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BIOLOGICAL MOTIVATION
The Poisson-Nernst-Planck system is often used to study the flow of

several kinds of ions through membrane channels using a set of basic

electro-diffusion equations. Membrane channels are part of an

essential group of biological membranes that allows the passive

transport of ions to and from cells. These membranes, known as the

glycocalyx, are highly conserved throughout all organisms and are

known to help regulate many interactions between and within cells.

Furthermore, recent developments by Bartozzi et al at Stanford have

revealed directions towards promising new immunotherapies through

glycocalyx editing. That is, if one is able to control the flow of ions

through the glycocalyx, one may be able to boost the immune

response towards cancer. Thus, this poster is just the beginning of a

project that seeks to understand the PNP system with increasing

complexity in order to determine if there exists such opportunities to

develop such a controlled system.

FROM 3D TO 1D
The one-dimensional Poisson-Nernst-Planck model is a based on the

assumption that the Debye length is much larger than the

characteristic radius of the channel—i.e. membrane channels are

highly selective, thus allowing the system to be treated as a singularly

perturbed set.

DIMENSIONAL ANALYSIS
𝒙 𝑸 𝒄𝒌 𝝐 𝚽 𝑱𝒌

T 1 1 0 0 1 1

I 0 1 0 -1/2 2 -4

L 0 0 1 -1/2 -3 1

M 0 0 -2 -1/2 -1 -1

The nondimensionalized system was then analyzed using MatLab.

Varying permanent charge Q and the initial condition V0, four
conditions were tested for each equation. Interesting changes in
systemic behavior were observed, including multiple internal layers
and different equilibria as time approached infinity based on these
different conditions.

ACKNOWLEDGEMENTS + CITATIONS
• Thank you to Professor James Sterling from the Keck Graduate Institute for the

introduction to Poisson-Nernst-Plank models, to Professor Nishant Malik for his
guidance and patience during office hours, and Professor Dorothy Wallace for
being willing to listen to me struggle to decide what to do with my summer.

• Citations:

1. Liu, Weishi. One-dimensional steady-state Poisson-Nernst-Planck systems for ion
channels with multiple ion species. Journal of Differential Equations 246 (2009).

2. Liu, Weishi and Wang, Bixiang. Poisson-Nernst-Planck systems for narrow tubular-
like membrane channels. arXiv (2009).

3. Nonner, Wolfgang and Eisenberg, Bob. Ion permeation and glutamate residues linked
by Poisson-Nernst-Planck theory in L-type calcium channels. Biophysical Journal 75
(Sept 1998).

QUALITATIVE ANALYSIS

Unscaled Set of ODE Scaled Set of ODE

𝜖 ሶΦ = 𝑢

𝜖 ሶ𝑢 = −(𝑐1 + 2𝑐2) − 𝑄 𝑥 −
𝜖ℎ′ 𝑥

ℎ 𝑥
𝑢

𝜖 ሶ𝑐1 = −𝑐1𝑢 − 𝜖𝐽1ℎ
−1(𝑥)

𝜖 ሶ𝑐2 = −𝑐2𝑢 − 𝜖𝐽2ℎ
−1(𝑥)

ሶ𝑝 = 𝛼𝑣

ሶ𝑣 = −𝛽 𝑑1𝑐1𝑐 + 2𝑑2𝑐2𝑐 − Q − 2𝑥𝑐𝑣
ሶ𝑑1 = −𝑑1𝑣𝛾 − 𝐽1𝑒

−2𝜏𝑥𝑐𝑥𝑐
ሶ𝑑2 = −𝑑2𝑣𝛾 − 𝐽2𝑒

−2𝜏𝑥𝑐𝑥𝑐
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Left boundary:
𝑿 = 𝟎

Right boundary:
𝑿 = 𝟏

Wall M: 𝒀𝟐 + 𝒁𝟐 = 𝒈𝟐(𝑿, 𝝁)

Figure 1: Schematic illustration of our ion channel modeled by Ω𝜇 = 𝑥, 𝑦, 𝑧 : 0 < 𝑥 < 1, 𝑦2 + 𝑧2 < 𝑔2 𝑥, 𝜇 , where 𝑔 is

a smooth function satisfying 𝑔 𝑥, 0 = 0 and 𝑔0 𝑥 =
𝜕𝑔

𝜕𝜇
𝑥, 0 > 0 for 𝑥 ∈ [0,1]. The boundary consists of three portions,

where the left and right boundaries are viewed as the ends and M is considered the wall of the channel.

Table 1: Transformation from the basic 3D PNP system to 1D PNP system with cylindrical symmetry based on the

schematic above for 𝑘 = 1,… , 𝑛 proposed by Nonner and Eisenberg. Let 𝜖2 =
1

𝜆
≪ 1, ℎ 𝑥 = 𝑔0

2 𝑥 , and 𝐽𝑘 =
𝐽𝑘

𝐷𝑘
.

Permanent charge 𝑄 𝑥 is a piecewise constant function. Boundary conditions are listed below each system

respectively.
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+ 𝛼𝑘𝑐𝑘ℎ 𝑥
𝑑Φ

𝑑𝑥
= −𝐽𝑘

Φ ቚ
𝐿𝜇
= 𝜈0, 𝑐𝑘 ቚ

𝐿𝜇
= 𝐿𝑘 > 0,

Φ ቚ
𝑅𝜇

= 0, 𝑐𝑘 ቚ
𝑅𝜇

= 𝑅𝑘 > 0,

𝜕Φ

𝜕𝒏
ቚ
𝑀𝜇

=
𝜕𝑐𝑘
𝜕𝒏

ቚ
𝑀𝜇

= 0

Φ 0 = 𝜈0, 𝑐𝑘 0 = 𝐿𝑘;

Φ 1 = 0, 𝑐𝑘 1 = 𝑅𝑘

Table 2: Matrix of powers of fundamental units for the six variables. New parameters: x = time, 𝑐𝑘 = ion concentration.

According to the Buckingham Pi Theorem, there are two dimensionless parameters that can be constructed.

Table 4: Comparison between unscaled set of ODE and nondimensionalized set of ODE. Boundary conditions will

scale accordingly.

𝒙 𝑸 𝒄𝒌 𝝐 𝚽 𝑱𝒌
T 1 0 0 0 -10/3 16/3

I 0 1 0 0 13/3 -13/3

L 0 0 1 0 -2/3 2/3

M 0 0 0 1 14/3 -2/3

Letting free variable 1 = 3 and free variable 2 = 0,

Letting free variable 1 = 0 and free variable 2 = 3,

𝜋1 =
𝑥10𝑐𝑘

2Φ3

𝑄13𝜖14

𝜋2 =
𝑄13𝜖2𝐽𝑘

3

𝑥16𝑐𝑘
2

Table 3: RREF Matrix of powers of fundamental units for the six variables revealing two free variables with which the

two dimensonless parameters can be constructed.

Let k = 1 be Na1+, k = 2 be Ca2+, and 𝑔 𝑥 = 𝑒𝑥. By introducing 𝜖 ሶΦ =
𝑢 , the system can be nondimensionalized into the system below, with

properly chosen parameters 𝛼, 𝛽 and 𝛾.

Figure 2: The four above plots illustrate the different behaviors due to different starting conditions based off of the

boundary conditions. P, C1, and C2 were all assumed to be non-zero and positive. Blue: Q = 0, U = 1. Red: Q = 0,

U = 0. Yellow: Q = 1, U = 1. Purple: Q = 1, U = 0. It is interesting to see that flux (UL) reaches a different equilibrium

with every different set of starting conditions while U (UR) consistently converges to 0 regardless of the case

tested. Sodium seems similarly unperturbed until only Q is nonzero, at which case it stabilizes above 0. Calcium

seems to reflect the opposite trend.

Boundary layer analysis for the cases involving Q = 0 has already

been conducted by Liu and Wang in their analysis. Internal layer

analysis is beyond the scope of this course, but would be an

interesting future direction. Clearly, some variables are more

sensitive to change than others. As such, it would be beneficial to

conduct some sensitivity analysis in order to roughly predict how the

behavior of this system changes upon perturbation.


