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Abstract
In solving partial differential equations, we are able to derive solutions to 
two-dimensional problems from one-dimensional ones. We wonder if  the 
reverse, simplifying a two-dimensional problem to one-dimensional, could be 
done in solving wave equation. In this project, we model wind chimes of  
different radii. Intuitively, the wind chimes begin to behave like strings as 
their radii get smaller, which enables us to model the vibrating surface as a 
string. In order to test our assumption, we first solve the general wave 
equation on cylindrical surface and model three wind chimes of  various radii 
against a vibrating string. We then analyze Friture graphs of  two wind chimes 
of  different sizes. 

Deriving the General Solution to the Wave Equation 
on the Cylindrical Surface 
We consider a wind chime as a cylinder with two open ends. We strike the wind 
chime in the middle so that the top and bottom experience the same wave. While 
deriving the general solution to the wave equation, we look at every point on the 
cylinder in two  ways: 1. as a part of  a line and 2. as a point on a circular cross-
section. We use q to denote relative position on the circle and x to denote position 
relative to the bottom of  the cylinder. L is the length of  the wind chime, and r is 
the radius of  the circular cross-section. Different cylinders have different r’s, and 
the position can be described by rq, but on the same cylinder, we treat r as a 
constant. Since x, q, and t are independent of  each other, we can say that u(x, rq , 
t) = f(x) ⋅g(rq)h(t).

General wave equation: k2 • utt = uxx + uqq
Boundary conditions: u(0, rq, t) = u(L, rq, t), u(x, rq, t) = u(x, r(q + 2p), t)

Plugging our equation u(x, rq , t) = f(x)g(rq)h(t) into the wave equation, we have
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To solve for f(x), we use the boundary conditions u(0, rq, t) = u(L, rq, t), which 
translates to f(0) = f(L) and get that
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4p2
𝐿2

To solve for g(rq), we use u(x, rq, t) = u(x, r(q + 2p), t), which translates to g(rq) = 
g(r(q + 2p)). We then have

𝑔(𝑟𝜃) = 	𝑐	 sin 	 𝑟q + 	𝑑	•	 cos 	 𝑟q , where 𝜆2 = 	−𝑚2

To solve for h(t), we know that 	𝜆 = 𝜆1 + 𝜆2 = 	−
4p2
𝐿2
− 𝑚2, so
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Thus, the general solution to the wave equation on cylindrical surface is: 
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When r = 0, we have:
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The general solution to a vibrating string is 
u x, t = 	∑ sin 𝑛

p𝐿 𝑥
∞
𝑛,𝑚=0 𝐴𝑛,𝑚	sin(𝑚𝑡) +	𝐵𝑛,𝑚	cos(𝑚𝑡) , 

whose two ends are always fixed. Since our initial condition indicates free ends, we 
have an additional cos 𝑛

p𝐿 𝑥 term compared to the general one-dimensional 
solution. We can thus conclude that theoretically, when r = 0, our wind chime 
behaves like a vibrating string.

Analysis of Results

Our results are consistent across theoretical and experimental analyses. 
From the derivation of  general solution to the wave equation on 
cylindrical surface, we are able to conclude that the wind chime behaves 
like a vibrating string when stroked in the middle and when its radius 
approaches zero. The graphical analysis of  different functions, where we 
set different radii of  the solution previous solved, also show that our 
modeled vibrating cylindrical membrane approximates a string as its 
radius decreases. From our comparison of  two wind chimes of  different 
radii, we notice that the wind chime of  smaller radius demonstrates 
more frequencies proportional to its fundamental frequency, compared 
to the wind chime of  bigger radius. The spikes shown in the FFT 
Spectrums are overtones, and the existence of  harmonics (multiples and 
fractions of  fundamental frequency) show that the smaller wind chime 
behaves more like a vibrating string.
Conclusions and Future Directions
Our findings demonstrate that we were able to simplify the vibrating 
membrane of  a cylindrical surface when the radius of  the cylinder is 
relatively small. Thus, in solving the vibration of  wind chime, we could 
approximate a two-dimensional wave equation problem a one-
dimensional problem. The boundary conditions on the cylindrical 
membrane were assumed to be Dirilecht-like, with the displacement of  
the wave at either end along the length of  membrane equal to one 
another. This assumption was made by reasoning that the strike on the 
chime occurs halfway along its length, and that the symmetrical nature 
of  waves would then allow for this boundary condition to be 
satisfied. Further analysis and data collection about chimes should look 
at solid tubes and determine whether the same kinds of  similarities and 
generalizations can be traced regarding the solution space. Additionally, 
the study of  the impact of  different initial conditions on the solution 
space and the Fourier coefficients should be helpful, i.e. performing 
strikes on the chime at different positions along its length.
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Empirical Observations of Two Different-Sized Wind Chimes
When a string produces sound, it has one fundamental frequency and many overtones. The frequency of  
the overtones should be multiples or fractions of  the fundamental. In this part, we analyze the behaviors 
of  wind chimes from the frequency sound profile given at the time the chime was struck. Two wind chimes 
of  two different radii and lengths were struck at rest with an approximate same initial velocity at the exact 
half  point of  the chime’s length. The smaller wind chime had a radius of  0.3 cm and length 15 cm  while 
the larger wind chime had a radius of  2.3 cm and length 31 cm. The sound profiles shown below were 
taken from the real-time sound analysis software Friture.

Figure 2 and Table 1. Sound profile of  a cylindrical wind chime with a 
large radius. Figure 2 shows output of  the noise profile at the exact 
time a radially-large wind chime was struck. Note the presence of  a 
large number of  overtones of  the fundamental frequency, 1424 
Hz. Table 1 shows data points grabbed from Figure 2 and gives the 
loudness, in dB, of  the loudest overtones produced. Table 1 
additionally shows the proportionality of  each overtone frequency 
to the fundamental. The loudest overtones appear to be a factor of  
n⋅0.05 away from the fundamental.

Figure 3 and Table 2. Sound profile of  a cylindrical wind chime with a 
small radius. Figure 3 shows output of  the noise profile at the exact 
time a radially-small wind chime was struck. In contrast to the 
noise profile contained in Figure 2, this profile contains fewer and 
more distinct overtones, which can be seen at the graph’s peaks. 
Table 2 confirms this interpretation by giving grabbed data points 
grabbed from Figure 3 and showing the loudness, in dB, of  the 
loudest overtones produced alongside their proportionality to the 
fundamental frequency, which is 6170.00 Hz. Note that these 
overtones appear at approximate integer-multiples and integer-
fractions of  the fundamental, with the exception of  10041.533 
Hz. This shows the simplified one-dimensional nature of  wind 
chimes for chimes with smaller radii.
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Boundary Conditions:
u(0, y, t) = u(L, y, t)

u(x, r q, t) = u(x, r q + 2 p, 
t)

(x, r q) = (0, 0)

(x, r q) = (L, 0)

Figure 1. Visual diagram of  the wave equation on a 
cylindrical surface. Figure 1 shows a visual 
diagram of  the setup of  the classical wave 
equation on the cylindrical surface. The 
solution u(x, r q, t) gives the displacement of  
the vibration of  the membrane at a position x
along the length of  the chime and at position r
q along the circular cross section of  the chime 
at any given time t. The boundary conditions 
are additionally visually represented in Figure 1.

Figure 4. Effect of  changing the 
cylindrical radius on the shape of  
the solution u. Figure 4 shows 
the graphed solution u over 
time at position x = ½L and 
r q = 0 for different values of  
the radius r. All other 
coefficients were kept the 
same among each curve. 
Figure 4 demonstrates how a 
lower value for r produces a 
curve more similar to that of  
the wave equation on a string.


