The de Bruijn sequence is an example of a more general concept: a universal cycle. These are cyclic sequences of length n where each consecutive group of length k is a unique object. The object for each cycle could be different:

- **Binary strings**
 - We applied this in the de Bruijn sequences
 - Subsets
 - Subsets of size k of an n-element set
 - Ex: subsets of size 2 from the set $\{0,1,2,3,4\}$

- **Permutations**
 - Different orderings of k elements
 - Ex: all possible orderings of 3 numbers, highest (3) to lowest (1)

- **Set Partitions**
 - A set of n elements can be arranged into different groups
 - Ex: The partitions of the set $\{A, B, C\}$

All together: (A, B, C)
Two together: $(A)(B, C) \cup (A, B)$
All apart: $(B)(A, C)$

Applications of Universal Cycles

Magic

Overall goal: Have three audience members pick out the top three cards and be able to guess those cards.

How to get there:

- Take the de Bruijn cycle we showed previously (1,1,0,1,0,0,0,1)
- Let 1 correspond to a red card, and 0 correspond to a black card
- For each of the elements in the sequence, assign a card that matches the color
 - 1: red
 - 0: black

- Because of its cyclic nature, the order is maintained even if you ask the audience to cut the cards
- Have three audience members pick the top three cards, ask them to raise their hands if they have a red card
- This gives the ordering of red and black cards, which indicates where in the deck the audience has removed their cards from

How to find a De Bruijn Cycle of window length n:

- Create a graph where:
 - Each node is a possible binary string of length $(n-1)$
 - An edge goes from x to y if there is a binary string of length n that has x as its left and y as its right
 - Follow the edges until you have used each edge only once and you end up where you started (Eulerian circuit)
- The graph has an Eulerian circuit because each vertex has an equal number of edges leading in and leading out

De Bruijn sequences can be used for robots to be able to detect where they are in space. Therefore, instead of just focusing on a one-dimensional string, we apply the concepts of a universal cycle to a two-dimensional problem (de Bruijn array).

- A de Bruijn array with window size $u \times v$ is an array of zeros and ones such that every $u \times v$ window of zeros and ones appears exactly once going around the edges.
- If the robot has the information in the given window, it can determine where in the grid it is located
- Applied in digital pens:
 - The paper has an invisible de Bruijn array printed on it
 - The pen's infrared camera detects the pattern and can determine where it is on the page

Robotics

De Bruijn sequences can be used for robots to be able to detect where they are in space. Therefore, instead of just focusing on a one-dimensional string, we apply the concepts of a universal cycle to a two-dimensional problem (de Bruijn array).

<table>
<thead>
<tr>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>01</td>
</tr>
</tbody>
</table>

References

Acknowledgments

This work was supported by the directed reading program in the Mathematics Department at Dartmouth College. This project was possible with the help of Alex Wilson.