Background and Definitions

- A graph $G=(V, E)$ is defined by a set of vertices $V=V(G)$ and edges $E=E(G)$.
- In a proper coloring of a graph, two adjacent vertices have different colors.
- The chromatic polynomial of a graph $\chi(G, k)$ gives the number of proper colorings of the graph G with k colors.
- The two graphs below are isomorphic:

$\because \cong$
- An internal edge is an edge $u v$ such that $\operatorname{deg}(u), \operatorname{deg}(v) \geq 2$
- The internal degree of a vertex v is the number of internal edges incident to v.
- A leaf component of a forest F is any maximal subtree $C \subseteq F$ such that every edge in C is a leaf-edge in F.
- In 1994, Stanley defined the chromatic symmetric function (CSF) of a graph as a generalization of its chromatic polynomial:

$$
\boldsymbol{X}_{G}=\sum_{\text {proper } \kappa: V \rightarrow \mathbb{N}} x_{1}^{\# \kappa^{-1}(1)} x_{2}^{\# \kappa^{-1}(2)} .
$$

where x_{1}, x_{2}, \ldots are commuting variables.

- Stanley's Tree Isomorphism Conjecture: If T_{1}, T_{2} are non-isomorphic trees, then $\mathbf{X}_{T_{1}} \neq \mathbf{X}_{T_{2}}$

The CSF in the star basis

- A star graph on n vertices $S t n)$ is a tree with $n-1$ leaf vertices and one vertex of degree $n-1$.

$$
\underset{s t_{1}}{\bullet} \quad \underset{s t_{2}}{ } \quad \vdots \quad \underset{s t_{3}}{\bullet} \quad \underset{s_{4}}{\bullet} \quad \stackrel{\bullet}{\bullet_{t_{5}}}
$$

- For a partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right)$, we define the star forest
indexed by λ as follows:

$$
S t_{\lambda}=S t_{\lambda_{1}} \cup \cdots \cup S t_{\lambda_{k}}
$$

- For example, for $\lambda=(5,3,2)$:

$$
\cdots!:
$$

- Denote $X_{S_{t_{n}}}=\mathfrak{s t}_{n}$. There is a well-known formula tha expresses $\mathfrak{s t}_{n}$ in terms of the power-sum symmetric polynomials:

$$
\mathfrak{s t}_{n+1}=\sum_{r=0}^{n}(-1)^{r}\binom{n}{r} p_{\left(r+1,1^{n-r}\right)}
$$

- Similarly as above, for $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right)$, we have:

$$
\mathfrak{s t}_{\lambda}=\mathfrak{s t}_{\lambda_{1}} \cdots \mathfrak{s t}_{\lambda_{k}}
$$

- $\left\{\mathfrak{s t}_{\lambda}: \lambda \vdash n\right\}$ is a basis for the algebra of symmetric functions of degree n.

Deletion-Near-Contraction (DNC)

- We can write the CSF compactly using the star-basis:

$$
\mathbf{X}_{G}=\sum_{\lambda \vdash n} c_{\lambda} \mathfrak{s t}_{\lambda}
$$

- The DNC relation expresses the CSF of a forest recursively as a linear combination of CSFs of three forests, each with fewer internal edges [2]:

$$
\mathbf{X}_{G}=\mathbf{X}_{G \backslash e}-\mathbf{X}_{(G \odot e) \backslash \ell_{e}}+\mathbf{X}_{G \odot e}
$$

- This relation allows us to compute the CSF efficiently.
- Once we fix a permutation of the internal edges of a tree, we can visualize the operations performed in the DNC algorithm using a ternary tree:

Diameter Results
Let $\left\{v_{1}, \ldots, v_{k}\right\}$ be the set of internal vertices of a tree T whose internal degree is strictly greater than one. Let L_{i} be the set of leaf vertices adjacent to v_{i}.

- The internal subgraph of T is the subgraph $I \subseteq T$ induced by
$\left\{v_{1}, \ldots, v_{k}\right\} \cup L_{1} \cup \cdots \cup L_{k}$. The orders of the leaf components in I are equal to $\left|L_{1}\right|+1, \ldots,\left|L_{k}\right|+1$
- For a partition λ of length $|I(T)|$ containing no 1's, we define the edge-adjacency multiset in which each part $p \in \lambda$ appears with multiplicity $m_{E_{\lambda}}=\max \left(m_{\lambda_{\ell}}(p)-m_{\lambda}(p), 0\right)$
- Theorem 1: If T is any tree of diameter at most five, then the orders of the leaf components in the internal subgraph $I \subseteq T$ can be reconstructed from \mathbf{X}_{T}.
- Corollary 1: If T is a tree of diameter four, then T can be reconstructed from \mathbf{X}_{T}.
- Corollary 2: If T is a tree of diameter five such that the orders of the leaf components in I are distinct, then T can be reconstructed from \mathbf{X}_{T}.

$$
\underset{\substack{\lambda_{\ell}=(5,4,4,3,2,2,2) \\\{2,2\},\{3,2\}^{2},\{4,3\}^{2}}}{ } \longrightarrow
$$

- Theorem 2: If T is a tree of diameter five such that the orders of the leaf components in I are equal, then T can be reconstructed from \mathbf{X}_{T} by extending edge-adjacency multisets to partitions of length $|I(T)-1|$.

Leading Partition

A CSF has leading partition λ if $c_{\lambda} \neq 0$ and $c_{\mu}=0$ for all μ with larger lexicographic ordering. Given any $\lambda \vdash n$, we say λ is a hook partition of n if $n \geq 2$ and for some $1 \leq k \leq n-1, \lambda=\left(k, 1^{n-k}\right)$.

- Lemma 1: Given any non-hook partition of n, λ, Build-Leading-Tree returns a tree on n vertices with leading partition λ

- Lemma 2: Get-Leading-Partition returns the leading partition of F

Algorithm 1: Get-Leading-Partition
input : any forest F
output: $\lambda_{\ell}\left(\mathbf{X}_{F}\right)$
while F has an internal edge e do
if F has an independent edge e^{\prime} then
$F \leftarrow F \backslash e^{\prime}$
let L be the list of orders of the connected components of F, in
non-increasing order;
return λ;

Combinatorial Interpretation of coefficients

We have shown that various coefficients of the CSF of a tree in the star-basis are determined completely by properties of the tree. Below we record information about the relationship between the indexing partition λ and the value of c_{λ} in \mathbf{X}_{T} Let $k=|I(T)|$.

- The coefficient on the partition $\left(n-m, 1^{m}\right)$ is given by:

$$
c_{\left(n-m, 1^{m}\right)}=(-1)^{m}\binom{k}{m}
$$

- For each $m=2, \ldots, k+1$, we obtain:

$$
\sum_{\ell(\lambda)=m} c_{\lambda}=0
$$

- From some of the results above, it follows that

$$
\sum_{\substack{\ell(\mu)=2 \\ 1 \notin \mu}} c_{\mu}=k
$$

- Lastly, if ω is the number of pairs of two adjacent edges that cannot be successively deleted in the DNC algorithm, we $\therefore: \therefore$ obtain:

$$
\sum_{\ell(\lambda)=3}\left|c_{\lambda}\right|=2\binom{k}{2}+k(k-1)-2 \omega
$$

Acknowledgements

I would like to thank Professor Orellana for her mentorship and UGAR and the Kaminsky Fund for their financial support

References

1. Stanley, R.; A symmetric function generalization of the chromatic polynomial of a graph. Adv. Math. 111 (1995), no. 1, 166-194.
2. Aliste-Prieto, J; De Mier, A; Orellana, R; Zamora, J; Marked Graphs and the Chromatic

Symmetric Function, under review.
3. Gonzalez, M.; Koulogeroge, A.: Orellana, R.; Tomba, M.; The Chromatic Symmetric Function in the Star Basis, in progress.

