The abc Conjecture

The abc conjecture claims that the sum of two numbers that factor a lot will not factor a lot.

\[a + b = c \]

with \(c \geq a, b \) and \(\gcd(a, b) = 1 \)

For \(\epsilon > 0 \), there are only finitely many triples with quality \(> 1 + \epsilon \) where quality, \(q \), of abc is defined as

\[
q(a,b,c) = \frac{\log(c)}{\log(\text{rad}(abc))}
\]

i.e. \(c < \text{rad}(abc)^{1+\epsilon} \)

abc Conjecture

Let \(\epsilon > 0 \)

Then there are only finitely many abc triples with quality \(> 1 + \epsilon \), i.e., \(N(\gamma) < \text{rad}(N(a\beta\gamma))^{1+\epsilon} \) for all but finitely many triples

Definitions

Norm: For \(\alpha = a + bi \) in \(\mathbb{Z}[i] \), we define its norm by \(N(\alpha) = a^2 + b^2 = |\alpha|^2 \)

Prime Factorization:

Integers: For \(n \in \mathbb{Z} \geq 2 \) can be written uniquely \(n = p_1^{e_1} \cdots p_r^{e_r} \) where \(p_1 < p_2 < \cdots < p_r \) are primes and \(e_1, e_2, \ldots, e_r \in \mathbb{Z} \geq 1 \)

Gaussian integers: Every nonzero \(\alpha \) in \(\mathbb{Z}[i] \) can be written uniquely as \(\alpha = u \cdot \prod_{i=1}^r \mathcal{T}_i \cdot \mathcal{P}_i^{e_i} \) where \(u \) is a unit, each \(\mathcal{T}_i \) is a Gaussian prime in the upper right quadrant or the positive real axis, and \(\mathcal{P}_i \in \mathbb{Z} \geq 1 \)

Radical: For \(n \in \mathbb{Z} \geq 2 \) and \(\alpha \in \mathbb{Z}[i] \)

\[
\text{rad}(\alpha) = p_1 \cdots p_r
\]

\[
\text{rad}(\mathcal{T}) = \mathcal{T}_1 \cdots \mathcal{T}_r
\]

\(\alpha\beta\gamma \) Triple: Three nonzero Gaussian integers \(\alpha, \beta, \gamma \) such that

\[\alpha + \beta = \gamma \]

\[N(\gamma) \geq N(\alpha), N(\beta) \]

\[\alpha = a + bi, \beta = c + di \]

\[\gcd(a, b) = 1 \]

Quality: \(q = \log(N(\gamma)) / \log(N(\text{rad}(\alpha\beta\gamma))) \)

High Quality Hit: An \((\alpha, \beta, \gamma)\) triple with quality \(> 1 \)

Background

Gaussian integers are the subring of the complex numbers consisting of elements \(\alpha = a + bi \) where \(a, b \) in \(\mathbb{Z} \). They are mapped into the complex plane as is shown below:

References

Special thanks to Professor John Voight