$\alpha \boldsymbol{\beta} \boldsymbol{\gamma} \boldsymbol{C o n j e c t u r e}$ for Gaussian Integers

Jared Hodes '20, Liam Morris '19, Tanish Raghavan '20, May Fahrenthold '22, and Dylan Burke '19 Math 17

The abc Conjecture		
The abc conjecture claims that the sum of two numbers that factor a lot will not factor a lot.$\begin{gathered} \mathrm{a}+\mathrm{b}=\mathrm{c} \\ \text { with } \mathrm{c} \geq \mathrm{a}, \mathrm{~b} \text { and } \operatorname{gcd}(\mathrm{a}, \mathrm{~b})=1 \end{gathered}$		
For $\varepsilon>0$, there are only finitely many triples with quality $>1+\varepsilon$ where quality, q, of abc is defined as		
abc Triple Qualities		
$[\log (\operatorname{rad}(\mathbf{a b c}))]$ i.e. $\mathrm{c}<\operatorname{rad}(\mathrm{abc})^{1+\varepsilon}$		

Background

Gaussian integers are the subring of the complex numbers consisting of elements $\boldsymbol{\alpha}=\mathrm{a}+\mathrm{bi}$ where a,b in \mathbf{Z}. They are mapped into the complex plane
as is shown below:

Definitions

Norm: For $\boldsymbol{\alpha}=a+b i$ in $\mathbf{Z}[i]$, we define its norm by $N(\boldsymbol{\alpha})=a^{2}+b^{2}=|\boldsymbol{\alpha}|^{2}$
Prime Factorization:
Integers: For $\mathrm{n} \in \mathbf{Z} \geq 2$ can be written uniquely $\mathrm{n}=\mathrm{p}_{1}{ }^{\mathrm{e}{ }^{2}} \mathrm{p}_{2}{ }^{\mathrm{e}_{2}} \ldots \mathrm{p}_{\mathrm{r}}{ }^{{ }^{e_{t}}}$ where $\mathrm{p}_{1}<\mathrm{p}_{2}<\ldots<\mathrm{p}_{\mathrm{r}}$ are primes and $\mathrm{e}_{1}, \mathrm{e}_{2}, \ldots, \mathrm{e}_{\mathrm{r}} \in \mathbf{Z} \geq 1$

Gaussian integers: Every nonzero $\boldsymbol{\alpha}$ in $\mathbf{Z}[i]$ can be written uniquely as $\boldsymbol{\alpha}=\boldsymbol{u} \boldsymbol{\pi}_{1}{ }^{\mathrm{e}_{1}} \ldots \boldsymbol{\pi}_{\mathrm{r}}{ }^{\mathrm{e}_{\mathrm{r}}}$ where u is a unit, each $\boldsymbol{\pi}_{\mathrm{i}}$ is a Gaussian prime in the upper right quadrant or the positive real axis, and e_{i} in \mathbf{Z} 21

Radical: For $\mathrm{n} \in \mathbf{Z} \geq \mathbf{2}$ and $\boldsymbol{\alpha} \in \mathbf{Z}[\mathrm{i}]$

$$
\begin{gathered}
\operatorname{rad}(\mathrm{n}):=\mathrm{p}_{1} \mathrm{p}_{2} \ldots \mathrm{p}_{\mathrm{i}} \\
\operatorname{rad}(\boldsymbol{\pi}):=\boldsymbol{\pi}_{1} \boldsymbol{\pi}_{2} \ldots \pi_{\mathrm{i}}
\end{gathered}
$$

$\boldsymbol{\alpha} \boldsymbol{\beta} \boldsymbol{\gamma}$ Triple: Three nonzero Gaussian integers $\boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\gamma}$ such that

$$
\begin{gathered}
\alpha+\boldsymbol{\beta}=\gamma
\end{gathered}
$$

$\mathrm{N}(\boldsymbol{\gamma}) \geq \mathrm{N}(\boldsymbol{\alpha}), \mathrm{N}(\boldsymbol{\beta})$
$\boldsymbol{\alpha}=\mathrm{a}+\mathrm{bi} \boldsymbol{\beta}=\mathrm{c}+\mathrm{di} \operatorname{gcd}(\boldsymbol{\alpha}, \boldsymbol{\beta})=1$
Plot of Gaussian Primes:

Findings

Hits with High Quality: (-30:30; excluding duplicates)

α	β	$\stackrel{r}{2}$	9
$\stackrel{1}{\text { 24it }}$	1	$\stackrel{2}{24+8}$	${ }^{652}$
${ }_{\substack{\text { 24i+7 } \\-24+7}}^{\text {a }}$	$\stackrel{1}{1-7}$	${ }_{\substack{24+88 \\ \hline-81}}$	
$\stackrel{\text { - }}{\substack{\text {-24i+7 } \\ 4 i+3}}$	${ }_{1}$		(1.545
${ }_{7}{ }^{4}+23$	1	$\frac{7}{7+24}$	1.253 1.253 1
3-4	29.28	32-32	1.177
$81+15$	1	${ }^{8+16}$	1.123
3i-4	${ }^{31 / 4}$	-8	1.063
3i-4	21.20	24 -24	1.041
${ }_{\substack{7124 \\ 11.2}}$	${ }_{\text {cole }}^{\text {2 }}$	$\underset{\substack{311.31 \\ 9+9}}{ }$	1.029 1.015
111.2	-21+11	$9 \mathrm{it9}$	1.015

Histogram of Quality (-30:30; excluding duplicates):

Quality: $\quad \mathrm{q}=\log (\mathrm{N}(\boldsymbol{\gamma})) / \log (\mathrm{N}(\operatorname{rad}(\boldsymbol{\alpha} \boldsymbol{\beta} \boldsymbol{\gamma})))$
High Quality Hit: An $(\boldsymbol{\alpha}, \boldsymbol{\beta}, \gamma)$ triple with quality >1

$\alpha \beta \gamma$ Conjecture

Let $\boldsymbol{\varepsilon}>0$
Then there are only finitely many $\boldsymbol{\alpha} \boldsymbol{\beta} \boldsymbol{\gamma}$ triples with quality $>1+\varepsilon$, i.e., $\mathrm{N}(\gamma)<\operatorname{rad}(\mathrm{N}(\boldsymbol{\alpha} \boldsymbol{\beta} \boldsymbol{\gamma}))^{\mathbf{1 +}}$ for all but finitely many triples

