

Abstract

We give an explicit example of a K3 surface of degree 6 defined over the rational numbers with geometric Picard number 1. Previous work has shown that this is the generic case for complete intersections of K3 surfaces [3], but no explicit examples have been found in degree 6. Explicit examples have been found for the degree 2 [1] and degree 4 cases [4], and we extended the technique used to the case of K3 surfaces of degree 6.

Introduction

First, we define the geometric Picard number in a relatively general setting. Let X be a nonsingular variety over a field k.

- A **prime divisor** on X is a closed integral subvariety Y of codimension 1.
- A (Weil) divisor is an element of the free abelian group Div X generated by the prime divisors.
- a **principal divisor** is an element of Div X given by

$$(f) = \sum v_Y(f) \cdot Y$$

for some rational function f on X, where $v_Y(f)$ denotes the order of vanishing of f along Y.

- Two divisors D and D' are **linearly equivalent** if D D' is a principal divisor.
- The **Picard group** Pic(X) is the group of divisors on X modulo linear equivalence. • The geometric Picard number of X is the rank of $\operatorname{Pic}(\overline{X})$, where $\overline{X} = X \times_{\operatorname{Spec}(k)} \operatorname{Spec}(\overline{k})$.

Next, we define K3 surfaces and recount some basic properties of their Picard groups.

- A K3 surface is a smooth, projective, geometrically integral surface X over a field k whose canonical sheaf ω_X on X is trivial and $H^1(X, \mathcal{O}_X) = 0$.
- For a K3 surface X, $\operatorname{Pic}(X) \cong \mathbb{Z}^{\oplus \rho(X)}$ where $1 \le \rho(X) \le 22$. Note that the geometric Picard number of X is just the Picard number of \overline{X} , so it satisfies the same bound [2, p. 397].
- The geometric Picard number of a K3 surface over \mathbb{F}_p , is always even [2, Corollary 17.2.9]. Thus, the minimum geometric Picard number of a K3 surface over a finite field is 2.
- Reducing a K3 surface X defined over \mathbb{Q} mod p induces a **specialization homomorphism** $\overline{sp}: \operatorname{Pic}(X) \to \operatorname{Pic}(X_p)$ which is injective and compatible with the intersection products on X and X_p [2, Proposition 2.10].

To find the explicit example of a sextic K3 surface with geometric Picard number 1, we start by picking a sextic K3 surface $X_p \subset \mathbb{P}^4$ that contains a line for some prime p. We can project from this line, and because the line is contained in the surface we show that the projection is a degree 2 cover $X_p \to \mathbb{P}_2$, allowing us to use a preexisting algorithm for computing the Weil polynomial of degree 2 K3 Surfaces. We use the Weil polynomial to prove that $\operatorname{rk}(\operatorname{Pic}(\overline{X_p})) \leq 2$. Next, we find a lift of X_p to \mathbb{Q} , say X, which no longer contains the line L, and in fact does not contain any line. We prove that any lift of a line must be a line, meaning that the divisor class L in X_p does not lift, so $\operatorname{rk}(\operatorname{Pic}(\overline{X})) \leq 1$, which is its minimum value, so $\operatorname{rk}(\operatorname{Pic}(\overline{X})) = 1$.

Realizing X_p as a **Degree 2 Surface**

We start with a sextic K3 surface $X_p \subset \mathbb{P}^4$ over \mathbb{F}_p defined by the vanishing of homogenous degree 2 and 3 polynomials f_2 and f_3 , respectively. Further, we require that X_p contains the line L, which amounts to f_2 and f_3 being in the ideal of L.

To utilize the algorithms developed for degree 2 K3 surfaces, we need to view X_p as a degree 2 K3 surface. Projecting the surface X_p from the line L means mapping each point on X_p to the plane which meets both L and that point. The planes through L are parameterized by \mathbb{P}^2 , so this gives a rational map to \mathbb{P}^2 . Note that this map is not defined at L itself. To resolve the rational map, we blowup X at L, getting a morphism $f: X_p \to \mathbb{P}^2$.

We prove the following theorem, which implies that f is a degree 2 model for X_p .

Theorem 1. Let $X_p \subset \mathbb{P}^4_{\mathbb{F}_n}$ be a sextic K3 surface given by the vanishing of homogenous degree 2 and degree 3 polynomials f_2 and f_3 , respectively, and assume that X_p contains a line L. Then the projection of X from L is a finite, flat degree 2 morphism $X_p \to \mathbb{P}^2_{\mathbb{F}_p}$ whose branch locus is a sextic curve given by the vanishing of a single degree 6 polynomial f_6 .

Bounding the Picard Number of X_p using the Weil Polynomial

Let f be the Frobenius morphism on X_p , and let f^* be its pullback on $H^2_{et}(\overline{X}_p, \mathbb{Q}_l)$. We call the characteristic polynomial of f^* the Weil polynomial of X_p .

Sextic K3 Surfaces with Geometric Picard Number 1

Henry Scheible (advised by Asher Auel)

Department of Mathematics, Dartmouth College

Figure 1: Summary of Proof Strategy, all algorithms in Magma

We have that $\operatorname{Pic}(\overline{X_p})$ injects into $H^2_{et}(\overline{X}, \mathbb{Q}_l)(1)$, and this injection respects the Galois action of $G(\overline{\mathbb{F}}_p/\mathbb{F}_p)$, in particular the action of Frobenius [4].

By observing that all divisor classes are defined in some finite extension of \mathbb{F}_p , we have that some power of the Frobenius acts as the identity on $\operatorname{Pic}(\overline{X}_p)$, so all eigenvalues of Frobenius on $\operatorname{Pic}(\overline{X}_p)$ are roots of unity. If we let $f^*(1)$ be the induced automorphism on $H^2_{et}(\overline{X}, \mathbb{Q}_l)(1)$, we then know that $\operatorname{rk}\operatorname{Pic}(\overline{X}_p)$ is bounded above by the number of eigenvalues of $f^*(1)$ that are roots of unity, counted with multiplicity. Eigenvalues of $f^*(1)$ differ from eigenvalues of f^* by a factor of p, so we have the following lemma:

Lemma 2 ([4, Corollary 2.3]). The rank of $Pic(\overline{X}_p)$ is bounded from above by the number of eigenvalues λ of f^* for which λ/p is a root of unity, counted with multiplicity.

We can use a preexisting algorithm in Magma to compute the Weil polynomial of X_p , so we randomly generate the defining equations f_2 and f_3 until we get a surface X_p such that the Weil polynomial has 2 roots which are roots of unity. This guarantees that $\operatorname{rk}\operatorname{Pic}(X_p) \leq 2$.

Verifying that X contains no lines over $\overline{\mathbb{Q}}$

Now that we have bounded the geometric Picard number of X_p , we need to find a lift to a sextic K3 surface X over \mathbb{Q} which contains no lines over \overline{Q} . To do this, we add 2 terms to f_2 which are not in the ideal of L but vanish mod p.

Next, we check that this lift contains no lines. Let $V = \mathbb{Q}^5$, and note that a line in $\mathbb{P}^4_{\mathbb{Q}}$ corresponds to a plane in V. Thus, the lines in $\mathbb{P}^4_{\mathbb{O}}$ are parameterized by the Grassmannian $\operatorname{Gr}(2,5)$ of 2-dimensional subspaces of 5-dimensional space.

We computed an explicit set of affine charts for Gr(2, 5) using Schubert cells. Because dim Gr(2, 5) = 6, each chart is the span of two vectors v_1 and v_2 parameterized by y_1, \ldots, y_6 . Let C be the homogenous coordinate ring of \mathbb{P}^4 with homogenous coordinates $x_0, ..., x_4, R = \mathbb{Q}[y_1, ..., y_6]$, and $S = R[u_1, u_2]$.

Thus, if $f \in C$, then f is in the ideal of the line spanned by $v_1, v_2 \in V$ if and only if $f(u_1v_1 + u_2v_2) = 0$ for all $u_1, u_2 \in \mathbb{Q}$. If we expand the expressions $f_2(u_1v_1 + u_2v_2)$ and $f_3(u_1v_1 + u_2v_2)$, we can view them as polynomials in u_1 and u_2 . These polynomials are zero for all u_1 and u_2 if and only if all their coefficients (taking u_1 and u_2 as unknowns and all other variables as constants) are all zero. The set of y_1, \ldots, y_6 which satisfy these constraints are an algebraic variety in $\mathbb{A}^6_{\mathbb{O}}$ because each coefficient is a polynomial in y_1, \ldots, y_6 .

In Magma, we can easily compute the ideal generated by all of these coefficients using a Gröbner basis calculation and check that it is the unit ideal, meaning that there are no such $y_1, ..., y_6$ over \mathbb{Q} or in fact any algebraic extension of \mathbb{Q} , in particular \mathbb{Q} .

Geometric Picard Number of X

 $D \in \operatorname{Pic}(\overline{X})$ such that $\overline{sp} = L$, then D is the class of a line. Additionally, Elsenhans and Jahnel showed the following lemma:

homomorphism $\overline{sp} : \operatorname{Pic}(\overline{X}) \to \operatorname{Pic}(X_{\overline{\mathbb{F}}_n})$ is torsion free.

With lemmas 3 and 4, we can prove the following theorem which allows us to conclude that X has geometric Picard number 1:

has geometric Picard number 1.

that E is the class of a line, a contradiction.

Theorem 6. Let $X = V(f_2, f_3) \subset \mathbb{P}^4_{\mathbb{O}}$ where

- $+47x_3^2+47x_4^2$

and $x_0, ..., x_4$ are the homogenous coordinates for $\mathbb{P}^4_{\mathbb{O}}$. Then X is a sextic K3 surface with geometric Picard number 1.

term, so X_p contains the line $L = V(x_0, x_1, x_2)$. We computed that the Weil polynomial of X_p is

 $(x - 47)^2(x^{20} + 35x^{19} + 1410x^{18} + 79524x^{17} - 311469x^{16} + 39037448x^{15} + 5504280168x^{14}$ $-86233722632x^{13} - 1013246240926x^{12} - 666716026529308x^{11} - 78339133117193690x^{10}$ $-1472775702603241372x^9 - 4944318430168024606x^8 - 929531864871588625928x^7$ $+ 131063992946893996255848x^{6} + 2053335889501339274674952x^{5}$ $-36190045052461104716146029x^{4} + 20411185409588063059906360356x^{3}$ $+799438095208865803179665780610x^{2} + 43835855553952808207685006970115x$ +2766668711962335809450748011342401).

It is easy to check that the second factor contains no cyclotomic factors, so the Weil polynomial has exactly 2 roots which are p times a root of unity. Thus, by Lemma 2, X_p has geometric Picard number at most 2.

Finally, we can check using the method described above that X contains no lines, so X has geometric Picard number 1 by Theorem 4.

- 1027–1040. MR 2948470
- [2] Daniel Huybrechts, *Lectures on k3 surfaces*, University Press.

We prove the following lemma about the behavior of the Picard group under specialization:

Lemma 3. Given a K3 surface $X \subset \mathbb{P}^n_{\mathbb{Q}}$ such that \overline{X}_p contains a line L and there exists

Lemma 4 ([1, Corollary 3.7]). Let $p \neq 2$ be a prime number and X be a scheme proper and flat over \mathbb{Z} . Suppose that the special fiber X_p is nonsingular. Then, the cokernel of the specialization

Theorem 5. If $X \subset \mathbb{P}^n_{\mathbb{Q}}$ is a K3 surface containing no lines over $\overline{\mathbb{Q}}$ and the reduction X_p contains a line and has geometric Picard number 2 for some prime p of good reduction, then X

Proof. Let $H \in \operatorname{Pic}(\overline{X})$ be the hyperplane section. Assume to get a contradiction that X has geometric Picard number at least 2. If $\operatorname{rk}\operatorname{Pic}(\overline{X}) > 2$, we have a contradiction because $\overline{\operatorname{sp}}$ is an injective homomorphism from $\operatorname{Pic}(\overline{X})$ to $\operatorname{Pic}(\overline{X}_p)$, and $\operatorname{rk}\operatorname{Pic}(\overline{X}_p) = 2$. Thus, $\operatorname{rk}\operatorname{Pic}(\overline{X}) = 2$. Because $\overline{\operatorname{sp}}$ is injective, the image of \overline{sp} has rank 2 as well, so the cokernel has rank 0. However, by Lemma 4 we know that the cokernel is torsion free, so it must be 0, so \overline{sp} is surjective. Let L be the line in \overline{X}_p . Because $\overline{\text{sp}}$ is surjective, we have a divisor class $E \in \operatorname{Pic}(\overline{X})$ such that $\overline{\operatorname{sp}}(E) = L$, but by Lemma 3 we have

Main Theorem

 $f_2 = x_0^2 - 3x_0x_1 + 3x_1^2 + 5x_0x_2 + 4x_1x_2 + 5x_2^2 - x_0x_3 - 2x_1x_3 - 3x_2x_3 - 5x_0x_4 + 5x_1x_4$

 $f_3 = 2x_0^3 + 3x_0^2x_1 + 3x_0x_1^2 + x_1^3 - x_0x_1x_2 - 3x_1^2x_2 + 4x_0x_2^2 - 4x_1x_2^2 + 5x_2^3 + 4x_0x_3 + x_0x_1x_3$ $+5x_1^2x_3 + 4x_0x_2x_3 + 4x_1x_2x_3 + -3x_2^2x_3 + 4x_1x_3^2 - x_2x_3^2 + 5x_0^2x_4 - 4x_0x_1x_4 + 2x_1^2x_4$ $+ x_0 x_2 x_4 + 4 x_1 x_2 x_4 - 2 x_2^2 x_4 + 4 x_0 x_3 x_4 - 3 x_2 x_3 x_4 - x_0 x_4^2 + -x_1 x_4^2 + 5 x_2 x_4^2,$

Proof. Let p = 47, and note that the reduction of X mod p is defined by the same equations except for the removal of the last two terms of f_2 . Note that at least one of x_0, x_1 , or x_2 divides every remaining

References

[1] Andreas-Stephan Elsenhans and Jörg Jahnel, The picard group of a k3 surface and its reduction modulo p, 5, no. 8,

[3] Tomohide Terasoma, Complete intersections with middle picard number 1 defined over q, 189, no. 2, 289–296. [4] Ronald van Luijk, K3 surfaces with picard number one and infinitely many rational points, 1, no. 1, 1–15.