A Game Theoretic Model of Jazz Improvisation
Joshua Piesner ${ }^{\dagger a, 1}$ ，Vedant Tapiavala ${ }^{\dagger a, 1}$ ，and Sourjyamoy Barman ${ }^{\text {a，} 2}$
Department of Mathematics，Dartmouth College

Abstract

This paper presents a novel approach to modeling jazz improvisation as a mathematical game．Such a game provides insights into music theory and provides a new method of conceptualizing the practice of musical im－ provisation in general．Through computational modeling we uncover the underlying payoffs associated with diverse music strategies including ran－ domness，chord following and reinforcement learning to name a few．

Introduction and Methods

Background

Much of music theory has been devoted to the under－ standing musical perception from the lens of mathematics． This study has provided many useful insights that will be utilized in our paper

First，harmony has been historically measured ranging from consonance to dissonance．This range is a measure of how good two notes sound to our ears，with consonant harmony typically sounding more harmonious and vice versa．Nearly all the information of whether two notes ound harmonious or not comes from the base frequencie of each note．We will use one of the leading theories o analyzing harmony，that involves measuring the ratios of each frequency

Grace Leslie \＆Navid Hassanpour（2008）have proposed that simple improvisation can be modeled using a simple game in which each player gets to pick between two possible notes．From this，it is found that a game theoretic model of musical interaction is possible and can be represented by payoff matrices．Our game is a significant expansion upon this idea．We present each player with 4159 options representing every integer frequency found in between the lowest note on the piano and the highest．Every＂beat＂ （which is equivalent to a turn in the gane，both playe whe ，bor playe ． p ．The a pay is calculated bed ol ping per choices．The rules to how these payoffs are calculated are founded upon the latest research in music theory．

For the sake of simplicity，we will analyze jazz improvis ion using a very common jazz chord progression：the 12 bar Bb blues：Bb7，Eb7，Bb7，Bb7，Eb7，Eb7，Bb7，Bb7 Cm7，F7，Bb7，F7（Other chord progressions and other variations of the blues could be used）

Strategies
Figure 2：Average Payoff by Strategy

Strategies

－Randomness
－Chord Following
－Scale Following
－Harmony Prediction
－Stepwise Changes
－Simple Reinforcement
－Chord Reinforcement
－Scale Reinforcement
－Two－Player
Reinforcement

Payoff

Two scores were used to calculate a payoff for each game：variance and harmony． －The variance score，denoted by V，utilizes Shannon＇s Diversity Index and species evenness as a proxy for how the players vary what notes they play
（2 The harmony score，denoted by H，uses six notes，one played by each player and four representing the current chord in the chord progression．Each possible pair of these six notes is used in a fraction，which is then simplified．These numerator／denominator sums are added and averaged to get the harmony score， where a smaller harmony score is better
The payoff is represented by

$$
P=\frac{V-H}{V+H}
$$

Results

After ten trials of each strategy vs．strategy pair（45 pairs） the payoff of each individual trial was calculated．The av erage of these trials was taken and is displayed in Figure 1 （Table）．The average of each strategy＇s average payoff in each pair was then also taken and displayed in Figure 2.

Conclusion

The reinforcement learning algorithms and the stepwise changes strategy，which all depend on previous payoffs， tended to perform similarly well．Chord－based strategies， including chord following and the chord－following reinforce ment learning strategies，also did performed very well．

Discussion

Reinforcement learning and stepwise change strategies per－ forming well indicates that musicians in the game should be open to switching based on new feedback．In real life this would correlate to a musician shifting strategies after hearing a few unharmonic beats of music
Furthermore，chord－following strategies performing well should indicate that musicians should emphasize playing music that would harmonize well with the current chord． Since the chord－following reinforcement learning strategy had the highest average payoff out of all tested strategies having different notes to play based on the current chord is a viable strategy for＂better＂（as defined by our simplified model）music．

Future Research
Quantifying music yields the use of several different models Qual the model used in this paper utilizes several simplify ang assumption．While this yields some interesting results， ture research may include models accounting for rhythm， lody，and
 ions themselves could be adjusted to value how a certai type of music counts through curves based on present－da music
We can also make a network game，with a population of musicians with different strategies，and switch strategies of musicians that have low average payoffs after their interac－ tions（2－player jazz improvisation games）．

Figure 3：QR Code for chosen samples of generated music

References

