The arithmetic of cyclic subgroups

Zebediah Engberg

Abstract

In this thesis, we consider several problems relating to cyclic subgroups of the unit group $(\mathbb{Z} / n \mathbb{Z})^{\times}$. For $n>2$, every element of $(\mathbb{Z} / n \mathbb{Z})^{\times}$has a unique representative in one of the two intervals $(0, n / 2)$ and $(n / 2, n)$. A subgroup H of $(\mathbb{Z} / n \mathbb{Z})^{\times}$is balanced if every coset of H intersects these two intervals equally. For a fixed integer g, how often is the cyclic subgroup $\langle g \bmod n\rangle$ balanced? We prove a conjecture of Pomerance and Ulmer that this distribution is essentially determined by two special families of balanced subgroups.

The behavior of the cyclic subgroup $\langle 2 \bmod p\rangle$ as p ranges over odd primes is closely connected to the arithmetic of the Mersenne numbers $2^{n}-1$. Let $f(n)=\sum_{p \mid 2^{n}-1} 1 / p$, the reciprocal sum of the primes dividing the nth Mersenne number. Erdős showed that $f(n)<\log \log \log n+C$ for some constant C. Apart from the exact value of C, this inequality is tight. Assuming the truth of a well-believed conjecture in number theory, we answer Erdős's question on the correct value of C. We also show that Erdős's theorem is still true when the Mersenne number $2^{n}-1$ is replaced with the nth Fibonacci number.

