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Abstract

In this thesis, we study the dynamics of magnetic flows on compact nilmanifolds. Magnetic
flows are generalizations of geodesic flows. They model the motion of a particle of unit mass
and unit charge in a smooth manifold M in the presence of a magnetic field. As such, their
dynamical properties are influenced by both the underlying Riemannian geometry and the
closed 2-form on M which plays the role of the magnetic field. At the same time, nilmanifolds
are a rich and varied class of examples, as well as a source of conjectures and counterexamples
in Riemannian geometry. More precisely, we consider nilmanifolds of the form M = Γ\G,
where G is a simply connected 2-step nilpotent Lie group and Γ < G is a cocompact discrete
subgroup. The manifold M is endowed with a Riemannian metric g and closed 2-form, or
magnetic field, σ, each of which pulls back to a left-invariant tensor field on G.

First, we focus on the case when G is the 2n+ 1 dimensional Heisenberg group, and σ is
exact. We calculate the Mañé critical value and the lengths of closed magnetic geodesics in
nontrivial free homotopy classes. Next we consider the topological entropy of magnetic flows
on arbitrary 2-step compact nilmanifolds. When σ represents a rational cohomology class
and its restriction to g = TeG vanishes on the derived algebra, we prove that the associated
magnetic flow has zero topological entropy on a dense set of energy levels. In particular, this
is the case when σ represents a rational cohomology class and is exact. Lastly, we provide
an example of a magnetic field on a 2-step compact nilmanifold that has positive topological
entropy for arbitrarily high energy levels. The salient difference in this case is that σ is not
exact. We discuss the relationship to Mañé’s critical value. The main tool is a symplectic
reduction of the cotangent bundle of a nilmanifold of one more dimension than M .
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