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Context - Why Diversify?
● Imagine buying shares from a single company, X, with $500, and let’s say in 

one year, the stock has an equal chance of being worth $1000 or nothing. 
○ Its variance, Var(X), would be 250 dollars2, and its expected payout is $500.

● If instead we could buy two stocks, X and Y, each with $250, and each of 
which has an equal chance to be worth $500 or nothing in one year.

○ The variance of the portfolio after one year would be Var(X)+Var(Y)+2Cov(X,Y), which would 
equal at least zero, and at most 250 dollars2, while the expected payout is $500.

○ If the two stocks were anything less than perfectly correlated, the portfolio’s variance would be 
less than the original portfolio’s while having the same expected payout.

● The basis of optimal portfolio allocation is this premise: there exists a line, 
given different companies’ returns and correlations, that defines the minimal 
risk a portfolio can take for any given return. 
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Background: Optimal Portfolio Allocation

● Given a set of financial assets (e.g. stocks) and a fixed investment amount (e.g. 
$1000), in what proportion should we allocate our wealth towards buying 
each stock/asset in order to maximize our risk-adjusted returns?1

● Is buying every asset in equal proportion, and thereby spreading risk, the best 
approach?

● If not, how can we determine the optimal proportions (weights) with which we 
should buy each asset?

● We will examine real stock data to answer these questions.
○ We neglect transaction costs of making investments.
○ We use daily returns of stocks in our computations (PDay i - PDay i-1) / PDay i-1 , where P is the closing 

price of a given stock.

1Demidenko, E. (2020). Optimal Portfolio Allocation. In Advanced statistics with applications in R (pp. 230-236). Hoboken, NJ: Wiley. 4
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Portfolio Allocation Models

1. Markowitz Model

2. Interval Portfolio Model

3. Hierarchical Clustering Model
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Markowitz Model

● In 1952, Harry Markowitz developed a 
method to find the ideal minimum-volatility 
portfolio for any given return.

● The tradeoff between risk and return can 
be expressed as a curve called the “optimal 
frontier” where for any given level of risk, 
returns are maximized, and vice versa, with 
a specific weighting of assets.1

● The Markowitz Model assumes that 
investors are only allowed to go “long” or 
purchase assets. 

○ In our version of the Markowitz model, we 
assumed that shares could also be shorted 
(negative returns are allowed).

An example of a “Markowitz Bullet”
This data was taken from 10,000 simulations 

of a 30-stock portfolio over six months
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1Demidenko, E. (2010, November 22). Portfolio risk management via interval probability. Retrieved June 02, 2020, from 
https://content.iospress.com/articles/model-assisted-statistics-and-applications/mas00168



Statistical parameters in the context of stocks

● The mean vector represents the average returns of the stocks in the data set.
● Variance represents the volatility of stocks: the relationship is that variance = 

volatility2

● The vector of stock returns can be constructed as a vector of random variables X1, 
X2, … such that each Xi is a normally-distributed random variable with the mean as 
the mean return of the stock and standard deviation as the volatility of the stock

● We want to define a weighting of stocks such that for any return, we have the 
minimum volatility portfolio

● Given a vector of weights that sum to 1, w, how do we calculate the portfolio’s 
return and volatility?
○ wTμ = mean returns; we can set a desired return r such that wTμ = r
○ wT𝛺 w = variance = volatility2
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Markowitz Model Output

(Left) The “Markowitz Bullet” optimal frontier for 
our stock data (see data collection). The x-axis of 
the graph is the annual volatility of a portfolio, and 
the y-axis of the graph is the annual expected 
return of the portfolio. The point on the graph with 
the lowest volatility, denoted with a black dot and 
intersecting line, denotes the return (13.54%) that 
is obtainable with the lowest associated risk. This 
is the optimal portfolio as determined by the 
Markowitz model. 

8

  
Markowitz Model

  
Clustering Model

  
Interval Model

  
Background

  
Data Collection



Portfolio Allocation Models

1. Markowitz Model

2. Interval Portfolio Model

3. Hierarchical Clustering Model
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Interval Model

● The interval model is similar to the Markowitz Model, except instead of 
aiming to find the optimal frontier, we aim to maximize the probability of 
achieving a range of returns.

● We specify a lower bound, r, and an upper bound, R, of returns and 
calculate, using the Markowitz model, the relative probability of either 
occurring. Then, we can use optimization techniques to find the weighting 
required to achieve said returns.1
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1Demidenko, E. (2010, November 22). Portfolio risk management via interval probability. Retrieved June 02, 2020, from 
https://content.iospress.com/articles/model-assisted-statistics-and-applications/mas00168



Interval Model Continued

The return of optimum-weighted portfolio will return wTX, where X is the vector of 
normally distributed random variables representing returns, and w represents the 
vector of weights. To get the probability that the returns fall in the interval, we can 
find P (r < wTX < R). Given that we assume the return random variables are normally 
distributed, we know that the return of the portfolio must also be normally 
distributed. 

Therefore, by standardizing the return, we get the following: 

P (r < wTX < R)= P(R < wTX) - P(r < wTX) = Φ((R - wTµ)/sd) - Φ((r - wTµ)/sd)

Where sd is the standard deviation of wTX, which is equal to sqrt(wT𝛺 w)
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Portfolio Allocation Models

1. Markowitz Model

2. Interval Portfolio Model

3. Hierarchical Clustering Model
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Hierarchical Clustering Model
Intuition:
● Some stocks may be close substitutes of one another, 

i.e. they may have similar trends in returns over time.
● We expect companies in the same industry to have 

correlated performance, and we want to diversify not 
just across companies, but across industries.2

Implementation:
● Ultrametric distance:3                         
● Average linkage for hierarchical clustering
● Output is a vector of weights for our model
● This model aims to broaden exposure to all industries 

by allocating weights equally within clusters. Example of equal-weights allocation within clusters2

2Raffinot, T. (2017). Hierarchical Clustering-Based Asset Allocation. The Journal of Portfolio Management, 44 (2), 89-99. 
doi:10.3905/jpm.2018.44.2.089.
3Mantegna, R. N., Bonanno, G., & Lillo, F. (n.d.). Hierarchical structure of correlations in a set of stock prices. Retrieved May 29, 2020, from 
http://ocs.unipa.it/pdf/santafe.pdf
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Hierarchical Clustering Output

(Above) The dendrogram produced through hierarchical clustering of our data. Each branch represents one 
stock; we use the branching here to calculate stock weights as described on the previous slide. 14
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Data collection

● We retrieved five years of daily 
S&P 500 stock prices from 2013 
to 2018.

○ Taken from Yahoo! Finance

● We then dropped all NAs, leaving 
us with 468 stocks.

● Then, we calculated daily returns 
for each stock.

(Above) First 20 rows and 11 columns of our stock dataframe in R - 
actual dimensions are 468 x 1260

15

  
Markowitz Model

  
Clustering Model

  
Interval Model

  
Background

  
Data Collection



Correlation Heat Maps

● We created correlation heat maps of the stock data to determine if there were 
any interesting relationships between certain stocks.

● We used the ggplot2 package to help create the heat maps
● We apply hierarchical clustering to group the stocks on the heat map to get a 

better visualization of correlation within and across clusters.
● We also create a partial correlation heat map to remove the influence of other 

stocks when computing correlations.
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Correlation Heat Map

● Most stocks exhibit a strong 
positive correlation (red), while 
many others exhibit a strong 
negative correlation (green).

● Few stocks exhibit little to no 
correlation (blue).

17

  
Training & Testing

  
Discussion

  
Results

  
Data Examination

  
Conclusion



Partial Correlation Heat 
Map

● After removing the influence of 
other stocks, nearly all stocks 
exhibit little to no correlation 
(blue).

● Note that this is only 
representative of individual 
stocks, not industries.
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QQ-Plots

● To examine the distribution of the stocks in our data set, we use QQ-plots 
under the assumption that the returns of each stock follow a normal 
distribution

● We examine the daily returns within stocks.
● A random sample of 48 stocks is selected from our data set.
● Some of the stocks appear slightly skewed, but overall we can make the 

normal assumption for our models.
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(Above) QQ Plots of Daily Returns Within 48 Stocks 20



Training Markowitz Bullet and Interval Portfolio Models

● Essentially, this required finding μ and 𝛺, as they were the parameters that are 
used to construct the values in w.

● Vector μ was estimated by averaging daily returns over six month training 
period

● Matrix 𝛺 was estimated by finding the covariance matrix of the returns over the 
same period

● We then used the μ and 𝛺 matrices as the mathematical basis of the models. 
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Testing Each Model

● Rolling test windows of 6 months, 2 years, and 3 years.
1. Train models on rolling 6 month period, test on rolling 6 mo. windows (slides 28/29).
2. Train models on rolling 2 year period, test on rolling 2 year windows (slides 30/31).
3. Train models on rolling 1 year period, test on rolling 3 year windows (slides 32/33).
➔ For each window, we test the models once without rebalancing and once with 

rebalancing at the halfway point. 

● Train on 6 months, test on following 3.5 years - rebalance after various 
equally-spaced intervals (0-10 times) (slide 34).

● We use a starting investment of $100,000 in each case.
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Testing Each Model Continued

● To elaborate, the “rolling” window means simply that we train on a certain 
number of months from the start of the data, then test on the following months 
to see how the weights we learned from the first six perform monetarily at the 
end of the six months. Then we “roll” by moving our training and testing period 
forward by one day. 

● Once we have rolled through the whole data set, we have several data points, 
or “returns” that are the sum of the returns from each stock from the end of 
each testing period.

● We do this for each model, and then analyze the returns over time.
● We select 30 stocks at random from our data set to construct our portfolios.

23

  
Training & Testing

  
Discussion

  
Results

  
Data Examination

  
Conclusion



Assessing Each Model

● We compare each of the three previous models to the most simple weight 
allocation model: the equal weights model.

○ Each stock is allocated an equal weight of 1/N, where N = the number of stocks in our data set.

● We examine the standard deviations of the returns at the ends of each testing 
period for each model.

● We conduct a difference-in-means paired t-test to compare the returns at the 
ends of each testing period of each of our three models to the baseline equal 
weights model. 
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6-Month Rolling Window (No Rebalancing): 
Smoothing Function Applied For Legibility, Actual Returns in Background
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6-Month Rolling Window (Rebalance Halfway): 
Smoothing Function Applied For Legibility, Actual Returns in Background
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2-Year Rolling Window (No Rebalancing): 
Smoothing Function Applied For Legibility, Actual Returns in Background
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2-Year Rolling Window (Rebalance Halfway): 
Smoothing Function Applied For Legibility, Actual Returns in Background
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2017-2018



3-Year Rolling Window (No Rebalancing): 
Smoothing Function Applied For Legibility, Actual Returns in Background
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2017-2018



3-Year Rolling Window (Rebalance Halfway): 
Smoothing Function Applied For Legibility, Actual Returns in Background
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2017-2018



Static Window, Entire Dataset (Rebalancing): 
Reallocation Effect on Total Returns
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Standard Deviation of Models
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6 Months
No Rebal.

6 Months
Rebal.

2 Years
No Rebal.

2 Years
Rebal.

3 Years
No Rebal.

3 Years
Rebal.

HCA 7910.5 7775.5 17407.9 16228.9 16732.8 15440.3

Markowitz 
Bullet

10052.3 9879.5 10483.5 9424.4 9778.9 10959.6

Interval 
Portfolio

10014.3 9838.1 11135.6 10031.6 9987.1 11253.4

Equal 
Weights

6740.3 6678.0 11116.6 10729.6 4526.5 4510.6
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Standard Deviations Across Tests: 6 Months Test 
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Standard Deviations Across Tests: 2 Years Test

34

  
Training & Testing

  
Discussion

  
Results

  
Data Examination

  
Conclusion



Standard Deviations Across Tests: 3 Years Test
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Significance Analysis

● Using a difference-of-means analysis via a paired t-test, we saw that most of the 
returns were significantly different from the baseline equal allocation portfolio. The 
chart below displays the t-values for the t-test. 

● Due to the large data sets, we can approximate a distribution using a normal 
distribution, which, for an alpha of .01, leads to a two-sided critical z-score of 2.575. 
The significantly different portfolios are highlighted below in yellow.
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Results Summary

● There is a small but significant difference between models’ performances in 6 
month rolling window. 

● HCA performance drops at 2 year rolling window, but picks up greatly at 3 year 
rolling window.

○ Possibly HCA invests more in one industry that experiences an uptick in stock values towards 
the end of the 3-year window.

● Significant difference between HCA and Equal Allocation vs Interval Portfolio 
and Markowitz Bullet after testing for 3 years. 

● Rebalancing decreases the variance of the models slightly, which is what one 
would expect.

37

  
Training & Testing

  
Discussion

  
Results

  
Data Examination

  
Conclusion



Discussion

● In an investment scenario, it is helpful to rebalance your portfolio to reduce risk. 
However, there appears to be little benefit to rebalancing more often than once to 
several times a year (see graph on slide 32).

● The purpose of the Markowitz and Interval models is not necessarily to maximize 
returns, but to minimize risk. This was achieved in the two-years testing period, but 
not in the other periods, suggesting that the predictive power of historical data was 
not particularly high in this time period.

● From our two and three year runs, we can see that Markowitz and Interval Portfolio 
both produce much lower volatility overall than Hierarchical Cluster Analysis, which 
makes sense since HCA does not seek to minimize volatility.
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Discussion Continued

● The HCA, which ascribes equal allocation to the clusters, exhibited more long-term 
variance, as it should since it does not, by itself, try to minimize covariance, but 
rather broadens exposure to different industries. 

● Lastly, as a brief validation, the Markowitz model tended to have a smaller variance 
than the interval model, suggesting that the indeed, the relationship between 
returns and volatility held true in most cases.
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Limitations of our Analyses

● We neglect transaction costs of purchasing assets
○ There is often a cost associated with re-allocating portfolios, so investing in a re-allocated 

portfolio could decrease returns. 

● While the Markowitz and interval models are very strong at optimizing risk-adjusted 
returns under specific conditions, they assume stock price changes are normally 
distributed and that each day’s returns is independent of each other day’s returns. 

○ In the long run, the latter assumption may be true, but the first assumption fails to take into 
account significant short-term outlier events such as Trump’s election or COVID-19, which can 
skew the results of the 6-month tests.

○ The Markowitz model assumes that past returns are indicative of future returns (and thus 
volatility). If we train the model on a particularly turbulent/calm period in the markets, it 
misallocates the stocks in the future.

○ The QQ-plots indicate the long-run normality of the data.
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Limitations Continued

● In general, the hierarchical clustering model performed significantly worse than the other 
models. However, we do not calculate the risk-adjusted returns, which according to 
Raffinot (2017) should illustrate that the HCA model performs better than illustrated in our 
analyses. It should be noted that the HCA model may sacrifice a higher volatility for 
higher returns, while the Markowitz and interval models seek to minimize volatility.

● To construct our portfolios, we randomly selected 30 stocks from our larger data set, as 
it is impractical to have a portfolio with 400+ stocks. However, it is quite possible our 
randomly selected portfolio had outlier stocks that did not perform similarly relative to 
the rest of the market (e.g. Netflix, Amazon, GE). Had we tested on a different random 
sample containing a different selection of stocks, our results may have been different. 
○ If we had more time, it would have been interesting to compare our results for 

multiple random samples.
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Concluding remarks

1. Rebalancing the portfolio reduces variance of all models.
2. Markowitz Bullet and Interval Portfolio perform better over long periods of 

time.
○ Little difference between models over a short period of time.
○ This makes sense, as the goal is to have a stable, long-term portfolio.

3. Limitations in dataset analysis and our models could impact results.
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Thank you Professor Demidenko and M70!

“Mathematics is the queen and statistics is the king of all 
sciences”

- Professor Demidenko

Questions?
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