behavior we can consider the pairwise interac7ons along the “edges” of our solu7on 
domain, where one of the popula7ons is zero. Let popula7on B be equal to zero. Then we consider the 
pairwise interac7on of popula7ons A and C. Along the edge we have the deriva7ve values described by (6): 
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The equilibrium point, found where PA = k2/(k2-k1), will be stable if 
(k1-k2) is nega7ve and k2 is posi7ve, which can be established via
an analysis of the second deriva7ve at the point in ques7on. The
deriva7ve of Pc is equal to the nega7ve of the deriva7ve of PA in this case,
as Pc=1-PA along the edge. In Fig. 4, for instance, the above analysis
leads to the conclusion that there is a stable equilibrium at Pb=.5, in 
keeping with what is shown in the Simplex plot.

We can consider instead a case with less overlap in the nutrient 
requirements of the species involved: 3# = [1,.5,.1], 3/ = [.1,.5,1], 
and 30 = [-1,-1,-1]. We now find only one equilibrium point, with
"# =0.326, "/ =0.326, "0 = 0.348 . However, we find that the Jacobian 

has two nega7ve eigenvalues and one zero eigenvalue and is thus 
inconclusive as a measure of stability. Ploxng the behavior of the 
deriva7ves around this point, we find that it is in fact a stable
degenerate node. 

Fig. 4: C1 = [1,1,.9], C2 = [1,1,1], C3 = [-1,-1,-1]

Fig. 5: 3# = [1,.5,.1], 3/ = [.1,.5,1], 30 = [-1,-1,-1].

Fig. 1: Growth of populations under a paired logistic model.
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Fig. 2: Nullcline and Streamplot at Pc=.5.
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